
PHYSICAL REVIEW E VOLUME 50, NUMBER 3 SEPTEMBER 1994

Nonequilibrium statistical-mechanical approach to discrete-time dynamics
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A nonequilibrium statistical-mechanical approach to a general discrete-time dynamical system is
presented. A generalized Langevin equation (GLE) with an alternative fiuctuation-dissipation theorem
is derived for a system with a stationary (invariant) distribution function. A linear response theory is
also formulated within a similar framework. The results obtained here are not limited to map dynamics.
This is illustrated by applying the GLE to a Hopfield neural network which is synchronously updated
following Glauber dynamics.

PACS number(s): 05.20.—y, 02.50.Ey, 05.40.+j

Discrete-time dynamics, in which the state of a system
changes only at some prescribed instant of time, has been
playing an important role in studies of dynamical
behavior in many branches of natural science. Two types
of discrete-time dynamics are conceivable. When time
evolution of (physical) variables is considered, one usually
employs a map to describe system dynamics [1]. The
logistic map, modeling the yearly variation of an insect
species, is the simplest example. On the other hand, if
time evolution of the distribution function is of interest, a
discrete-time master equation is used as in the case of
neural networks which are updated synchronously [2].

For a continuous-time dynamical system, whose dy-
namics is governed by, e.g., Hamilton's equation of
motion (or a set of Langevin equation), statistical dynam-
ical approaches to irreversible processes, such as a gen-
eral theory of Brownian motion (GTBM) [3] and a linear
response theory (LRT) [4], are formulated with the aid of
the stationary distribution function of a Liouville (or a
Fokker-Planck) equation. The purpose of this paper is to
develop a statistical dynamical theory for a general
discrete-time system, which is assumed to have an invari-
ant (stationary) distribution.

Let us first introduce a deterministic (non-noisy) map

X„i,=G(X„),

with X„denoting the state vector at time t =n

(n =0, 1, , ). Time evolution of the distribution function
P(X;n ) is governed by [5]

P(X;n+1)=f dX'P(X', n)5(X —G(X'))=LtP(X;n) .

(2)

We define an innerproduct (F,H) of two arbitrary vari-
ables F and H by (F,H):f dXF(X)H(X—) and the

operator L, adjoint to L t, by

(L'F,H) =(F,I.H) . (3)

f dXP(X;n)F(X)= f dXF(X)(L }"P(X;0)

XPXO L "F X, 5

we notice that the L denotes the evolution operator of a
dynamical variable. Thus, in the Heisenberg representa-
tion, a variable F(X}at time t =n is expressed as

F„(X)=(L)"F(X)—=(L)"Fo(X) . (6)

In the following we assume that the system has a station-
ary distribution P„(X), which satisfies LtP„=P„, and
express the average of F(X)H(X) over P„(X} by
(,F,H ). Finally, the z transformation [6] and the projec-
tion operator P„onto the subspace A are defined by

F,(X)—= g F„(X)z",
n=0

PqB(X)=(B,A)( A, A) 'A(X) .

First, we express A,'(X} in terms of the correlation ma-
trix, =,. This is efFected by applying Q„on Eq. (9), re-
sulting in

A,'(X)=z [I zQ„L] ':-,f, —

where the random force at t =0, f(X), is defined by

f =QUAL A . (12)

With these preparations we now derive a generalized
Langevin equation (GLE) for a set of K dynamical vari-
ables A(X)=I A(l;X), . . . , A(K;X)]. From Eqs. (6)
and (7}we see that

(I zL) A, (X}=—A(X),

which represents the equation of motion in the z space.
Putting Q„:I P„we hav—e—
A, (X)=Pq A, (X)+Qq A, (X)=:-sA(X)+ A,'(X) .

(10)

We readily see from Eq. (2} that

LF(X}=F(G(X)).

By calculating the average at time t =n, that is,

(4)
Second, we apply P„on Eq. (9) and then, A ) ( A, A)
on the resulting equation to have

=-,=[I zn+z'e, ]—
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with the frequency matrix 0 and the memory kernel @„
defined by

Q—:(L A, A)( A, A) (14)

4, —= —(L[I zQ—„L] 'f, A)( A, A) (15)

Finally, the GLE in the z space, Eq. (16), is obtained after
insertion of Eqs. (13}and (11)into Eq. (10).

[I—zQ+z 4, ]A,(X)= A(X)+z[I —zQ„L] 'f . (16)

The inverse z transformation An+1= dz A,z
(2ni) of Eqs. (15) and (16) yields the GLE and the
fluctuation-dissipation theorem (FDT) in the r space,

n —1

A„+,=QA„—g 4 A„ i+ A5„+, o+f„, (17)
m=0

Time evolution of the distribution function P (X;n + 1) is
modified to order c, as

P(X;n +1)=L tP(X;n ) e—V L [P (X;n )F(X,n )],

where V denotes the gradient operator in the X space.
At time t =0 we assume the system is in a stationary
state, P(X;0)=P„(X). By solving Eq. (23) iteratively we
find that

n —1

P(X;n)=P„(X)—e g (L+)" 'V L
m=0

= —(Lf, A)( A, A ) (18) X[P„(X)F(X,m)] .

The f, the random force at time t =m, on the right
hand side of Eq. (18) is defined by

f = (QqL—) f . (19)

n

+m, O g @n+m —i@n —1
i=1

—=+mo —
Dm, n ~ (21)

where 4'„=——(Lf„,A) ( A, A) ' with Q meaning
the transpose of the matrix Q. When n becomes large
D „ is expected to approach an n-independent value,
e g , D . If the .L. is Hermitian, (LF,H)=(F,LH), it
holds that %'„+ „=4' 0 and the noise f is a stationary
process. When the memory kernel 4 is a rapidly decay-
ing function of time m, the difference D „above is of no
practical significance.

We now turn to a formulation of a LRT for map with
a small time (n)-dependent perturbation F(X„,n } [8],

X„+i=G(X„)+eF(X„,n) . (22)

Equations (17), (14), and (18) correspond to Eqs. (3.10),
(2.19), and (3.12) of [3a], respectively [7]. It is to be not-
ed, in passing, that since A is a E-dimensional vector
A(X)=(A(1;X), . . . , A(E;X)}, the frequency matrix
Q, Eq. (14), the memory kernel @„Eq.(15), and the
correlation matrix =, are all EXE matrices. If it hap-
pens, as in the case of Eq. (30) below, that the dynamical
variables of interest A (a;X)(a= [a„,ak ),—00 & a; & 00, for i = 1, . . . , K) have a continuous index,
a, those matrices become all 00 X 00 with a,b element ex-
pressed as, e.g., Q(a, b), see Eq. (31).

Here it is worthwhile to comment on some characteris-
tics of map dynamics. From Eqs. (2) to (4} it is seen that
L [P„(X)G"(X)]=P„(X)X"and thus

L [P„(X)(L)"A(X)]=P„(X)(L)" 'A(X), (20)

leading to ( A„+,A„)= ( A, A). If A(X) is chosen
to satisfy ( A) =0, it is confirmed that ( f ) =0 for
m =0, 1, . . .. Finally, with the aid of the relation
(P„F,H ) = (F,P„H ), it can be shown that

The linear response of a variable
A (X),5( A )„=—fdX[P(X;n ) —P„(X)]A(X) is thus

given by

n —1

5(A )„=—e g f dX A„|(X)VL
m=0

X[P„(X)F(X,m)] . (25)

Putting F(X,m)=B(X)s(m), where s(m) denotes a
time-dependent field conjugate to 8, we obtain after in-
tegration by parts

n —1

5& A ).=e y y. |(A IB)s(m), (26)

with the response function P ( A IB) given by [9]

(AIB)=(B(X),L[V A (X)]) . (27)

Up to now we have been concerned with a determinis-
tic map (1). When the map becomes noisy under the
influence of a (stationary) noise g„, Eq. (1) is modified to

X„+,=G(X„)+g„, (28)

Time evolution operator L of a dynamical variable is
defined as in Eq. (3) as the adjoint of L, Eq. (29), thus
LF(X)=J dX'F(X')Ps(X' —G(X)). F„(X)—=(L)"F(X)
gives the Heisenberg representation of F(X) at time n as
before, Eq. (6). Formal manipulations for the derivation
of the GLE (17) remain entirely unaffected by these
modifications. As to the LRT we note that Eq. (23)
remains intact, leading to the conclusion that Eqs. (26}
and (27) are valid for the noise map, too.

Here we show how a dynamical process [ A„] can be
classified according to its stochastic properties, based on
the GLE (17) or (13). For the purpose we take as a set of
variables A of the GLE the following [10]:

and the 5 function in Eq. (2) should be changed to the
distribution function P (g) of the noise, thus

P(X;n+1)=f dX'P(X';n)P (X—G(X'))—:L P(X;n) .
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A(a;X)= g 5(A "(X)—a")=5(A(X)—a), (30)

where A(a;X) represents the probability for A(X) to
l

realize a value a. From the fact that
( A(a;X), A(b, X))=P,', (a)5(a—b) with P,', (a)
—:J dX5( A(X) —a)P„(X) a stationary distribution of

A(X), we can interpret the two-time correlation func-

tion,

:-„(a~b)—:I dc(A„(a;X),A(c;X))(A(c;X),A(b;X)) =(A„(a;X),A(b;X))/P„(b)

as the transition probability to be in a state A =a at time
n given that the state at t=0 is A=b. Of course,
A„(a;X)—:L "A(a;X) [see Eq. (6)]. The a, b element of
the frequency matrix (14}is given as

Q(m, m') =E(m, m')/D(m'),

where

E(m, m')—:Tr(S, S')

(35)

Q(a, b)=:-,(a(b) . (31} Xexp[Pub, 'S; )5{o(S)—m)5{o(S')—m' }

If the process [ A„] is Markovian, we have by definition

=-„(alb)= I «1 dc„1-=1(alc1)

X:-1(c1[cz):-1(c„1~1)—::"1(a[b) .

and

D(m')=—Tr(S, S')exp[P+h S;]5(o(S')—m') .

(32)

From Eqs. (31), (32), and (13) we see that the Markovian
property is equivalent to the vanishing memory 4,=0.
The next simplest, i.e., doubly Markovian, stochastic pro-
cess is the one in which e (a~b)=0 for m & l. In this
case we readily see that @o(a~b)=Q (a~b) —:"2(a~b).
Thus, if we could choose a proper set of variables A,
which is expected to form a Markovian process [11],Q
defined by Eq. (14) gives valuable insight into dynamics in
the system of interest.

To illustrate this point we consider a neural network
composed of N Ising spins, S=[S„.. . , S+], whose in-

teraction obeys the Hebbian rule [12],

(33)

Denoting by P(S;n ) the probability that the system is in
the state S at time n, synchronous dynamics is de6ned by
P(S;n+1)=Tr(S'}W(S~S')P(S';n)—=L P(S;n) with the
microscopic transition probability

8'(S~S')=exp[QPh S;]/g2 cosh(Ph ) . (34}

Here, Tr(S') means the summation over S', p the inverse
temperature, h, =QI~SJ.(h:QJ&SJ'. ), and i —and j run
from 1 to X. The stationary distribution function is given
by P„(S}=Cg2cosh(ph;) with C a normalization con-
stant. The operator L, adjoint to L, is given from Eq. (3)
with the integration over X replaced by the summation
over S as LE(S)=Tr(S')exp[P+h;S )E(S')/
g2 cosh(Ph; }.

We are interested in dynamics of overlap o'"'(S)
defined by o'"'= QADI"'S;/N (u =1, . . . , P) and put
A(m;S}—:5{o(S)—m), Eq. (30} [13]. The (macroscopic}
transition probability Q(m, m'}, Eq. (31), for the order
parameter to change from m' to m is expressed as

E(m, m'} and D{m'}are seen to represent the generalized
partition functions, thus in the limit N ~ 00 we
have E(m, m') =exp[ —PNe(m, m') ] and D (m')
=exp[ —pNd(m')]. If we confine ourselves to the case of
finite p, that is, a=p/N~O, e(m, m') and d(m') are
easily calculated without the replica method. Following
closely the saddle-point calculation [2,12], we have

d(m')=m' t' —((1n[cosh(pf m')]))/p
—((In[cosh(Pg' t')]))/P,

e(m, m')=t m+t' m' —m m' —((in[cosh(pg t}]))/p
—((in[cosh(Pg' t')] )) /P,

(36)

(37)

t + 1 tanh( PP

a'+1=(1—P'+ l)[1+(pa.}'(1—1M'. +1}].

where (( )) denotes the average over the random pattern
and t and t' are variationally determined from

m—:((g' tanh(pt g'))) and m'=((gtanh(pt' g'))). The
situation is greatly simpli6ed if we consider that only one
overlap, say, m& is of order 1 and m;=t;=0 fori &2. In
this case, we see from Eqs. (36), (37), and (35) that
Q(m„m', }=exp[NT(m„m', )] with

T(m„m', )=—p[tm, —m, m', +in[cosh(pm; )]/p
—in[cosh(pt )]/p],

where m1=tanh(pt). Based on this expression for the
transition probability we can discuss how the mean p„
and the mean square deviation o.„, de6ned
by P„(m, ) ~ exp[ —N(m1 —p„) /(2o 2 }], change by
one iteration. Starting from P„+1(m}
=J dm'exp[N[T(m, m'}—(m1 —p„}2/(2o„)]],we can

determine p„+& and cr„+& by saddle-point calculations to
have
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It is readily confirmed that p„and o.„converge to the
values determined by the equilibrium theory.

In this paper, the GTBM and LRT, which have been
playing important roles in continuous-time dynamical
systems, are formulated for general discrete-time systems.
The last comment is on the GLE (17), which expresses
A„+, in terms of the history [ A }(m =n, n —1, . . . , )

and the noise f„. This reminds us of the AR (autoregres-
sion) [6], model to reproduce stochastic signals produced
by complex systems. For an AR modeling, the

coeflicients [4 } are regarded as fitting parameters,
which are independent of the nature of the noise f
Equations (17) and (18) show that the coeScients and the
noise are closely related for a very general, even for non-
thermal, system.

The author expresses his sincere gratitude to Profes-
sors A. Igarashi, H. Sakai, and H. Fujisaka for useful dis-
cussions.
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