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We investigate the kinetics of diffusion-controlled heterogeneous single-species annihilation, where the
dilusivity of each particle may be different. The concentration of the species with the smallest diffusion
coeScient has the same time dependence as in homogeneous single-species annihilation A + A ~0.
However, the concentrations of more mobile species decay as power laws in time, but with nonuniversal

exponents that depend on the ratios of the corresponding diffusivities to that of the least mobile species.
We determine these exponents both in a mean-Seld approximation, which should be valid for spatial di-

mension d )2, and in a phenomenological Smoluchowski theory, which is applicable in d &2. Our
theoretical predictions compare well with both Monte Carlo simulations and time series expansions.

PACS number(s): 02.50.—r, 05.40.+j, 82.20.Wt

I. INTRODUCTION

The kinetics of diffusion-controlled single-species an-
nihilation A+A~0 when each particle has the same
diffusion coefficient is now well understood [l]. For spa-
tial dimension d )2, the kinetics may be accounted for
by the rate equation, which predicts that the density de-

cays as t in the long-time limit. For d ~ 2, various phe-
nomenological approaches predict that the density decays
as t "~2, but with logarithmic corrections appearing in
d=2. Accompanying this relatively slow kinetics is a
spatial organization in which the probability of finding
particles at small separations is reduced compared to a
random distribution. In one dimension, exact solutions,
either based on an occupation number formalism [2] or
by mapping the reaction onto the kinetic Ising-Glauber
model [3], provide definitive results about this spatial or-
ganization and the reaction kinetics.

Our goal in this paper is to describe the kinetics of
heterogeneous single-species annihilation, which is defined

by the reaction scheme A;+ Ak ~0. Here A; denotes the
ith species and the reaction rate matrix E; is a function
of the diffusivities of the two reacting species. Although
we refer to different species in the context of their
diffusivity, the reaction itself is single-species annihilation
with distinct rates for different reaction channels. We
will consider reactant diffusivities which are drawn from
a probability distribution. Such a situation arises natural-
ly when the reactants have different masses. As we shall
show, the kinetics of the heterogeneous system is consid-
erably richer than that of the homogeneous analog. Simi-
lar behavior was also encountered in heterogeneous
single-species annihilation with ballistic particle motion
[4], where the kinetics depends in an essential way on the
form of the initial distribution of velocities. The present
investigation is a natural counterpart of this earlier work
for diffusive single-species annihilation.

When the number of species is finite [i.e., the density
distribution P(D, t) contains a finite number of discrete
peaks], the rate equations predicts that the least mobile

species (with diffusivity D;„)decays as t, as in homo-
geneous annihilation. However, the more mobile species
each decay at a faster power-law rate with an associated
exponent which depends on the diffusivity ratio between
the more mobile and the slowest species. When P (D, t) is
continuous but with D;„&0, the rate equations again
show that the least mobile species predominates in the
long-time limit and that the decay of the more mobile
species is described by nonuniversal power-law behavior.
However, the detailed form of P(D, t =0) near D;„con-
tributes to a logarithmic prefactor in the decay law. If
D „=0,the kinetics strongly depends on the initial con-
ditions. For an initial distribution of diffusivities with a
power law tail P(D, O)-D&, as D~O, the concentration
and the average diffusion coeScient decay as c —t and
(D)-t ~, respectively, with a=(2+2@)/(3+2@) and
P=1—a=i/(3+2@). All of these predictions are ex-
pected to apply for d & 2.

For d ~2, we apply the Smoluchowski theory to ac-
count for the reaction kinetics. We first test this phe-
nomenological approach on the "impurity" problem, in
which there is a small concentration of particles with one
diffusion coei5cient in a homogeneous background of par-
ticles with a different diffusivity. The Smoluchowski
theory predicts that the impurity species decays as a
nonuniversal power law in time. These predictions are in
good agreement with numerical results that arise from
time-series expansions and Monte Carlo simulations in
one dimension. Connections are also made with the ex-
actly soluble problem of the decay of impurities in the re-
lated single-species coalescence process. We then gen-
eralize the Smoluchowski approach to both continuous
distributions of diffusivities and general spatial dimension
d &2.

The rest of this paper is organized as follows. In Sec.
II we derive basic results from the rate equations for both
discrete and continuous distributions of diffusivities. In
Sec. III we investigate the reaction kinetics for d 2 by
the Smoluchowski approach. This leads to phenomeno-
logical rate equations with time-dependent reaction rates.
The predictions of this approach are then outlined. In
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II. RA1'K EQUATIONS APPROACH

Consider first the mean-field rate equations for the case
of two distinct species A

&
and A 2 with respective

diffusivities D, and D2. The two species interact accord-
ing to the bimolecular processes A, + A

&
~0,

A &+ A2~0, and A2+ A2~0, with respective rates E»,
K,2=E2&, and K22. The corresponding rate equations
are

dc'
K))c) K) cz)c zdt

C2

dt E22c2 E)2c)c2

(la}

(lb)

where c; denotes the concentration of the ith species.
Smoluchowski suggested a simple way to relate the re-

action rate E; to the diffusion coefBcients D; and DJ and
radii R; and R of the reactants [5]. This derivation is
based on considering the low-density limit. In the rest
frame of a particle of species i, it may be considered as a
spherical stationary trap of radius R, which is surround-
ed by a cloud ofj particles which are captured upon con-
tact with the trap. The reaction rate is identified as the
flux of particles of type j to the trap under the boundary
conditions of absorption at the surface of the ith particle
and a Sxed concentration as r~ ~. Upon solving the
diffusion equation in three dimensions under these condi-
tions, one straightforwardly finds that this flux equals
K =4mDR in the long-time limit (see, e.g., [6]}. If both
species perform independent Brownian motions with
respective diffusion coefBcients D; and D, then the ap-
propriate generalization of the reaction rate is
K 1 =4m(D;+D/)(R;+RJ ). Assuming, for simplicity,
that R

&
=R2 =R and absorbing the numerical factor 8m.R

into the overall time scale, we may rewrite Eq. (1) as

dCi = —2D&c f —(D&+Dz)c&cz, (2a)

Sec. IV we present time series expansion and Monte Car-
lo simulation results in one dimension to support our
theoretical findings. Finally, we give a brief discussion in
Sec. V.

c =C(2D, t)

cz(0) 1 +cz(0)/c&(0)C=
c,(0) c, (0)

(5)

for t~ oo, with 5=(Dz D, )/—2D, . While the less
mobile species decays as t in the long-time limit, as in
homogeneous single-species annihilation, the more
mobile species decays nonuniversally as t with
a= 1+5=(D&+Dz)/2D&.

It is worth noting that when 5 is small, the asymptotic
behavior given in Eq. (5) is reached only at very long
times. To demonstrate this, consider, e.g., equal initial
concentrations of the two species. Then solving Eq. (3)
with /{0}=1 and 0(5((1 gives f(y)=cz/c,
=1+51n[c&{y)/c&(0)]. Substituting this into Eqs. (2),
one finds

1
c, z(t)=

4Dit
lk —ln(D t)1 (6)

for 1«t «e . Consequently, the crossover time be-
tween the intermediate asymptotics Eq. (6) and the final
asymptotics Eq. (5) diverges as ez~ for 5~0.

For a finite number of species, the kinetics is similar to
that of the two-species case. Namely the concentration
of the least mobile species decays as t ', while the more
mobile species exhibit nonuniversal power-law decays
with associated exponents {D,+Dk)/2D„where Dk is
the diffusion coefficient of the kth species.

When the diffusivities of the species are drawn from a
continuous distribution, the rate equation for P (D, t), the
concentration of species with difFusivity D, becomes the
integro-differential equation

t~~ can occur. If y reaches a Snite limit as t~~,
then cz(t) ~c, (t); further, c,(t) and cz(t) must decay as
t '. It is immediate to show that these two conditions
are incompatible with the initial rate equations. On the
other hand, if y ~~ as t ~~, then cz/c, ~0, asymptot-
ically. Thus in Eq. {2a),c&cz may be neglected compared
to c, and the resulting approximation gives
c&{t)=(2D&t) '. Using this in the equation for f, one
ultimately finds

C2 = —2Dzc z
—(D, +Dz )c,cz .

dt
(2b) P(D, t)f dD—'(D +D')P(D', t)

0

To solve these equations, consider first the time depen-
dence of the concentration ratio g=cz/c, . By defining
the auxiliary variable dy =c,dt, the rate equation for the
concentration ratio is

= —P(D, t)[DPO(t)+P&(t)] . (7)

Here Pk(t) denotes the kth moment of the diffusivity dis-
tribution P(D, t),

d = —(Dz —D) )(1{+/') (3) Pk(t) =f dD D P{D,t) .
0

Because g is a strictly decreasing function of y for
D2&D&, the asymptotic behavior may be estimated by
ignoring the quadratic term in Eq. (3}. The correspond-
ing solution is simply

g(y) —exp —{Dz D, )f dt'c, (t')— (4)

Two possibilities for the behavior of y =fdt'c, (t') as

Note that the zeroth moment of the diffusivity distribu-
tion is just the particle density c(t)=Pa(t), while the
average diffusion coefBcient is expressed in terms of the
zeroth and first moment by (D }=P,(t)/Po(t).

Equations similar to Eq. (7) describe the kinetics of
several irreversible processes, such as diffusion-reaction
aggregation [7],ballistic annihilation [4], and ballistic ag-
gregation [8]. For the aggregation problem, a reaction
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rate of the form (D +D') is known as the "sum" kernel,
for which the rate equations are exactly soluble [7]. In
heterogeneous annihilation, the rate equations are also
soluble by elementary analysis. A formal but implicit
solution to Eq. (7) is

P (D, t) =P (D, O)exp D f—'dt'Po(t') f '—dt'P, (t')

(9)

Further, by integrating Eq. (7) over D, the following
differential equation which relates the moments Po(t) and

P)(t} is obtained:

4(x)=x"e (15)

dQ

dt
(16}

for the auxiliary function u (t)=1+fOdt'c(t'). With the

initial condition u(t =0)=1, Eq. (16) is readily solved,
from which the concentration is

Let us now justify the existence of the scaling ansatz by
constructing explicit solutions to Eq. (12). Consider the
initial distribution P(D, O)=D"e /I (p+1), where the
numerical factor normalizes the initial density to unity,
for convenience. Substituting this initial distribution into
Eq. (12) and then integrating the resulting equation over
D, one finds the simple differential equation

dt
(10)

With the initial condition Po(t =0)=1, which fixes the
scale of the initial distribution, the solution to Eq. (10) is

c(t)=
= [1+(2((i+3)t ]

—(2+2) )/(3+2) )

dt
(17}

Po(t) =exp 2f—dt'P((t')

Combining Eqs. (9) and (11) leads to a simplification in

which only the unknown zeroth moment, or particle den-

sity c (t) =80(t), appears in the formal solution

P(D, t)=t~ C(Dtt') . (13)

Upon substituting this scaling ansatz into Eq. (12), one
finds two relations which then determine the exponents a
and p. First, for the argument of the exponential in Eq.
(12) to be dimensionless, it follows that a+p= 1. Simi-

larly, for the prefactor to be a function only of the scaling
variable x =Dt~, the relation a=2p(1+@) must hold.
These two conditions determine the dependence of the
fundamental exponents on p,

2+2p,
3+2p

1

3+2p
(14)

while the scaling function is

P(D, t)=P(D, O)&c(t)exp D f dt'c—(t') . (12)
0

A scaling analysis of this solution indicates that two

types of behavior can occur: one for initial diffusivity dis-

tributions with a Snite nonzero lower cutoff D;„&0 and

the other for situations where D;„=0. For both cases,
we consider only those initial distributions which are
homogeneous near D;„, namely, P(D, O) —(D D;„)"—
as D~Dm;n with JM&

—1 for normalizability. This re-

striction leads to mathematical tractability as well as be-

ing a natural illustrative choice.
For D;„=0, the average diffusion coei5cient clearly

decays to zero, and under mild restrictions, the particle
concentration also decays to zero. For an initial distribu-

tion of the form P (D,O)-D" as D ~0, it is natural to as-

sume power-law decays in the average concentration and

average difFusivity: c-t and (D)-t ~ for t~~.
Correspondingly, the time-dependent diffusivity distribu-

tion is expected to approach the scaling form

min ) —(D
P(D, O)= e '" for D )D;„.

I (M+1
(19)

After substitution of this initial distribution in Eq. (12),
the analog of Eq. (16) is

du —pp —2
—2D (u —1)=u " e

dt
(20)

Solving this equation in the limit of t ~ ao, the asymptot-
ic form for the density is

c(t)= 1

2D;„t
2+2@,

ln(2D;„ t)
(21)

while the full distribution of diffusivities has the form

P (D, t) —(D +D,„)/2D

P(D, O)

ln(2D . t)

2D min

(22)

Thus the concentration of the species with diffusivity D
decays algebraically with a characteristic nonuniversal
exponent (D +D;„)/2D,„,but also with a logarithmic
prefactor.

This distribution can be expressed in a scaling form by
identifying the appropriate scaling variable. For this
identification, it is helpful to consider the average
diffusion coef6cient which has the time dependence
(D) D;„-D;„/ln(—2D;„t). This suggests that the

Substituting this in Eq. (12), we obtain, for the diffusivity
distribution,

P(D t} [1+(2 +3)t]—((+P)/(3+2@)DP

r(&+ I)
X exp{ D[1+—(2p+ 3 )t ]

(/(+32))). (18)

As expected, this solution approaches the scaling form of
Eq. (13) asymptotically, with the exponents and scaling
function given by Eqs. (14}and (15), respectively.

Consider now initial distributions with D;„)0. For
concreteness, we examine the case where
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, in(2D;„t)
P (D, t) = (2D,„t) ' 4(x), (24)

with scaling function 4(x) again equal to x"e . Thus
for both D;„=0and D;„&0, the difFusivity distribution
approaches these scaling form given by Eqs. (13) and (24),
respectively, with characteristic width t '~' + ~' in the
former case and 1/ln(t) in the latter.

III. HETEROGENEOUS ANNIHILATION
IN LOW DIMENSIONS

In the diffusion-controlled limit, fluctuations effects
govern the long-time kinetics of heterogeneous annihila-
tion for d & 2, in close analogy with homogeneous single-
species annihilation [1]. A method that is ideally suited
to account for the kinetics in this regime is the Smolu-
chowski theory [5]. We adapt this approach to treat the
kinetics of heterogeneous annihilation when d 2. To
describe the method, consider first the simple and illus-
trative examine of a two-species system in one dimension
in which a background of identical particles with
diffusivity D and density c contains relatively rare impuri-
ties of diffusivity Dz at concentration cz «c.

In the Smoluchowski approach, we first compute parti-
cle flux to a "reference" absorbing particle due to the rest
of the particles which comprise the uniform background.
The requisite solution to the background concentration is
c(x, t)=c„erf(xl&4Dt ), from which the particle flux at
the reference particle is P=c„&D/nt. This is identified
as the effective microscopic reaction rate k.

For the two-component system of background and im-
purity, there are distinct rates associated with reactions
between background particles and between the back-
ground and impurities. In the limit of low impurity den-
sity, we neglect the influence of background-impurity re-
actions on the background density, as well as reactions
among the impurities. Under these restrictions, the rate
equations become

' 1/2
2Dc=——2k c ——288
7rt

C

c =- —2k cc ——2BI I

(25)

where kzz and kzz are the effective rates for
background-background and background-impurity reac-
tions. Note that the numerator inside the square root in-
volves the relative diffusivities of the two reacting species.
From the first equation, the background concentration
vanishes as

c(t)=&m/32Dr . {26a}

scaling variable is

ln(2D „t)x= (D D— ).
2D . min

min

With this identification and in the scaling limit t —+00
and D~D;„but with x finite, the asymptotic distribu-
tion Eq. (22) can be written in the form

This deviates from the exact result [2,3] for single-species
annihilation by the numerical factor c (t}/c,„„,(t)=n /2.
The crucial feature of the Smoluchowski approach is that
by the form of the rate equation for cz, the coefficient of
c (t) determines the exponent of the decay of the impurity
species. We thereby find

( r ) r
—v {1+e) /s (26b)

with e=D&/D.
A.s we discuss in Sec. IV, this prediction agrees rather

we11 with numerical results. Intuition for this nonuniver-
sal behavior can be gained by considering the impurity
problem in the case where particles coalesce rather than
annihilate. This situation is considerably simpler than
that of annihilation, as the enclosing "cage," defined by
the nearest neighbors of the impurity, evolves only by
diffusion. Thus the many-body problem may be reduced
to the three-body problem of the impurity and its two
nearest neighbors. By exploiting simple geometric
equivalences, this problem can be transformed to the sur-
vival of a single random walker which difFuses within
an absorbing two-dimensional wedge whose opening
angle depends on D/DJ. In this latter problem, the
survival probability decays as r, with
a=a/[2cos '[e/(I+a)]]. Here 8=cos '[e/(1+@)] is
the opening angle of the wedge [9].

Such a rigorous mapping does not exist for the impuri-
ty problem when particles annihilate. This is an intrinsi-
cally a many-body process, since the cage surrounding a
given particle can involve distant neighbors. Neverthe-
less, the Smoluchowski approach is essentially identical
for both the annihilation and the coalescence reactions,
except for overall factors of 2 in the rate equations. Thus
the equivalent of Eq. (26b) for aggregation is
c~(t)-t "+' While . this exponent value deviates
considerably from the exact result give above, the e
dependence of the exponent is qualitatively correct.

The mechanism underlying the nonuniversal decay of
the impurity is the equivalence to the survival probability
of a difFusing particle inside an absorbing interval whose
length L grows as t~. Sine the probability density of the
particle spreads over a spatial extent of the order of v'Dt,
the survival probability decays exponentially for P( —,'.
However, in the marginal case p= 1/2, i.e., L —A v'Dt,
the survival probability S(t) decays algebraically in time
S(t)-t '"', but with the decay exponent dependent on
the dimensionless parameter A. In the reaction process,
the size of the cage which surrounds the impurity also
grows as t ' for both annihilation and coalescence, since
the overall density is decaying as t ' . However, the
microscopic differences in the two reactions are impor-
tant because they determine the amplitude A in the
growth of the cage. As shown above, the phenomenolog-
ical Smoluchowski treats annihilation and coalescence on
the same footing and thus provides a convenient descrip-
tion of the nonuniversal behavior.

We have also explored the case of small difference be-
tween diffusion coefficients 0 &5«1.We find that inter-
mediate asymptotic behavior initially occurs before the
final asymptotic of Eq. {26)sets in. In particular, for ini-
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tially equal concentrations

128D) t

1/2

1+—ln(D, r )
8

(27)

for 1 « t «e . The crossover time between intermedi-
ate asymptotics Eq. (27) and final asymptotics Eq. (26)
diverges as e ~ for 5~0.

Let us now consider heterogeneous annihilation in one
dimension with a continuous distribution of particle
difi'usivities. Since the Smoluchowski approach in one di-
mension yields a fiux that varies as ~ v D /t, one finds a
rate equation of the form of Eq. (7) with the kernel
K(D,D') ~ &(D+D')/t. The correspondence can be
made even closer by introducing the modified time vari-
able T =4&t /n, which eliminates the explicit time
dependence. The rate equation for P(D, T) becomes

P(D,—T)f dD'v'D +D'P(D', T) .
aT (2g)

We are unable to find either a scaling solution to this
equation or the exponents. However, presumably exact
values of the exponents can be obtained by consideration
of a closely related and more tractable model. We re-
place the kernel K(D,D')=&D+D' b one with the
same homogeneity degree K(D,D')= D +v D'. The
two kernels obey the bounds ( t/D + v D')/&2
& v D+D'& t/D +&O'. This suggests that the asymp-
totic behavior from the initial kernel should be identical
to that predicted b the simpler sum-root kernel
K(D,D') =&D + D'.

%'ith this modified kernel, the rate equation becomes

P(D, T)[&—D Po(T)+Pii2(T)], (29)

with P»z(T)= f0dD t/DP(D, T). Repeating the steps
employed for the mean-field treatment, the formal exact
solution to Eq. (29) is

P (D, T) =P (D,O)&c ( T) exp D f dT'c( T—')
0

(30)

Again we substitute the scaling ansatz P (D, t)
-t~ @(Dt~) into the above rate equation with the ini-
tial condition P(D,O)-D" as D~O. By expressing all
factors in a scaling form we find the two exponent rela-
tions 2a+P= 1 and a=2P(1+@)and hence

2+2p
5+4P ' (31)

Here the exponents a and p refer to the time dependence
of c (t) and ( D ) in terms of the physical time variable t

These results can be straightforwardly generalized to
arbitrary d &2 within the Smoluchowski approach. A
simple calculation shows that the fiux to a trap behaves
asD" t '+ ~ ford (2. Inthe rate equations, thissu-
gests the introduction of the modified time T-(Dr)
One thereby obtains an equation similar to Eq. (28), but
with the kernel K (D,D') =(D +D') ~ . Next we replace
this kernel by more tractable form K(D,D')=D"~
+D' . Applying a scaling analysis to the rate equa-

tions with this kernel then gives the exponents
a=2d(1+p)/[d +4(1+p)] and P=d/[d +4(1+@)].

In two dimensions, the Smoluchowski approach shows
that the reaction kernel is K(D,D') =4~(D +D')/
ln(Dt). In this sense, two dimensions is the marginal case
which demarcates the regime where the reaction rate is
time independent (for d &2) from the regime where the
reaction rate varies as a power law in time (d &2). The
corresponding rate equation for P (D, t) in d =2 is

dP(D t)
( d, 4n(D+D') P(D, )

Bt
'

0 ln[(D +D')t]

We analyze this equation in the same spirit as that
employed for d%2. First, we approximate the slowly
varying logarithmic factor by ln[(D +D')t ]
=In[(D )t]=aln(t) and then introduce the auxiliary
time variable T~4m. t/aln(t), so that Eq. (32) becomes
identical in form to the mean-field rate equation Eq. (7).
Thus replacing t by T, the results of Sec. II apply to the
present situation. In particular, at asymptotically large
times P(D, t) approaches the scaling form

P (D, t) = [r /In(t)]~ 4[D [t/ln(t)]~], (33)

with exponents and the scaling function given by Eqs.
(14) and (15).

IV. NUMERICAL RESULTS

Consider the specific and illustrative example of a two-
component system consisting of an impurity particle with

diffusivity Dz within a background of identical particles
with diffusivity D. We first describe the result of a time
series analysis for the survival probability of a static im-
purity. Then we discuss complementary Monte Carlo
simulations for both the time dependence of the survival
probability and the eventual survival probability in a
finite system. Both techniques yield estimates for the de-
cay exponent of the impurity which are in good agree-
ment with the Smoluchowski theory predictions.

The time series expansion is a general technique for
evaluating numerically the initial terms in the exact
power-series expansion in time for various observables
that characterize reactive systems [10].The technique in-
volves the successive application of a suitably defined
evolution operator on the initial state of the system. After
each application of the evolution operator, configurations
for which the impurity particie has not reacted contrib-
ute to the survival probability. To compute the first n

coe%cients of the time power series, it is suScient to con-
sider the evolution of an n-site ring. The primary limita-
tion of the technique is computer memory, since the
number of configurations grows exponentially with the
order of the expansion. For the case of the static impuri-
ty, we obtained the expansion to order 21, a shown in
Table I. 'VFe then apply the Pace analysis method sug-
gested in Ref. [11] to estimate the asymptotic properties
of the survival probability. In Fig. 1, the diagonal Pade
approximants for the survival probability $(„„}(t)are
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0
1

2
3
4
5

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

1
—2

8
—40
232

—1 512
10 832

—83 872
693 200

—6062 168
55 754 352

—536 898 272
5 394 645 216

—56 391 632000
611656 839 104

—6 867 607 316992
79 645 877 019936

—952 195 846 636088
11714481 895 241 520

—148066 814787 199072
1 919993 694 926 641 056

—25 507 934 657 201 026 112

plotted for n =8, 9, and 10. These approximants are
essentially identical for t &6 and we conclude that they
accurately describe the true survival probability within
this time range. These Fade approximants are then fitted
to the power-law form S(t)-t using the fitting pro-
cedure also suggested in [11]. We thereby estimate the
exponent value a =0.38+0.01 (Table II).

Monte Carlo simulations were also performed for the
impurity problem in one dimension. A typical measure-
ment involved ten configurations of a periodic chain of

TABLE I. The first 21 coeScients in the time series for the
survival probabihty of a static impurity, defined by
$(t)=g„c„t".

c„n!

TABLE II. Comparison of the numerical estimates for the
exponent y, which characterizes the L dependence of the even-

tual survival probability with the corresponding predictions
from the Smoluchowski theory. Estimates are based on averag-
ing over 10 realizations.

p =2(x

0.75+0.01
0.89+0.01
1.00+0.01
1.18+0.02

&(1+a)/2

0.71
0.87

1.00
1.22

10

5X10 sites with initial concentrations ct(0)=0.01 and
c(0)=0.99. The data for the time dependence of both
ct(t) and c(t) are quite straight on a double logarithmic
plot and exponent estimates may be made based on the
local slopes of nearby data points. From the slopes of
first-neighbor, second-neighbor, and third-neighbor pairs,

CXg
we estimate that the background species decays as t
where aa =0.50+0.01. Here the error bar indicates the
magnitude of the fluctuations in the local slopes in the
time regime where the data is most linear (between
20&t &10000). Since a+= —,', this analysis provides a
useful confidence test. For the impurity species, the same
analysis method suggests a=0.37+0.01 (Fig. 2).

A complementary approach is based on a finite size
scaling analysis for the eUentual survival probability of an
impurity S(L)=lim, „S(L,t), when starting with a sin-

gle impurity and the rest of the sites occupied by back-
ground particles on finite ring with an odd number of
sites L. We postulate that S(L)-L r (clearly y= 1 for
Dt=D), while for short times, the survival probability
must be independent of the size of the system, so that
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FIG. 1. Time dependence of the diagonal Pade approximants
S~„„~(t) (n =8,9, 10) based on the time series for the survival
probability in the case of a static impurity. A (dotted) line of
slope —0.38 is plotted for reference.

FIG. 2. Monte Carlo simulation results for the survival prob-
ability of impurity (squares) and background particles (circles)
based on ten configurations of a one-dimensional chain of
500000 sites. The initial impurity and background concentra-
tions are 0.01 and 0.99, respectively.
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FIG. 3. The eventual survival probability S(L) (circles) of a
single static impurity on a one-dimensional ring of L sites in
which the rest of the ring is initially Riled with diffusing parti-
cles. The data shown are based on 10 realizations. A line of
slope —0.75 is shown for reference.

V. DISCUSSION

We have shown that there is nonuniversal kinetic
behavior in difFusion-controlled heterogeneous single-
species annihilation. Typically, the concentration of the
species with the smallest diffusion coefBcient has the same
time dependence as in homogeneous single-species annihi-
lation A + A —+0. However, the concentrations of the
more mobile species decay as power laws in time, with
nonuniversal exponents that depend on the ratios of the
corresponding diffusivities to that of the least mobile
species. These exponents were determined by a mean-field
approximation, which shou1d be valid for d & 2, and by a

S(L,t)-t . Since the two basic length scales are &Dt
and L, we assume that the survival probability has the
scaling form S(L,t)-t f(&Dt /L). The scaling func-
tion f must have the limiting behaviors f(x)-1 for
x~0 and f(x)-x for x-+~ to account for the two
asymptotic limits. These conditions imply that y=2a.
An advantage of the measurement of the eventual sur-
vival probability is that it typically gives more accurate
exponent estimates compared to the time-dependent ob-
servations.

We have performed Monte Carlo simulations of finite
single impurity systems until the impurity disappears or a
single impurity remains to measure the exponent y
directly. In Fig. 3 we present the average survival proba-
bility for 10 realizations, for systems of size 2"+1, with
n =1, . . . , 8. The data suggest the decay exponent of
y =0.75+0.01, consistent with the series and Monte Car-
lo estimates of a =0.38%0.01. Table II compares the de-
cay exponents found for the other values of e=Dz/D to
the corresponding exponent given by the Smoluchowski
approach. The Smoluchowski approximation yield a re-
markably good description of the asymptotic behavior of
the impurity decay in the annihilation reaction.

phenomenological Smoluchowski theory, which should
apply for d &2.

Our numerical studies focused on the limiting case
where there is an infinitesimal concentration of one
species in a homogeneous background of another species.
For this impurity problem, the behavior of the "cage"
which surrounds the impurity is the crucial ingredient
which determines the kinetics of the impurity. For the
coalescence reaction A + A ~A, the cage consists of the
two nearest neighbors of the impurity. These enclosing
particles continue to undergo diffusion even if there are
reactions with other more distinct particles in the system.
This allows one to reduce the many-body system to a
three-particle system, which can then be solved exactly in
one dimension. In the annihilation reaction, a nearest
neighbor of the impurity can disappear because of a reac-
tion with the next nearest background particle. This can
cause a relatively large rearrangement in which the cage
expands to the next background particle.

The Smoluchowski approach turns out to be ideally
suited for providing a simple description of the
nonuniversal behavior of the impurity survival probabili-
ty. Although this approach involves an uncontrolled ap-
proximation, the Smoluchowski method provides a sim-
ple way to quantify the enclosing cage of the impurity for
both the coalescence and annihilation reactions. This is a
remarkable success in view of the relatively complex cage
dynamics in the annihilation reaction. From the infor-
mation about the size of the cage, the decay exponent fol-
lows directly. In particular, for the annihilation reaction,
the exponent predictions compare well with numerical es-
timates.

Finally, we note a reformulation of the static impurity
problem in terms of the one-dimensional kinetic Ising
Model at zero temperature. In the language of the Ising
model, the probability S (t) for impurity to survive
translates to the probability that a particular spin has
never ffipped up to time t. In a very recent paper [12],
the fraction of nonflipped spins was studied numerically
and it was found that this fraction decays as t . , a re-
sult which agrees well with our estimates for the ex-
ponent a.

Note added in proof. After this paper was completed,
we learned of work by Cardy [13] in which a variety of
results for the single impurity problem were derived by
field theoretic methods. Interestingly, his results can be
obtained by straightforward adaptations of our Smolu-
chowski method.
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