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Bistable kinetic model driven by correlated noises: Steady-state analysis
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A simple rule to obtain the Fokker-Planck equation for a general one-dimensional system driven by
correlated Gaussian white noises is proved by the functional method. The Fokker-Planck equation ob-
tained in this paper is applied to the bistable kinetic model. We find the following for the steady state.
(1) In the a-D parameter plane (a is the strength of the additive noise and D is the multiplicative noise
strength), the critical curve separating the unimodal and bimodal regions of the stationary probability
distribution (SPD) of the model is shown to be affected by A, the degree of correlation of the noises. As A
is increased, the area of the bimodal region in the a-D plane is contracted. (2) When we take a point
fixed in the a-D plane and increase A, the form of the SPD changes from a bimodal to a unimodal struc-
ture. (3) The positions of the extreme value of the SPD of the model sensitively depend on the strength
of the multiplicative noise, and weakly depend on the additive noise strength. (4) For A=1, the case of
perfectly correlated noises, when the parameters a and D take values in the neighborhood of the line
a=D in the a-D plane, the SPD’s corresponding to the points a/D >1 and a/D <1 exhibit a very
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different shape of divergence. Therefore, the ratio a/D =1 plays the role of a “critical ratio.”

PACS number(s): 05.40.+j, 42.50.Lc

I. INTRODUCTION

On the level of a Langevin-type description of a
dynamical system, the presence of correlation between
noises changes the dynamics of the system [1]. In Ref.
[1], a bistable kinetic model under the simultaneous
influence of additive and multiplicative Gaussian white
noises is considered. The authors of Ref. [1] pointed out
correctly that the transition between unimodal and bimo-
dal stationary distribution is strongly influenced by the
correlations between both noises. However, the statisti-
cal properties for the systems driven by correlated addi-
tive and multiplicative noises have still not been investi-
gated because the method given in Ref. [1] cannot pro-
vide a correct foundation with which the effects of corre-
lation of the noises will be studied quantitatively [2].

It must be pointed out that Fox discussed non-
Markovian, Gaussian, N-component stochastic processes
with correlation between the noise components by a
correlation time expansion [3]. He obtained an explicit
result to first order in the correlation time and systemati-
cally provide any higher order correction. Singh showed
that the correlation between the quantum noise for a
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homogeneously broadened two-mode ring laser at line
center gives a nonzero contribution of the order ny 1 [4];
here n, denotes the mean number of photons in the laser
cavity at threshold. In our opinion the effects of the
correlation of quantum noises between the laser modes
may be of interest to the problem of laser physics. In the
recent years, Fedchenia described the influence of two ad-
ditive correlated noise effects on a two-dimensional
quadratic-nonlinear system describing the behavior of
two hydrodynamic modes. Using the method of local ex-
pansions, Fedchenia obtained an approximate stationary
distribution function [5,6]. More recently, Zhu investi-
gated theoretically the statistical fluctuations of a single-
mode laser with correlations between additive and multi-
plicative white-noise terms. The mean, variance, and
skewness of the steady-state laser intensity are calculated
by Zhu through a one-dimensional laser equation [7].

In this paper we propose a simple method to obtain the
Fokker-Planck equation (FPE) corresponding to the
Langevin equation driven by correlated noises (it may be
multiplicative noise) with an arbitrary degree of correla-
tion in Sec. II. Then, in Sec. III, the FPE obtained above
is used in a typical one-dimensional dynamical system,
the bistable kinetic system, driven by correlated additive
and multiplicative Gaussian white noises. The stationary
probability distribution (SPD) of the state variable for the
system is derived. In Sec. IV several interesting con-
clusions about the transition between the unimodal and
bimodal structures for the SPD are drawn.
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II. FOKKER-PLANCK EQUATION
CORRESPONDING TO THE LANGEVIN EQUATION
DRIVEN BY CORRELATED
GAUSSIAN WHITE NOISES

Consider a one-dimensional Langevin equation (LE)
with two correlated Gaussian white noises €(¢) and I'(¢):

X =h(x)+g(x)e(t)+g,(x)(?) . (1

In the paper we assume Eq. (1) to be the Stratonovich sto-
chastic differential equation. In Eq. (1), €(¢) and I'(¢#) are
Gaussian white noises with zero mean and

(e(t)e(z'))=2D8(t —t'),
(T@)T(¢"))=2ad(t —1t') ,
(e(t)[(¢))={(T(t)e(t')) =22V Dabd(t —t') . (2b)

(2a)

A denotes the degree of correlation between the noises
€(t) and T'(¢). D and a are the strength of the noises €(¢)
and I'(2), respectively.

To obtain the FPE from the LE (1) with (2), we have
proved the following simple rule (for the details for the
proof of this rule, see the Appendix): Equation (1) with
(2) can be transformed into a stochastic equivalent Strato-
novich stochastic differential equation (i.e., leads to the
same FPE)

x=h(x)+Gx)T(), (3)
in which T'(¢#) is Gaussian white noise with zero mean and
(T (")) =28(t —1¢") 4)

and G(x) is determined by the following simple pro-
cedure: Let the correlation of G(x)I'(¢) in Eq. (3) be equal
to the correlation of

g1(x)e(t)+g,(x)I(¢)
in Eq. (1):

Py (x)= e

B(x)

x Ax') , ,
Xp f __B(x’)dx]

N

In addition, the extrema of P(x) obey a general equa-
tion A(x)—B'(x)=0 or h(x)—G'(x)G(x)=0. Using ex-
pression (5), this leads to

h(x)—{Dg,(x)g}(x)+AV Dag,(x)g3(x)
+AVDagi(x)g,(x)+ag,(x)g;(x)}=0. (11)
III. THE BISTABLE KINETIC SYSTEM

DRIVEN BY CORRELATED ADDITIVE
AND MULTIPLICATIVE NOISES

Now we apply the theory developed above to an im-
portant one-dimensional system, the bistable kinetic sys-

{D[g,(x)*+20V'Dag,(x)g,(x)+alg,(x)]*}!/? exp
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(Gx)T(DG(x)T(¢'))=([g,(x)e(t)+g,(x)T(2)]
X[g,(x)e(t")+g,(x)T(t)]) .
This gives the relation
[G(x)XT(T(¢"))
=[g,(x)*{e(r)e(t’)) +g,(x)g,(x){e()(¢'))
+g,(x)g;(x)(T(t)e(t’)) +[g,(x){T(OT(¢")) .

Using (2) and (4), the above relation leads to the required
expression

G(x)={D[g,(x)]*+2AV'Dag,(x)g,(x)

+a[g2(x)]2}”2 . (5)
The FPE corresponding to (3) with (4) is given by [8,9]
D — O 4()ptx0)+ %B(x)P(x,t) . ®
where
A(x)=h(x)+G'(x)G(x) (7a)
and
B(x)=[G(x)]*. (7b)

The prime in Eq. (7a) and below denotes the derivation
with respect to x.
Using expression (5), we rewrite Egs. (7a) and (7b) as

A(x)=h(x)+Dg,;(x)g}(x)+AVDag,(x)g}(x)
+AV Dagi(x)g,(x)+ag,(x)g5(x) (8)
and
B(x)=D[g,(x)*+2AVDag,(x)g,(x)+alg,(x)]*. (9
The SPD of FPE (6) is given by [8,9]

fx h(x')dx’'
D[g(x")]*+2AVDag,(x")g,(x" ) +alg,(x)]* |

(10)

[

tem driven by additive and multiplicative noises, and as-
sume the dimensionless form

i=x—x3+xe(t)+T(2) . (12)
The noises €(¢) and I'(¢) are the same as in Eq. (1).
In order to obtain the SPD for Eq. (12), we compare
Eq. (12) with Eq. (1) and get
h(x)=x—x3, gx)=x, g,(x)=1. (13)

Substituting (13) into (10) and making the integral opera-
tion, we obtain the SPD for Eq. (12) [10]:



2498 WU DA-JIN, CAO LI, AND KE SHENG-ZHI 50

2 vDa c-1,2 E _, Dx+AVDa
N[Dx“+2AV Dax +a] exp 1f(x)+ [(1—22)Da] tg [(1—A2)Da]'”2 for 0<A<1
P (x)= B (14)
N[Dx*+2VDax +a]¢~!/2 — =1.
[ ax +a] exp 'f(x) et VDo ] for A=1 (15)
Here,
12 172 :
=2 | & x _Xx = | & 2_ 1) & _ =1 |1—4an2—1)&
f(x) D D 2D’ E=\ D (4A°—1) 1, C 2D 1—(4A l)D (16)
and
172 5 172 : 3
a X P = a a ~ a
=2 —_ —_— = | — —— _—— —_ =
flx) D > 2D > D 1|, C b 1 ) (17)

The extrema of the SPD are determined by the follow-  lation between the noises makes the critical curve
ing equation of third order: separating the unimodal and bimodal regions in the a-D
parameter plane affected not only by the multiplicative
noise but also by the additive noise, as can be seen from
Fig. 1. The Figure also shows that in the case of uncorre-
lated noises (A=0), the critical curve becomes a horizon-
tal line, that is, independent of the strength of the addi-
IADa+4(D —1)*=0. (19)  tive noise.

(2) As the degree of the correlation of the noises A is in-
creased, the area of the bimodal region in the a-D plane

x34+(D—1)x +AVDa=0 for 0<A<1. (18)

The critical curve separating the unimodal and bimo-
dal regions in the a-D plane is described by

IV. STEADY-STATE ANALYSIS: CONCLUSIONS is contracted, as can be seen from Fig. 1.
(3) It is interesting to point out that when we increase
A. The case of 0=A <1 A, the SPD of the system corresponding to a fixed point

in the a-D plane (the point I in Fig. 1) experiences the
transition from a bimodal to a unimodal structure, as
shown in Fig. 2. Similarly, Fig. 3 corresponds to the
fixed point J in Fig. 1.

(4) From Fig. 2 we see that if the noises are uncorrelat-
ed, A=0, the SPD of the system exhibits a symmetry bi-
modal structure as usual. But when the noises are corre-

By virtue of the results obtained above for the bistable
kinetic model, the expression of the SPD (14) for 0<A <1
and the equation of the critical curve in the a-D plane
(19), we have plotted the critical curves in Fig. 1 and the
curves of the SPD in Figs. 2-5. The conclusions that can
be drawn from these figures are as follows.

(1) For the bistable kinetic model the presence of corre-
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FIG. 1. The critical curves in the a-D parameter plane. The FIG. 2. The SPD of the bistable kinetic model for A <1 [Eq.
SPD corresponding to points I and J for different A are shown (14)]. a=D =0.5 is fixed (relative to point I in Fig. 1) and
in Figs. 2 and 3, respectively. A=0.0, 0.5, and 0.9, respectively.
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40 30 -20 -10 00 1.0 20 3.0 4.0

FIG. 3. The SPD of the bistable kinetic model for A <1 [Eq.
(14)]. a=0.5 and D =1 are fixed (corresponding to point J in
Fig. 1) and A=0.0, 0.5, and 0.9, respectively.

lated, this symmetry is destroyed. The larger the A, the
stronger the destruction of the symmetry of the SPD.

(5) Figure 3 shows the same thing as Fig. 2, but the
SPD for A=0 shows that the critical state has set in due
to the strength of multiplicative noise D =D.=1, i.e., it
takes the value of critical noise intensity.

(6) When the degree of the correlation of the noises and
the strength of the multiplicative noise are fixed (A and D
fixed), as the additive noise intensity a is increased, the
SPD of the system experiences the transition from a bi-
modal to a unimodal structure, as shown in Fig. 4. From
the Figure we see that the position of the extrema of the
SPD is weakly affected by the strength of the additive
noise a; however, its high may be affected intensively by
a.

(7) It is contrary to Fig. 4 that when A and « are fixed,
and changing the multiplicative noise intensity D, the
SPD of the system changes its position of the extrema

Pst(x)
1

) ; ) ) X
40 -30 -20 -10 00 10 20 30 40

FIG. 4. The SPD of the bistable kinetic model for A <1 [Eq.
(14)]. D=A=0.5 and a=0.50, 0.15, and 0.01, respectively.
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FIG. 5. The SPD of the bistable kinetic model for A <1 [Eq.
(14)]. a=A=0.5 and D =0.70, 0.34, and 0.20, respectively.

with D intensively, but the high of the extremum of the
SPD is weakly affected by D, as can be seen from Fi_g. 5.

B. The case of A=1

By virtue of the expression of the SPD (15) for A=1,
we have plotted the curves of the SPD in Figs. 6-9. The
conclusions that can be drawn from these figures are as
follows.

(1) Equations (15) and (17) show that when the strength
of the additive noise is equal to the multiplicative noise
strength (if a=D, then E =0), the SPD exhibits diver-
gence at x =—(a/D)"/?=—1 due to C <0, as shown by
Fig. 6. In this figure we let a=D =0.5.

(2) The line =D in the a-D plane separates the plane
into two parts. The region with @ > D makes E >0, while
a<D makes E <0. We see from (17) that in the neigh-
borhood of the line =D the parameter C is still nega-

Pst(x)

!

D\

20 -10 00 1.0

FIG. 6. The SPD of the bistable kinetic model for A=1 [Eq.
(15)]. a=D =0.5. [P (x) denotes the relative probability den-

sity.]
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FIG. 7. The SPD of the bistable kinetic model for A=1 [Eq.
(15)]. @=0.55and D =0.50. [P,(x) denotes the relative proba-
bility density.]

tive. The above facts lead the SPD to diverge at a point
x=—(a/D)'?. For example, when a=0.55 and
D =0.50, so that E >0 and C <0, the combination of the
factor exp(—E /(Dx +V Da) with the factor

(Dx2+2VDax +a)¢ 172

leads to the extraordinary asymmetry of the SPD around
x =—(a/D)'?, as can be seen from Fig. 7. On the con-
trary, as a=0.45 and D =0.50, so that E <0 and C <0,
the asymmetry of the SPD around x=—(a/D)!?
changes, as shown by Fig. 8.

(3) It follows from (18) and (19) that the critical curve
for A=1 makes no qualitative change. In the parameter
plane (a, D) there still exist two regions for A=1, that is,
the bimodal and unimodal regions. Figure 9 shows a bi-
modal structure of the SPD.

Pst(x)

t

Jk . — X

T

20 -10 00 1.0 2.0

FIG. 8. The SPD of the bistable kinetic model for A=1 [Eq.
(15)]. @=0.45 and D =0.50. [P (x) denotes the relative proba-
bility density.]
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FIG. 9. The SPD of the bistable kinetic model for A=1 [Eq.
(15)]. @=0.05 and D =0.25. [P (x) denotes the relative proba-
bility density.]
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APPENDIX: THE PROOF OF THE STOCHASTIC
EQUIVALENCE OF EQS. (1) AND (2)
AND EQS. (3)-(5)

To do this, we prove that Egs. (1) and (2) and Egs.
(3)-(5) both lead to the same Fokker-Planck equation.
The stochastic Liouville equation corresponding to Eq.
(1) reads

Q%!l:—-ai)x—[h(x)+g1(x)e(t)+g2(x)F(t)]p(x,t) .

(A1)

Here we have considered an ensemble of systems in x
space obeying Eq. (1) for a given realization of &(z) and
I'(¢) and different initial conditions. This ensemble is
represented by a density p(x,t) which evolves in time ac-
cording to Eq. (A1). It is well known that p(x,1?) is just
the average of 8(x(z)—x) over the initial conditions,
where x (t) is a solution of Eq. (1) for a given realization
of e(t) and I'(¢) and for a given initial condition, while x
is a point in state space. Because the probability density
P(x,t) is obtained by averaging p(x,t) over the realiza-
tions of €(¢) and I'(¢) (this is known as van Kampen’s
lemma [11]), we have

P(x,0)=(8(x(t)—x)) . (A2)

Here the average ) is taken over initial conditions and
over the realizations of €(¢) and I'(z). Because Eq. (A1)
expresses the variation of p(x,¢) with time at a fixed point
x; therefore, h(x), g,(x), and g,(x) are given functions
independent of €(z) and I'(¢), while p(x,?) is a functional
of €(z) and I'(t) defined through Eq. (Al). So that the
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evolution equation for the probability density P(x,?) is
obtained by averaging Eq. (A1):

2501

where ¢[£,6,] is a functional of §; and {, and
Y ={E()E,(2')) are its correlation functions. Now we

3P(x,1) 3 use the above theorem to the calculation pf the averages
ar = T hxIP(x) (e()8(x(t)—x)) and (T'()8(x(1)—x)) in Eq. (A3). In
our situation, §, and &, are the correlated noises €(¢) and
——a—gd x)e()8(x(t)—x)) I'(¢) with correlation functions, Eq. (2). According to
ox Eq. (A4), we have
—%gz(x)(l‘(t)S(x(t)—x)) . (A3)

<e(t)5(x(t)—x))=fo'dt'y“(t,r')<w)

The average which remains in Eq. (A3) may be calcu- Bel’)

lated for Gaussian noises €(¢) and I'(¢) by a functional

formula, the Novikov theorem [12]: M) .

t ’ ’
+f0dt le(t,t )( sT(¢')

[ ] BBEO=%))
Gudlente) = [ arpate e XOeL ) as)
(k,1=1,2), (A4) Thisleadsto
J
Sx(1)\_ 9 o ox(1)
(elblx()=x)) === [di'y(n1 )(8(x(t) x) e(t,)> - [dry st )<8(x(t) x) o= )) (A6)
M
Using Eqgs. (2a) and (2b), that is, Yu=(T(O(t"))=2ad(t —1t'), A8)
yu=(e(t)e(t'))=2D8(t —¢t'), yn={T(t)e(t"))=2AVDad(t —t') ,
Y={e®(t')) =20V Dabd(t —t'), we get
we obtain [13] from Eq. (A6), (T(8)8(x(t)—x))
—x))=—23 __20 2
(e()8(x(t)—x)) 3x Dg,(x)P(x,t) = -—-B;AVDagl(x)P(x,t)—a—xagz(x)P(x,t) . (A9
—ai)»V Dag,(x)P(x,t) . (A7)  Substituting (A7) and (A9) into (A3), we finally obtain a
x Fokker-Planck equation corresponding to Egs. (1) and
Similarly, also using (2a) and (2b), (2):
J
aP(x,t) . d h + ' +)\"/_ ' ’ ’
———a—t—————[ (x)+Dg,(x)g}(x) Dalg,(x)g;(x)+g1(x)g,(x)]+ag,(x)g;(x)}P(x,t)

[Dg (x)+2AV'Dag,(x)g,(x)+ag(x)]P(x,t) . (A10)

Following the same method, we get from (3)—(5) the Fokker-Planck equation

—af%ﬁ=——a—h(x)P(x,t)——a—a-G(xxi‘(z)a(x(t)—x))

=—-—a—h(x)P(x z)+—-G(x)—f dr'yle )(8(x(t) x) 22U >

ot (¢")
="a—xh(X)P(X,t)+aG(x)a—xG(x)P(x,t)
=_.aih(x)p(x’t)-—%{Dgl(x)g’l(x)+)ﬂ/b—&[gl(x)g'2(x)+g'1(x)gz(x)]+ag2(x)g'2(x)]P(x,t)
2[Dg (x)+2AV'Dag,(x)g,(x)+agi(x)]P(x,t) .

This is the same Fokker-Planck equation as Eq. (A10). It is evident from the above proof of the rule (3)-(5) that the
greatest advantage of this rule lies in its simplicity and it can be used for the dynamical system driven by an arbitrary
number of correlated noises.
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