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Time-dependent density-functional theory with H theorems
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The density-functional theory, which is widely used to study static aspects of various phase transi-
tions, such as a liquid-crystal and a glass transition, is generalized so that one can discuss the dynamical
behavior of a density pro61e. The main emphasis is put on the H theorems and the nature of the random
current in the Langevin diffusion equation.

PACS number(s): 02.50.—r, 05.20.6g, 05.40.+j

The density-functional theory (Di l') [1] has now be-
come a useful tool to study quantitatively various phase
transitions in condensed matter, such as freezing [2], the
glass transition [3],and interface properties [4]. We note,
however, that the DPI gives only static information on
the (quasi}equilibrium density profile n~(r} and the relat-
ed free energy F,q

=—F[n, (r)], with F[n(r)] denoting
free-energy functional, a quantity of paramount impor-
tance in the Dl I [1].

If we could introduce dynamics to the Dt l', with
F[n(r)] as the only input to the dynamics, this would
make it possible to study how the density n(r;t) evolves
in time starting from a given initial condition n(r;t =0).
It is to be expected that n(r;t} will develop a density
wave if the equilibrium phase is not a uniform liquid but
a crystalline solid. However, it could also happen that
n(r;t) be trapped in a local minimum of F[n] for a long
time, thus enabling us to explore the dynamics and the
details of the energy surface F [n).

The purpose of this paper is first to make the Dsl'
time dependent (TD) [5] and to open a way to study
dynamical aspects of various transitions and interface
properties, and secondly to discuss general properties of
the TD-DF l'. We first derive a Langevin diffusion equa-
tion and the corresponding Fokker-Planck (FP} equation
for the distribution functional f [n(r);t]. A TD-DFT is
required to satisfy the condition that the stationary distri-
bution functional P„[n(r}]to the FP equation should be
proportional to exp[ PF [n—(r }]I with I3=(ktt T)

With this guiding principle in mind, let us start from
the following (phenomenological) hydrodynamic equation
for the density n (r; t) and the momentum density g(r; t):

t}n(r;t)/Bt = Vg(r; —t}/m,

Bg(r;t}/Bt = n(r, t)V5F—/5n(r;t)
—fdr' f dt'G(r, r', t —t')

as

I (r;r';t)5,"=g fdr"F(r, r",t)5k [( g(r")g(r'))
k

(3)

The static momentum density correlation function is
given by [7]

(g, (r)g, (r') ) =mktt T5(r r')n, (—r)5, (4)

and Eq. (2) reduces to

t}g(r;t}/Bt= n(r, t)VSF/—5n(r;t) I'og(r, t)+ f—(r;t) .

(6)

Since we are interested in long time behavior, we employ
an adiabatic approximation for Eq. (6},yielding

g(r;t) = [ n(r;t)V5F/5n(r—;t)+ f(r;t) I /I o . (7)

From Eqs. (7) and (1} we finally obtain the Langevin
diffusion equation

Bn (r; t) /Bt = —V. I n(r; t)V5F—/5n (r; t)

Since the density field n ( r; t } is assumed to be the only
relevant dynamical variable (order parameter) that
changes slowly in time, the crucial step to derive the
desired TD-Dl l is that we replace the equilibrium densi-
ty n,q(r) in Eq. (4}by a time-dependent (nonequilibrium}
n(r;t) Thu. s inserting Eq. (4) with n~(r) replaced by
n (r; t} into Eq. (3}and assuming for simplicity

I (r, r';t}=2I'o5(r —r'}5(t)

with I 0 a constant, we arrive at a modified FD theorem

(f,(r;t)f (r';t'))=. 2mkttTI on(r, t)5(r r')5(t t'—)5, —

(5)

Xg(r', t')+ f(r;t), (2) + f(r; t) ] /(m I o) =——V. [j+j„I,
where V5F/5n (r; t} rep—resents a generalized force on a
particle at r [6] and the fiuctuation-dissipation
(FD} theorem expresses the damping matrix
G J(r, r', t)=I (r, r', t)5,1 in terms of the correlation func-
tion of the random forces

(f;(r;t)fr(r', t'})=F(r, r';t —t')5;.

(8)

with the FD theorem (5). j and jz in Eq. (8) denote the
systematic and the random current, respectively.

From the FD theorem (5) it is seen that the random
current jz(r;t):—f(r; t)/m I o is a multiPlicative noise [8]
and one must specify how one interprets the noise. Here
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for our purpose it is to be treated as an Ito type noise. If
we express the increment of n(r) between t and t +Et by
hn(r) we readily see from Eqs. (8) and (5}that

(hn(r)) Iht= V—.j(r;t),
(hn(r)hn(r') ) /bt =2D(V.V')n(r;t)5(r —r'),

(9)

with D:ktt—TlmI 0 Denoting by f[n(r);t] the proba-
bility functional for the density field n(r) at time t, the
FP equation is given from Eq. (9) straightforwardly as

"df /dt = fdr[5/5n(r)] {fV j (r) j

+D fdr fdr'[5 /5n(r)5n(r')]

X{fVV'n(r)5(r —r')j . (10)

The second term on the right-hand side of Eq. (10}is

D f d—r[5/5n(r)]V fdr'[5/5n(r')]

X {fn(r)V5(r —r') j .

Since

[5/5n(r')]{ fn(r)V5(r r') j—

First H theorem. When the density field n (r; t) evolves
in time according to Eq. (13),F[n] decreases in time until

j (r;t) vanishes.
This is readily shown from

dF/dt = fdr[5F/5n(r;t)]t}n(r;t)/dt

13D f d—r{V5F/5n(r;t) j n(r;t)

(pD) —'f dr{j(r;t)j In(r;t)&0.

When j (r;t) vanishes, we see that

(14)

our derivation of the FP equation (11)we notice that the
replacement of n, (r) by n(r;t) in the FD theorem (5)
and the Ito interpretation of the noise current jz(r; t) are
the important ingredients of a TD-DFT. This point wiH

be discussed from a difFerent viewpoint.
Next we turn to the H theorems satisfied by the FP

equation (11). First we neglect the random current j„
and consider the diffusion equation

dn(r;t) Idt =pDV. n(r;t)V5F/5n(r;t) = —Vj (r;t) .

n(r )[—5f /5n (r') ]V'5(r r')— 5F/5n(r)=p, (15)

and 5(r)V5(r) =0, it holds that

[5/5n(r')]{ fn(r)V5(r r') j—
n(r)[5—f /5n(r')]V'5(r r')—

and

fdr'[5/5n(r')]{ fn(r)V5(r r') j =n—(r)V5f /5n(r) .

Thus we obtain from Eq. (10) the following FP equation:

Bf/Bt = —fdr[5/5n(r)]J(f),

J(f)=D{PfV n(r)—VSF/5n(r)+V. n(r)V5f /5n(r) j .

(12)

When f is proportional to exp( —PF[n]),

V n(r)V5f/5n(r)=V n(r){ pf.V5F/5n(—r) j

PfV n(—r)V5F/5n(r),

where p is a constant. Equation (15) denotes the varia-
tional condition in the DFl to determine the equilibrium
density field [1,2].

The free-energy functional can be expanded
in terms of the (generalized} direct correlation function
C„(r„.. . , r„}of a uniform reference liquid as [2]

PF[n]= fdr n(r){ln[n(r)A ]—1 j

—g fdr, dr, {C„(r„.. . , rk)/k!j

X {n(r, ) —n, j {n(r„)—ni j,
where A and ni denote the thermal wavelength and the
density of the reference liquid, respectively. From Eqs.
(13) and (16) we obtain the so-called Vlasov-
Smoluchowski equation [9]

dn(r;t)IBt =DV n(r;t)

and we confirm that the stationary solution is given by
exp( PF). In other w—ords, the Langevin difFusion equa-
tion (8) actually samples, in a steady state, the density
field n(r} according to the weight exp( 13F). Tracing—

+PDV n(r;t)V f d.r'u, ~(~r —r'~)

Xn(r';t),

with the efFective potential u,s (
~
r —r'

~ ) given by

u,&(~r —r'~)= —k&T g f dr3 . . drk{Ck(r, r', r3, . . . , rk)/(k —1).j {n(r3) ni)j . . .—{n(rk) ni ] . —
k=2

(18)

If we retain in Eq. (18) only the term with k =2, we ob-
tain the widely used relation

u,a( [ r —r'
[ ) =—k~ TCz(r, r' }:——ks TC( [r—r'

~ ),
with C(r) the two-body direct correlation function of a

uniform liquid [2,7]. Equation (17} has been used to
study dynamical properties of a supercooled liquid [9].

Now we turn to the full Langevin dimusion equation
(8).

Second 0 theorem. When the distribution functional
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f [n;t] evolves in time according to the FP equation (11),
the generalized free-energy functional FG [f] defined by

We note that Dn denotes the integration over the func-

tion space of n(r) .The theorem is proved as follows.
From Eq. (19) we have

FG[f)= JDnF[n]f [n;t]+k~T fDnf [n]ln(f [n])

(19)

dFG ldt = 1 DnF[n]df/dt+k~T fDn(Bf/Bt)ln(f)

+k~ T(d Idt) fDnf [n;t] . (21)

f„[n]=constXexp[ F[—n]/kit T] . (2O}

decreases in time monotonically until f [n;t] takes the
form The last term on the right-hand side of Eq. (21) vanishes

due to the conservation of probability. Now from the FP
equation (11)we have

dFGldt= fDn fdr[F[n]+k sTln(f)j[5/5 n(r)][fV j(r)—DV n(r)V5f/Sn(r)j

= —fDn 1 dr{SFISn(r)+ktt Tf '5f/Sn(r) j IfV j(r) DV—n(r)V. 5flSn(r) j . (22)

The right-hand side of Eq. (22} consists of four parts,
each of which is separately calculated and summed to
give

dFG/dt= —fDn fdr[[k&Tf/Dn(r)]'~ j(r)

I

where w denotes the hopping rate for one particle and the
hopping is assumed only between the neighboring cells.
If the occupation numbers [n j are sufficiently large one
can treat I n j as a continuum and Eq. (26} is transformed
to

—[Dk~Tn(r)/f]' V5f /5n(r) j ~0 . (23)

When the integrand of Eq. (23) is zero, we have Eq. (20).
Comparing the two theorems it is seen that the noise jz
prevents the density field n (r;t) from being trapped in a
local minimum of the functional F [n]. That is to say,
there can be many solutions to Eq. {15),which determines
the (local) extremum ofF [n] [1—3].

Now we comment on the FD theorem (5} from the
point of view of the internal noise, first proposed by Mi-
khailov [10]. In order to make the comparison easier, we
take as the free-energy functional F [n] that of the free
gas with all the direct correlation functions Ck put equal
to zero. Then from Eq. (16)

PF[n]= fdr n(r)[ln[n(r)A ]—1 j

d f /dt = —w g (d/dnj )[(nj+, +nj &

—2n~)f]
J

+(w/2) g(B /Bn )[(n +&+n &+2n )f]
J

—(w/2) g (8 /Bn, Bnl, )(2njf)
1

—(w/2) g (8 /dn Bn ))(2n~f),

where approximations like

f(n &

—l, nj+1)=f df/dnj &+—df Idn~

+2—lg2f /Sn 2+2—lg2f /Sn 2

—8 f/Bn Bn

Q7)

(28)

+(n/+1)f(n. + l, n +,—1}.
2nj f([nj j)], — Q6)

and the Langevin diffusion equation (8) and the corre-
sponding FP equation (10}become

dn(r;t)Idt =DV2n(r;t) V f(r;t), — (24)

Bf[n;t]ldt= Jdr[515n(r)][f V n(r) j

+D fdr fdr'[5 l5n(r)5n(r')]

X IfV.V'n(r)5(r r') j . (25)—
Now let us consider a hopping process of particles among
a set of interconnected cells j=0, +1, . . . put on a linear
chain. The microscopic state of the system is specified by
a set of numbers n - of the particles in the cell j. The mas-
ter equation for the distribution function f([nj j;t) is
given by

Bf([ j;nt}j/Bt=w g [(n +1)f(nj
&

—l, n +1}
J

have been used. Mikhailov [10] shows that Eq. (27) is
equivalent to the functional FP equation

5f /at = —D fdx [5ISn(x)]{f'a'n/5x')

+D f dx dx'[5 /5n(x)5n(x')]

X [f(B /Bx Bx')[n(x)5(x —x')]j, Q9)

where D is the diffusion constant. Equation (29) is just
the one-dimensional version of the FP equation (25) and
the corresponding Langevin diffusion equation (Al 1) of
Ref. [10]coincides with Eqs. {24}and (5). Thus the mul-
tiplicativeness of the noise, Eq. (5), which was obtained
by modifying the equilibrium FD theorem, Eq. (4), can be
interpreted based on the internal noise, which results
from the atomistic nature of the constituent (diffusing}
particles.

In concluding this paper we note that our discussion
can be easily generalized to multicomponent systems. In
fact, we recently [11]applied TD-DFT to the reference
interaction site model, which has been formulated based
on the Dt' I' by Chandler, McCoy, and Singer [12].
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