PHYSICAL REVIEW E

VOLUME 50, NUMBER 1

JULY 1994

Predictability of self-organizing systems

S. L. Pepke and J. M. Carlson
Department of Physics, University of California, Santa Barbara, California 93106
(Received 13 December 1993; revised manuscript received 17 March 1994)

We study the predictability of large events in self-organizing systems. We focus on a set of models
which have been studied as analogs of earthquake faults and fault systems, and apply methods based on
techniques which are of current interest in seismology. In all cases we find detectable correlations be-
tween precursory smaller events and the large events we aim to forecast, though in some cases the corre-
lations are very weak. We compare predictions based on different patterns of precursory events and find
that for all of the models a precﬁrsor based on the spatial distribution of activity outperforms more trad-
itional measures based on temporal variations in the local activity.

PACS number(s): 05.45.+b, 91.30.Px, 02.50.—r, 05.20. —y

I. INTRODUCTION

Self-organized criticality (SOC) has received consider-
able attention over the past several years, as a possible
means to explain scaling behaviors observed in a broad
class of nonequilibrium systems including systems in
geology, economics, and biology [1]. The theoretical pro-
totype is the sandpile model, in which sand is slowly add-
ed to a pile and released in instantaneous avalanches of a
wide range of sizes which are triggered when the height
(or slope or stress) locally exceeds a specified threshold.
Self-organized criticality refers to the particular case of
when the system size sets the cutoff for the largest events
which are observed. More generally, self-organizing sys-
tems, whether critical or not, typically exhibit scaling
over some range of sizes and are thought to evolve so that
fluctuations in space and time are intrinsically coupled by
an underlying threshold dynamics. There has recently
been a considerable effort to use self-organizing systems
as simple dynamical models of seismic phenomena [1-4]
in part due to the clear connection between earthquakes
and threshold dynamics. Particular attention has been
paid to the robust power-law scaling relation—the
Gutenberg-Richter law [5]—relating the frequency of
earthquakes to their size.

An alternative direction of research concerns the pred-
ictability of the systems, which has important practical
applications. The basic approach in such an endeavor is
to utilize the available history of the system to forecast
future events. Often one is most interested in predicting
the largest events (e.g., great earthquakes), and it is the
largest events with which we will be concerned here. Of
course, in a well defined deterministic system precise
knowledge about the present configuration of the system
will yield very good, if not perfect, prediction. However,
for many real systems specific equations describing the
detailed evolutions of the system are not known, and, in
addition, the information on which the forecast must be
based is typically incomplete. The basic prediction prob-
lem is, therefore, an inverse problem in the sense that one
wants to use some information such as the time series of
events to infer something about the likely phase space
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trajectory of the system which is, in most practical situa-
tions, completely inaccessible to measurement.

For example, earthquake catalogs list the date, time,
location, and magnitude of detected events and thus pro-
vide one possible source from which one might hope to
deduce information about local stresses on a fault. If
correlations are detected, they may lead to measurable
precursors that are useful for forecasting. While certain
seismicity patterns have been recorded in catalogs prior
to some subset of the large earthquakes, in most cases the
catalogs are too short to determine conclusively whether
there is a statistically significant correlation between
these patterns and large events. Dynamical models of
earthquake faults can thus be particularly useful in the
context of the prediction problem. Study of models al-
lows us to consider catalogs of arbitrary size, from which
we can make statistically significant statements about
both the intrinsic predictability of dynamical systems of
this type and the value of current prediction algorithms.

In this paper we address prediction issues in a variety
of self-organizing systems. The algorithms that we use
are similar to, and clearly motivated by, the work of
Keilis-Borok and Kossobokov [6], which we describe
briefly below. Our motivations for applying prediction
algorithms to a broad class of systems is to try to acertain
what classes of precursory phenomena are consistently
observed in all of the models. The point here is that no
completely realistic dynamical model of faults presently
exists, but if the real system resembles in any substantive
way the threshold dynamics characteristic of the models,
then precursors which are observed in a broad class of
models may prove useful in real systems. In the course of
this endeavor we develop an alternative type of precursor
that is currently not in use in any form in the seismology
community, which performs particularly well in the mod-
els. In addition, an unanticipated result from our simula-
tions is that the degree of predictability in different sys-
tems can differ quite significantly, and that for the sys-
tems we have considered those which have no apparent
conservation law seem to be more predictable than those
with a conservation law. Finally, while our findings may
have important applications, we would like to point out
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the modest nature of our results. The remaining open is-
sues are extensive, with the most striking and presumably
difficult issue being the development of an organized ap-
proach to deriving the most efficient precursors based on
limited spatio-temporal information for a high dimen-
sional dynamical system. In contrast, here we address
the issue of predictability in the context of several fixed
prescribed precursors used in isolation.

II. MODELS

We focus on a set of models that have been suggested
as possible dynamical analogs of seismic phenomena,
which are described briefly below. We refer to the mod-
els as the Bak, Tang, and Wiesenfeld (BTW) model [1],
the Olami, Feder, and Christensen (OFC) model [2], the
Chen, Bak, and Obukov (CBO) model [3], and the Uni-
form Burridge and Knopoff (UBK) model [4,7]. More
detailed descriptions of the individual models may be
found in the references cited above.

We begin with the UBK model, which satisfies a non-
linear wave equation

62U= U
at? ax?

Here U(x,t) represents the relative displacement of op-
posite sides of a homogeneous fault as a function of posi-
tion x and time ¢t. The variable v is the very slow uniform
shear rate driving the relative motion of the plates, and
the key instability leading to chaotic behavior is a
velocity-weakening, stick-slip friction law ¢(U):

—U—¢(U)+vt . (1)
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We numerically integrate this equation in the finite-
difference approximation, in which the system can be
thought of as a one-dimensional chain of blocks that is
pulled slowly across a rough surface. Each block is con-
nected to its nearest neighbors by springs [the Laplacian
term in (1)] which represent linear elastic compressional
forces along the fault. Each block also experiences a
linear elastic shear force [the linear restoring force in (1)]
modeled by a spring, which connects the block to a fixed
point on one side of the fault. A block begins to slip—
initiating an earthquake—when the sum of the shear and
compressional forces exceeds the static friction threshold
specified by ¢, .. (U=0)=1. We include the “onset pa-
rameter” o in the friction law so that we can study the
limit of infinitesimal driving rates v—0, which leads to a
clear separation between the time scale on ‘which the sys-
tem is loaded and the much shorter time scale on which
individual events take place.

Unlike the UBK model, all of the other models ignore
the details of inertial dynamics and friction laws and in-
stead evolve according to specified ‘breaking rules,” so
that when the stress of a local block exceeds a threshold
it relaxes according to some avalanche dynamics. For
each of these the system can be thought of as a two-
dimensional [8] square lattice of (N X N) “blocks” with

open boundary conditions. In each case there is a partic-
ular rule which specifies the stress drop of the toppling
site, the increases in stress of other sites, and the net
stress drop of the system.

The BTW model is the original sandpile cellular au-
tomaton. Of those we are considering, it is the only mod-
el that is driven stochastically: on each iteration of the
automaton the stress of a randomly selected site is in-
creased by unity. If that site is above a specified thresh-
old stress it initiates an avalanche in which each toppling
site loses four units of stress, giving one unit to each
neighbor (stress is dissipated at the boundary). This is
represented by the following set of rules.

Driving : h(i,j)—>h(i,j)+1, i,j€(1,N), random ;
toppling (h(i,j)=h.) : h(i,j)—h(i,j)—4,
h(i+1,/)—h(i£],j)+1,
h(i,jt)—h(i,jt1)+1;
boundary conditions : A(i,N +1)=h(i,0)=0,
h(N +1,j)=h(0,j)=0. (3)

In the above, & (i, ) is the sandpile height at site (i,j). An
avalanche is considered over when all sites are below
threshold.

In the OFC and CBO models (as in the UBK model)
stress is increased uniformly across the whole system.
The OFC model is similar to the BTW model in that
equal stress is transferred to each neighbor in each top-
pling. However, unlike the BTW model, in the OFC
model the internal dynamics does not conserve stress. In-
stead, in each toppling the stress of the toppling site is set
to zero, and each neighbor receives a fraction a <0.25 of
the initial stress of the toppling site (we will typically take
a=0.2). Any remaining stress is dissipated.

The OFC model is intended to represent a cellular au-
tomaton realization of a two-dimensional Burridge-
Knopoff model with a simpler friction law than that tak-
en above in the UBK model. In the OFC model springs
with constants K; characterize the linear elastic shear re-
storing force, and coupling springs with constants K; and
K, characterize the linear elastic response to longitudinal
and transverse deformations in the plane of the fault.
Here we consider the isotropic case in which
K,=K,=K.. The stress on site (i,j) is given
by  F;=Kc(2x;;—x; ;=% 41;)+Kc(2x; ;—x; ;4
—x; j+1) T KX, j, in which x; ; is the displacement of the
block at site (i,j) from its equilibrium position. Given
these definitions, the model is then updated as follows.

Driving (uniform): «K;V , in the limit ¥ —0 ;

toppling (F,-’j>F‘h) : F;;—0,
Fiiy,j—F;4,;1t8F;1,; ,
Fijt\:—>F;js1H8F ;1 ;

boundary conditions: F;y,,=F;,=0,

Fy1,j=F;=0, )

hJ



238 S. L. PEPKE AND J. M. CARLSON 30

where V is the relative plate velocity and

Kc

8Fi,jj:1=8Fiil,j=mL_

F.

iy =aF;

Lj

(5)

which defines the parameter a. This model has received
considerable attention as a possible nonconservative ex-
ample of SOC, although there has been some debate over
whether this model exhibits SOC in the thermodynamic
limit [9].

Among the models we are considering, the CBO model
is unique in that it is the only one in which the relaxation
dynamics explicitly takes place using long-range interac-
tions, rather than by redistributing stress only to neigh-
boring sites. Like the BTW model, the CBO model does
conserve stress away from the boundary. However, due
to the long-range interactions, for any finite system stress

J

Driving : o,(r)—o0,(r)+p , uniformly with p—0 ;

toppling [|o,(rg)=0ol > at(ry)] :

U,-(ro)—>ai(r0)—00 >

is not conserved during any event, with breaking sites
which are closer to the boundary dissipating more than
interior sites. In addition, while it is not driven stochasti-
cally, it does contain a stochastic element—after each
site topples, its threshold stress is reset to a random value
chosen uniformly from [0,1]. In contrast, all of the other
models have a fixed uniform threshold. Physically, the
equations represent a square lattice of blocks, each of
which is coupled to its nearest neighbors by springs. The
shear stress is increased in, for example, the y direction
until one of the springs breaks. The stress of the toppling
site is set to zero and the stress redistribution over the
rest of lattice is that due to a dipole force at the toppling
site (thus falling off as » ). Specifically, if the stress in
the spring between site r=n, e, +n,e, and r+e; is denot-
ed o,(r),i €{x,y}, then the model is defined by the fol-
lowing rules:

o"(ry)—o™(r))E[0,1], breaking spring ; (6)

0,(r)—>o,(r)+oy(G;(r—ry)—G,(r—(ry+e;)) , other springs,

boundary conditions : o,;(r)=0, n,,n, &(O,N) .
Here G;(r) are the lattice dipole Green’s functions which
determine the change in stress for the springs represent-
ing shear (i =y) and axial (i =x) forces. That is, they are
solutions to the lattice difference equations, involving
both the vertical and horizontal spring stresses, which ex-
press the conditions that the earth be at rest between
events (zero net force on each block due to its neighbors)
and undergo linear elastic deformations away from the
rupture (Hooke’s law springs) [3].

While the BTW, OFC, and CBO models clearly differ
from one another in certain important ways, at least for
the system sizes considered here they all generate pure
power-law event size distributions,

P(S)=S_(b+”, (7)

(see Fig. 1), analogous to the Gutenberg-Richter law [5]
describing seismicity catalogs taken from the entire earth
or large regional fault systems. Thus we will refer to
these systems as examples of SOC, with emphasis on “cri-
ticality” because the power law extends from the smallest
event size up to essentially the system size.

In contrast, the UBK model, while self-organizing, is
not critical. The event size distribution consists of a
power law describing the small to moderate events, and
excess large events, which cut off at some characteristic
size, independent of the system size [10] for systems
which are large enough (Fig. 1). This statistical distribu-
tion is analogous to what is thought to apply to individu-
al faults, or narrow fault zones, where the largest events
appear to dominate the total slip, occurring at a rate
which exceeds the extrapolated rate of small to moderate
events [11,12].
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FIG. 1. Event size distributions P (s) vs s for the (a) UBK, (b)
OFC, (c) BTW, and (d) CBO models. In each case s is a mea-
sure of the size of the event—the integrated slip (seismic mo-
ment) for the UBK model, and the number of sites which topple
for the others. In each case we attempt to predict events with
s 25, where § is some characteristic size (in each case 3 is
marked with an arrow). The UBK model exhibits a sharp dis-
tinction between small (s <3) and large (s =3) events, while the
others exhibit power laws cut off at s =5 (determined by finite
size effects). In these cases, to exactly determine this crossover
length a careful study of finite size effects must be performed.
For the purposes of qualitative comparisons, it is sufficient to
roughly estimate 3 as we do here. We take N =8192, 0 =0.01,
a=3, and £/a =10 for the UBK model [1], system sizes 32X 32
for the other models, and a=0.2 for the OFC model [2].



III. PREDICTION ALGORITHM

Our method of forecasting resembles the algorithm Ms
introduced by Keilis-Borok and Kossobokov [6], which is
currently being studied as a possible means of using
worldwide seismic data sets to predict the largest earth-
quakes in any given region. The M8 algorithm is based on
the hypothesis that regional small scale seismicity may be
used to diagnose an upcoming large event. The pro-
cedure is to first coarse grain the catalogs in space and
time, and then to measure certain precursors in these
space-time windows. In particular, in the earth, seismo-
genic zones are divided into overlapping circles Ax with
diameters (typically hundreds of kilometers) that are an
order of magnitude larger than the size of the large event
to be predicted. Each precursor is monitored separately
within each circle for successive overlapping time inter-
vals of length Atz. Together Ax and At define a space-
time window R =(Ax,At). The precursor values are up-
dated every six months, and most of the precursors are
evaluated on the basis of data accumulated over the full
six year time window, which is still much shorter than
the mean large event recurrence interval in the region
(typically hundreds of years). Several precursors are used
and include a variety of measures based on the activity
A, which within each space-time window R is defined to
be

4= 3

events i in R

oM, —M,) . (8)

Here M; is the magnitude (a logarithmic measure of the
event size) of event i, M, is a lower magnitude cutoff,
which is part of the definition of the precursor, and 6(x)
is the unit step function. In words, A is the number of
earthquakes within the space-time region that are
identified as main shocks [13] and are greater than or
equal to some threshold size. Note that A is easily de-
duced from the time series of events in a region, and large
values of A4 indicate a regional temporal clustering of
events. More generally, an effective precursor is one
which will typically sustain elevated (or depressed) values
prior to a large event relative to its average value.

In the earth no single measure has yet been identified
which reliably predicts all of the large events. Instead the
Ms algorithm combines seven different precursors in a
voting algorithm which is used to make predictions. It is
important to articulate the prediction goal defined by
Keilis-Borok and Kossobokov. Instead of assigning some
probability for an event to occur at a specific place and
time in the future, the idea is simply to recognize certain
seismicity patterns, i.e., sets of individual precursors that
systematically exhibit elevated or depressed values prior
to a large event, which might indicate a time of increased
probability, or “TIP,” for a large earthquake within the
spatial region Ax. In particular, if a fixed number, say T,
of the precursors exceeds individual thresholds in a re-
gion, then the TIP is turned on. That is, if f;(R) is the
value of the j* precursor in space-time region R, and F j’"
is the precursor function threshold, then a TIP is de-
clared in R when
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T< 3

J precursors

6[f;(R)—F] . 9)

This defines the voting algorithm. A TIP may be turned
off either when a large event occurs or when the number
of precursors exceeding their individual thresholds falls
below the TIP threshold T.

The earliest applications of these methods were based
on existing data in real catalogs, and it was found that in
order to capture roughly 80% of the large events, ap-
proximately 20% of the total space-time volume had to
sustain TIP’s. Efforts are currently underway to evaluate
the algorithms more thoroughly by establishing systemat-
ic tests for forward prediction [14]. However, use of the
algorithm has been controversial for a variety of reasons,
including the intrinsic sensitivity to the inherent inaccu-
racies and incompleteness of the catalogs [15] and sensi-
tivity of the algorithm to features such as the initial
placement of test regions (the space-time windows),
where small adjustments in the spatial positions of the re-
gions and start dates of the catalogs can easily cause the
algorithm to miss some of the events [16]. Of course,
given a perfectly accurate catalog of arbitrary length
(such as can easily be generated for models), the perfor-
mance of these algorithms could easily be assessed. How-
ever, such catalogs are simply not available, so that the
question of the predictability of earthquakes, as well as
the development of effective algorithms, remain open and
active areas of research. Here we will assess how well
similar algorithms can be made to work on a collection of
dynamical models.

We consider a simplified version of this prediction al-
gorithm, in which precursors are considered individually.
We turn a TIP on when the precursor exceeds its indivi-
dual threshold and turn the TIP off when the precursor
falls below the threshold. By varying the threshold we
vary the total alarm time and from this we construct a
success curve [17] which plots the fraction of events pre-
dicted as a function of the fraction of the total space-time
volume occupied by TIP’s. Thus each precursor thresh-
old value generates a single point along the success curve.
(All of our thresholds are integer values, hence the figures
show a linear interpolation between the actual data
points.)

Comparison of the success curves allows us to compare
the effectiveness of different precursors as well as the
predictability (based on these precursors) of different
models. For a simple null test, our results can also be
compared with the corresponding results for purely ran-
dom methods, in which TIP’s are issued completely arbi-
trarily. In that case, events are predicted purely by
chance and the fraction which are predicted successfully
is simply given by the fraction of time the TIP is on: (%
predicted)=(% alarm time), i.e., the success curve is the
diagonal line. In a purely random system no algorithm
will perform better than this method. In our case, this
gives us an operational definition of predictability of
models using a particular algorithm; if a model is predict-
able, the success curve for some precursor should deviate
from this line in a statistically significant manner.

It is not necessary for the success curve to lie above the
diagonal line. In principal, the curve could cross the line
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or even lie completely below it. Any deviation from the
diagonal is a sign that the precursor is detecting some
correlation (or anticorrelation) in the system. However,
because of the way the algorithm is defined in practice to
obtain a success rate which is better, rather than worse,
than the corresponding results for random methods, one
must base predictions on the complement of the original
precursor whenever the success curve lies below the diag-
onal line [18]. Note that in this case the precursor func-
tion will tend to exhibit depressed values prior to large
events, so that the complement of this measure will ex-
hibit increased values. For example, for activity A4 the
complement 4 is lack of activity, defined in terms of 4
by choosing F#=—F*<0and 4=— 4.

Finally, because of the limited amount of data which is
available in seismic catalogs, it is important to accom-
pany any prediction with an assessment of the associated
confidence level. In contrast, in our case we can generate
catalogs that are arbitrarily long and thus obtain results
to an arbitrarily high level of precision. In particular, to
verify that our success curves have converged to their
asymptotic limits in time, we generate independent
curves for a series of exponentially growing time inter-
vals. This ability to check for systematic convergence is
especially useful for models in which the predictably is
marginal.

IV. RESULTS

We begin with the UBK model. A small segment of
the catalog of events is illustrated in Fig. 2. For each
event, a line is drawn through all the blocks which slip.
While precursory small scale seismicity is clearly corre-
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FIG. 2. A small sample catalog as a function of space x
(block number) and time ¢ in the UBK model. A line segment
marks blocks which slip in each event, and a cross marks the ep-
icenter of each large event, which is clearly correlated with the
small scale seismicity. The box corresponds to a space-time
window within which 4 and S,; are evaluated. Time is mea-
sured in units of the inverse loading speed v

lated with the epicenters of future large events (much
more so for the model than for the earth) [19] it begins on
average after half of the mean recurrence interval be-
tween large events has elapsed, so that from Fig. 3 along
it is not clear how accurate predictions based on this pat-
tern will be.

In Ref. [20] a detailed study of predictability of the
UBK model revealed that among a set of precursors, the
two most effective are activity 4 which is the number of
earthquakes and a new measure which is a better measure
of the development of spatial correlations. This new
measure, which we call active zone size S,, is the num-
ber of blocks which have slipped (independent of the
number of times) in some event contained within the
current space-time window. Equivalently,

Z’ i AZS | ! AZS
o L () UBK_ | | (b) OFC
< 0 10
¢ 1 1 7
= 7 [ : AZS
< 4 A
C 7 R ,’/H‘
 (c) BTW ;/ (d) CBO
0 10 1

fraction alarm time

FIG. 3. Success curves for the (a) UBK, (b) OFC, (c) BTW,
and (d) CBO models. For each model, the best spatial measure
(Saz or S,7) leads to more precise predictions than the best
temporal measure (A or A). In each case, results for the com-
plement measure (e.g., 4 vs A) are obtained by a refection of
the curve across the diagonal. In the UBK model, we predict
epicenters of large events and optimal spatial windows are less
than the size of the large event as shown in Fig. 3. We coarse
grain the system into many overlapping spatial regions, and
then obtain the success curve by calculating the fraction of
events successfully predicted by some window containing the
event vs the total fraction of the space-time volume which is oc-
cupied by TIP’s [3]. In the other models, the spatial windows
are taken to be the entire system and the goal is to predict the
large event. We have performed a crude optimization to select
the time windows within which the precursors are evaluated.
The values correspond to Az=0.1 for the UBK model (where
the spatial windows were taken to be 213 blocks), 33 net grains
added during the time window for the BTW model, 0.15 net
stress added per site for the OFC model, and 0.007 net stress
added per site in the measurement of S,z and 0.015 net stress
added per site in the measurement of A4 for the CBO model.



50 PREDICTABILITY OF SELF-ORGANIZING SYSTEMS 241

Saz= X

sites kK €EAx

8(k —k'), k'E some event M; in R .

(10)

With 4 we are able to predict 90% of the large events,
with alarms occupying 15% of the total space-time
volume (Fig. 3), which corresponds to alarms. which oc-
cupy significantly smaller time intervals than the average
duration of small scale seismicity prior to large events
[20] in Fig. 2. However, the performance of S, is even
more impressive, leading to successful predictions of 90%
of the large events when alarms occupy only 8% of the
space-time volume [21]. In the UBK model the
effectiveness of S, can be traced to the fact that very lit-
tle stress is relieved when a block slips in a small event.
Instead, small events serve as markers that the region is
locally close to threshold. While the two precursors are
clearly not independent, in contrast to 4, S,z is a much
more direct measure of the size of the region that is near
the threshold for slipping and thus ultimately leads to the
more direct assessment of the probability of a large event.

The question remains as to which precursors that
worked well for the UBK model are effective precursors
for other self-organizing systems. To address this, we
next consider the SOC models. Apart from some mea-
surements of correlation functions between events of
similar size in the OFC model [22] (which detected a ten-
dency or large events to cluster in time) there has been
little work to characterize the SOC models in terms of
the predictability.

As previously noted, the behavior of the UBK and
SOC models differ from one another substantially. In
principle, for the SOC models we could coarse grain the
catalogs of events in space and time in a manner exactly
like that used for the UBK model. However, because in
the SOC models the largest events span essentially the en-
tire system and it is these largest events we wish to fore-
cast, the most sensible choice is to define the spatial win-
dows to correspond to the entire system. Furthermore,
in these systems the distinction between small precursory
events and the large events which we attempt to predict
is no longer a sharp feature, as is apparent in the statisti-
cal distributions. For that reason, we set a somewhat ar-
bitrary lower cutoff for events we wish to predict, which
corresponds to the size where we estimate (by eye) that
finite size effects first become apparent (see Fig. 1). Our
preliminary estimates of the predictability of small and
medium size events indicate that in comparison the larg-
est events are at least as predictable, and in most cases
significantly more so, than the others [23].

The success curves for the SOC models, as well as our
previous results for the UBK model, are illustrated in
Fig. 3. For all of the models, both 4 and S, yield suc-
cess curves that deviate systematically from the results
obtained for random methods (the diagonal line) and thus
lead to some measurable predictability. In each case
along essentially the entire success curve, S,; gives the
greater deviation and hence is more effective than A4 as a
precursor for a coming large event. For the SOC models,
we find that in most cases these measures are in fact an-
ticorrelated with large events, with success curves falling

below the diagonal. Whenever this is the case, we plot the
complements of these measurers, i.e., lack of activity 4
(quiescence) and lack of the active zone size S,; because
these are the measures which would be used in practice to
obtain a success rate which is better than random
methods. Of the SOC models, the OFC model is clearly
most predictable, generating a success curve which is
comparable to that of the UBK model. In this case the
most effective measure is S, ,, leading to 90% events pre-
dicted with alarm times of order 20%. Similarly, for the
BTW and CBO models, S, outperforms measures based
solely on activity ( 4 for the BTW model, and A4 for the
CBO model). However, compared to the UBK and OFC
models, the gain over purely random methods is
significantly reduced.

In each case there is at least some correlation between
small scale activity and coming large events, suggesting
(but by no means proving) that self-organization may
have implications for the predictability of real systems
[24]. The poor performance in the BTW and CBO mod-
els indicates that the correlations need not be strong and
may in real systems be sufficiently weak that external
noise or limited statistics may mask their presence. Re-
call that both the BTW and CBO models contain stochas-
tic attributes, which we expect play important roles in
limiting their predictability. In contrast, both the UBK
and OFC models, which exhibit the highest levels of
predictability, are fully deterministic. However, the
UBK and OFC models have an additional common
feature, which differentiates them from the BTW and
CBO models. Both the UBK and OFC models do not
satisfy a conservation law in the redistribution of internal
stress. A more detailed study is necessary to fully
separate the relative roles of deterministic dynamics and
the lack of conservation in defining the predictability of
different systems, even within our limited definition of
predictability. However, to address this question at least
in part we have considered the predictability of the OFC
model as the conservation parameter is varied. In that
case we find that the predictability diminishes systemati-
cally as the level of conservation is increased, although,
as illustrated in Fig. 4, even when the OFC model is fully
conservative its predictability is clearly greater than that
illustrated in Fig. 3 for the BTW and CBO models
[22,23].

In the SOC models the precursors based on quiescence
are typically most effective because, unlike the UBK
model, the stress on a site is set to zero each time a block
slips, independent of the even size. Thus a lack of events
is more likely to signify that the system is near the slip-
ping threshold. Interestingly, in the earth both increases
and decreases of seismicity have been observed prior to
large events [25], suggesting that perhaps the UBK and
SOC models may all contain some elements which are
relevant to real faults. Ultimately, it may be of interest to
incorporate the more complete dynamical treatment of
individual faults present in the UBK model into an SOC-
type model which describes fault zones.

In both the UBK and SOC models, large events involve
large spatial regions, so that in order for a large event to
occur, the system must be near threshold across a rela-
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FIG. 4. The deterministic and fully conservative OFC model.
Here a=0.25, whereas the results presented in Figs. 1 and 3
correspond to the dissipative case a=0.2 (a) illustrates the
event size distribution, with § marked as in Fig. 1, and (b) illus-
trates the success curve, analogous to Fig. 3. Compared to the
nonconservative case [Fig. 1(b)], here the maximum event size is
significantly increased, and compared to Fig. 3(b) the predicta-
bility is suppressed. As in Fig. 3, here we have crudely opti-
mized over time windows to select a window which corresponds
to 0.05 net stress added per site.

tively large region in space. In all of the models con-
sidered here, thresholds based on S,; are more effective
than those based on A4, since S, provides the more
direct measure of the development of such regions. The
strong performance of this new precursor is particularly
noteworthy because such measures are not currently be-

ing used quantitatively in earthquake prediction algo-
rithms such as M8. Certain tendencies towards clustering
in space and time have been noted [26] and are the phe-
nomenological basis of these algorithms. However, the
precursors which are used are based on measures such as
A which, within a given region, track the development of
temporal correlations. In such measures, spatial correla-
tions are only accounted for in the most primitive way,
i.e., in the initial definition of the spatial window. In the
earth, including precursors which measure the develop-
ment of geometric spatial correlation is complicated by
the inhomogeneity of fault networks and the difficulties
associated with accurately locating slip. Nonetheless, a
box counting algorithm, in which the current spatial win-
dows are coarse grained and a count is made of regions
exhibiting seismicity above or below some background
level, may be adequate to measure the analog of S,; or
S,z. It would be of significant interest to assess the per-
formance of such a measure in comparison to activity
based precursors in the earth.
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