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Bistable ldnetic model driven by correlated noises: Steady-state tsnalysis
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A simple rule to obtain the Fokker-Planck equation for a general one-dimensional system driven by
correlated Gaussian white noises is proved by the functional method. The Fokker-Planck equation ob-

tained in this paper is applied to the bistable kinetic model. We fie the following for the steady state.

(1) In the a-D parameter plane (a is the strength of the additive noise and D is the multiplicative noise

strength), the critical curve separating the unimodal and bimodal regions of the stationary probability
distribution (SPD) of the model is shown to be a@ected by A,, the degree of correlation of the noises. As A,

is increased, the area of the bimodal region in the a-D plane is contracted. (2) When we take a point
fixed in the a-D plane and increase A, , the form of the SPD changes from a bimodal to a unimodal struc-

ture. (3) The positions of the extreme value of the SPD of the model sensitively depend on the strength

of the multiplicative noise, and weakly depend on the additive noise strength. (4) For A, = 1, the case of
perfectly correlated noises, when the parameters a and D take values in the neighborhood of the line

a=D in the a-D plane, the SPD's corresponding to the points a/D & 1 and a/D (1 exhibit a very

different shape of divergence. Therefore, the ratio a/D = 1 plays the role of a "critical ratio. "

PACS number(s): 05.40.+j, 42.50.Lc

I. INTRODUCTIQN

On the level of a Langevin-type description of a
dynamical system, the presence of correlation between
noises changes the dynamics of the system [1]. In Ref.
[1], a bistable kinetic model under the simultaneous
influence of additive and multiplicative Gaussian white
noises is considered. The authors of Ref. [1]pointed out
correctly that the transition between unimodal and bimo-
dal stationary distribution is strongly in6uenced by the
correlations between both noises. However, the statisti-
cal properties for the systems driven by correlated addi-
tive and multiplicative noises have still not been investi-
gated because the method given in Ref. [1] cannot pro-
vide a correct foundation with which the effects of corre-
lation of the noises will be studied quantitatively [2].

It must be pointed out that Fox discussed non-
Markovian, Gaussian, ¹ omponent stochastic processes
with correlation between the noise components by a
correlation time expansion [3]. He obtained an explicit
result to erst order in the correlation time and systemati-
cally provide any higher order correction. Singh showed
that the correlation between the quantum noise for a
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homogeneously broadened two-mode ring laser at line
center gives a nonzero contribution of the order no

' [4];
here no denotes the mean number of photons in the laser

cavity at threshold. In our opinion the efFects of the
correlation of quantum noises between the laser modes
may be of interest to the problem of laser physics. In the
recent years, Fedchenia described the inluence of two ad-
ditive correlated noise effects on a two-dimensional
quadratic-nonlinear system describing the behavior of
two hydrodynamic modes. Using the method of local ex-

pansions, Fedchenia obtained an approximate stationary
distribution function [S,6]. More recently, Zhu investi-

gated theoretically the statistical fluctuations of a single-
mode laser with correlations between additive and multi-

plicative white-noise terms. The mean, variance, and
skewness of the steady-state laser intensity are calculated
by Zhu through a one-dimensional laser equation [7].

In this paper we propose a simple method to obtain the
Fokker-Planck equation (FPE} corresponding to the
Langevin equation driven by correlated noises (it may be
multiplicative noise} with an arbitrary degree of correla-
tion in Sec. II. Then, in Sec. III, the FPE obtained above
is used in a typical one-dimensional dynamical system,
the bistable kinetic system, driven by correlated additive
and multiplicative Gaussian white noises. The stationary
probability distribution (SPD}of the state variable for the
system is derived. In See. IV several interesting con-
clusions about the transition between the unimodal and
bimodal structures for the SPD are drawn.
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II. FOKKER-PLANCK EQUATION
CORRESPONDING TO THE LANGEVIN EQUATION

DRIVEN BY CORRELATED
GAUSSIAN WHITE NOISES

Consider a one-dimensional Langevin equation (LE)
with two correlated Gaussian white noises e(t) and r(t):

x =h(x)+g, (x)e(t)+g (x)I (t) .

In the paper we assume Eq. (1}to be the Stratonovich sto-
chastic difFerential equation. In Eq. (1), e(t) and I (t) are
Gaussian white noises with zero mean and

{G(x)r(t)G(x)r(t ') ) = ( [g, (x)e(t)+g, (x)r(t) ]

X[g,(x)e(t')+g (x)I (t')]} .

This gives the relation

[G(x)]'&r(t)r(t') }
=[g (x)] (e(t)e(t'))+g (x)g (x)(e(t}r(t') &

+g, (x)g, (x)(r(t)e(t') )+[g,(x)]'{r(t)r(t') ) .

Using (2) and (4), the above relation leads to the required
expression

{e(t)e(t') ) =2D5(t t'), —

{r(t}r(t'})=2a5(t t'), —

{e(t)I (t') }= (r(t)e(t') }=2k &Da5(t —t') .

(2a)

(2b)

G(x)= {D[g,(x)] +2A&Dag, (x)g2(x}

+a[gz(x) ]2] '~ (5)

The FPE corresponding to (3}with (4) is given by [8,9]

A, denotes the degree of correlation between the noises
e(t) and I'(t). D and a are the strength of the noises e(t)
and I (t), respectively.

To obtain the FPE from the LE (1) with (2), we have
proved the following simple rule (for the details for the
proof of this rule, see the Appendix): Equation (1) with
(2) can be transformed into a stochastic equivalent Strato-
novich stochastic difFerential equation (i.e., leads to the
same FPE}

BP(x, t)
dt

where

and

A (x)=h(x)+G'(x)G(x}

B(x)=[6{x)]

8 2

A (x)P(x, t)+ 2B(x)P(x,t),
x Bx

(6)

(7a)

(7b)

x =h(x)+G(x)I (t), (3)

in which I (t) is Gaussian white noise with zero mean and

The prime in Eq. (7a) and below denotes the derivation
with respect to x.

Using expression (5},we rewrite Eqs. (7a) and (7b) as

(r(t)r(t ))=25(t —t )

and G(x) is determined by the following simple pro-
cedure: Let the correlation of G(x)I'(t) in Eq. (3) be equal
to the correlation of and

A (x}=h(x)+Dg, (x)g', (x)+A&Dag, (x)gz(x)

+A &Dag I (x)gz(x)+ agz(x)gz(x }

g, (x)e(t )+g,(x)r(t)

in Eq. (1):

B(x)=D[g,(x)] +2A&Dag, (x)gz(x)+a[gz(x)] . (9)

The SPD of FPE (6) is given by [8,9]

P„(x}= exp, dx'N x A(x'}

N x h(x')dx'

{D[g, (x}]+2k v'Dag, (x)gz(x)+a[g2(x) ] ]
'~

D [g& (x'}]z+2A&Dag, (x')g2(x')+a[g2(x')]2

(10}

In addition, the extrema of P„(x)obey a general equa-
tion A (x)—B'(x)=0 or h (x)—G'(x)G(x) =0. Using ex-
pression (5), this leads to

h(x) —{Dg,(x)g &(x)+A&Dag&(x)gz(x)

+A,&Dag', (x)g2(x)+agz(x}g2{x}]=0 . (11)

III. THE BISTABLE KINETIC SYSlEM
DRIVEN BY CORRELATED ADDiiiVE

AND MULTIPLICATIVE NOISES

x =x x+x e( t)+ I—(t) . (12)

The noises e(t) and I'(t) are the same as in Eq. (1).
In order to obtain the SPD for Eq. (12), we compare

Eq. (12}with Eq. (1) and get

h(x)=x —x, g, (x)=x, gz(x)=1 . (13)

I

tern driven by additive and multiplicative noises, and as-
sume the dimensionless form

Now we apply the theory developed above to an im- Substituting (13}into (10) and making the integral opera-
portant one-dimensional system, the bistable kinetic sys- tion, we obtain the SPD for Eq. (12) [10]:
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A, ')Da
~
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(15)

Here,

af (x)=2k,

' 1/2
ax

D 2D

1/2
a1

1 (4g —1)(4g& 1 )——1
2DD

(17)1a
D

1/2

and

a
~ 1/2

2X

2D
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D
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h' d order:ing equation ooft

r0&r &A&1.x +(D —1)x +A,&Da =0 for (18)
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Pst(x) Pst(x)
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i i
-2.0 -1.0 0.0 1.0

FIG. 7. The SPD of the bistable kinetic model for A, = 1 [Eq.
(15)]. a =0.55 and D =0.50. [P„(x)denotes the relative proba-
bility density. ]

tive. The above facts lead the SPD to diverge at a point
x = —(a/D)' . For example, when a=0.55 and
D =0.50, so that E )0 and C &0, the combination of the
factor exp( E/(Dx+—v'Da) with the factor

(Dx'+2v'Dax+a}

leads to the extraordinary asymmetry of the SPD around
x = —(a/D)'~, as can be seen from Fig. 7. On the con-
trary, as a=0.45 and D =0.50, so that F. &0 and C&0,
the asymmetry of the SPD around x = (a/D )'~—
changes, as shown by Fig. 8.

(3) It follows from (18}and (19) that the critical curve
for A, = 1 makes no qualitative change. In the parameter
plane (a,D) there still exist two regions for A, = 1, that is,
the bimodal and unimodal regions. Figure 9 shows a bi-
modal structure of the SPD.

Pst(x)

-3.0 -2.0 -1.0 0.0 2.0 3.0

FIG. 9. The SPD of the bistable kinetic model for I,= 1 [Eq.
{15)].a=0.05 and D =0.25. [P„{x)denotes the relative proba-
bility density. ]
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APPENDIX: THE PROOF OF THE STOCHASTIC
EQUIVALENCE OF EQS. (I) AND (2)

AND EQS. (3)—(5)

To do this, we prove that Eqs. (1) and (2) and Eqs.
(3)—(5) both lead to the same Fokker-Planck equation.
The stochastic Liouville equation corresponding to Eq.
(1) reads

ap(x, t) a [h(x)+g, (x)e(t)+g (X)I'(t)]p(x, t) .
at Bx

(A 1)

Here we have considered an ensemble of systems in x
space obeying Eq. (1) for a given realization of e(t) and
I'(t) and different initial conditions. This ensemble is
represented by a density p(x, t) which evolves in time ac-
cording to Eq. (Al). It is well known that p(x, t} is just
the average of 5(x(t)—x) over the initial conditions,
where x(t) is a solution of Eq. (1) for a given realization
of e(t) and I'(t) and for a given initial condition, while x
is a point in state space. Because the probability density
P(x, t) is obtained by averaging p(x, t} over the realiza-
tions of e(t) and I (t} (this is known as van Kampen's
lemma [11]),we have

P(x, t)=(5(x(t) —x)) . {A2)

-2.0 -1.0 0.0 1.0 2.0
X

FIG. S. The SPD of the bistable kinetic mpdel for A, = 1 [Eq.
(15}].a=0.45 and D =0.50. [P„(x)denotes the relative proba-
bility density. ]

Here the average ( ) is taken over initial conditions and

over the realizations of e(t) and I (t) Because Eq. (A. l)
expresses the variation of p(x, t) with time at a fixed point

x; therefore, h (x), g&(x}, and g2(x) are given functions

independent of e(t) and I (t), while p(x, t) is a functional
of e(t) and I (t) defined through Eq. (Al). So that the
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g, (x)(e(t)5(x(t)—x ) )

g ( )(I'(t)5( (t)—«)) . (A3)

The average which remains in Eq. (A3) may be calcu-
lated for Gaussian noises e(t) and I (t) by a functional
formula, the Novikov theorem [12]:

(kkk[01 42] &
=f «'ykl(t t'} 5(5(x(t) x—))

0 t
t'

(k, / =1,2), (A4)
I

evolution equation for the probability density P(x, t) is
obtained by averaging Eq. (A 1 }:

BP(x, t) 8
h( )p( }

dt Bx

where P[g&, g2] is a functional of g& and g2 and

ykt=(gk(t)gt(t')) are its correlation functions. Now we

use the above theorem to the calculation of the averages
(e(t)5(x(t) x—)) and (I (t)5(x(t} x—)) in Eq. {A3}. In
our situation, g, and gz are the correlated noises e(t) and
I (t) with correlation functions, Eq. (2). According to
Eq. (A4), we have

(e(t)5(x(t) —x))= f dt'y„(t, t') 5{5(x(t)—x ))
0 8 t'

5(x(t)—x ))+ &Xi2 &&
0 I t'

(A5)

This leads to

(e(t)5(x(t) —x))= — f dt'y»(t, t') 5(x(t}—x), — f dt'y, 2{t,t') 5(x(t)—x)8 t, , 5x(t) 5 i, , 5x(t)
ax 0 e t x 0 I

(A6)

Using Eqs. (2a) and (2b), that is,

y»= (e(t)e(t') ) =2D5(t t'), —

y„=(e(t)I (t'})=2A&Da5(t t'), —

we obtain [13]from Eq. (A6),

y»=(l {t)l (t'))=2a5(t —t'},
y» = ( I'{t)e(t'}) =2k V'Da5(t t'), —

we get

(r(t)5(x(t) —x) &

(AS)

(e(t)5(x(t) x) ) = — —Dg, (x)P(x, t)

Av'Dag2{x}P(x, t) . (A7}

Similarly, also using (2a) and (2b),

&D ga, (x)P. (x, t) agz(x—)P(x, t} . (A9)
2

X Bx

Substituting (A7) and (A9) into (A3), we finally obtain a
Fokker-Planck equation corresponding to Eqs. (1} and
(2):

aP(x t) a
dt Bx

jh(x)+Dg, (x)g', (x)+A&Da[g, (x)gz(x)+g', (x)g2(x)]+ag2(x)gz(x) ]P(x, t)

2

+
~ [Dg f(x)+2A&Dag, (x}gz(x)+agz(x)]P(x, t} . (A 10)

a
G(x )( F'( t )5(x ( t) —x ) )

Bx

G(x) f Ct'y(t, t') 5(x(t) —x)5 a, , 5x(t)
Bx Bx o 51.(t )

G(x) G(x)P(x, t)
8 8

h(x)P(x, t)+
x

h(x)P(x, t)+8

Following the same method, we get from (3)—(5) the Fokker-Planck equation

Bt

h(x)P(x, t) — [Dg&(x)g&(x)+A, Da[g, (x)gz(x)+g', (x)gz(x)]+agz(x)gz(x)]P(x, t}

a2+ [Dg f(x)+2A&Dag&(x)gz(x)+agz(x}]P(x, t) .
Bx

This is the same Fokker-Planck equation as Eq. (A10). It is evident from the above proof of the rule (3)-(5) that the
greatest advantage of this rule lies in its simplicity and it can be used for the dynamical system driven by an arbitrary
number of correlated noises.
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