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Stabilizing unstable periodic orbits in a fast diode resonator
using continuous time-delay autosynchronization
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Fast chaotic dynamics in a diode resonator are controlled using a continuous feedback scheme pro-
posed by Pyragas [Phys. Lett. A 181, 203 (1993)]. The resonator is driven by a 10.3 MHz sinusoidal volt-

age (corresponding to a drive period under 100 nsec). Period-k orbits, with k= 1, 2, and 4, have been sta-
bilized by applying a vanishingly small feedback signal that is generated by continuously comparing the
state of the resonator with its state one orbital period in the past. We observe that the control is efFective

even in the presence of a -24 nsec time lag between the sensing of the system and the application of the
feedback that arises from unavoidable propagation delays through the feedback electronics.

PACS number(s): 05.45.+b, 84.30.Wp, 42.50.—p

Chaos in a dynamical system can seriously limit its per-
formance in applications where stable behavior is impor-
tant. Avoiding the domain where chaos occurs may re-
quire the design and integration of several systems to cov-
er the full range of desired operating conditions which is
not practical in all cases. A more elegant solution is to
use a feedback scheme that allows the system to behave
in a smooth, stable, and controlled manner even into the
chaotic domain. Ideally, the feedback would represent a
very slight perturbation of the system so that the desired
features of its behavior are not destroyed.

Recently, Ott, Grebogi, and Yorke (OGY, Ref. [1])
pointed out that the unstable periodic orbits (UPO's} of a
chaotic system can be exploited to achieve control. Sta-
bilization of an UPO requires minimal perturbation since
the orbit already exists (it is determined by the internal
dynamics of the uncontrolled system). To demonstrate
the feasibility of their proposal, they devised a control al-
gorithm that prescribes how to adjust an accessible con-
trol parameter each time the system passes through a
chosen Poincare section (at a point x} so as to guide the
system to the desired orbit (corresponding to the fixed
point xo). The strength and sign of the necessary adjust-
ments, which can be thought of as a feedback signal, are
determined using linear control theory when x is in the
vicinity of the fixed point [2]. Discrete adjustments pro-
portional to x—xo are made each time the trajectory in-
tersects the Poincare section until the system is on the
UPO, that is, until x=xo. Subsequent adjustments are
only needed to compensate for noise that drives the sys-
tem away from the UPO. The OGY scheme has proven
to be quite robust to noise and imprecise knowledge of
the system as demonstrated by the control of various
physical systems [3—9].

Unfortunately, it is dificult to apply the OGY control
algorithm to high-speed chaotic systems because the state
of the system must be accurately sensed and the feedback
signal abruptly changed when the trajectory pierces the
Poincare section. Recently, Pyragas [10]suggested a new
algorithm to stabilize UPO's that uses continuous [11,16]
rather than abruptly-changing feedback and hence should
be better suited for stabilizing high-speed chaotic dynam-

ics. The algorithm synchronizes the system to its state
one orbital period in the past by adjusting continuously
an accessible control parameter by an amount
e(t) =y[g(t) —g(t —

vk }],where g(t) is a measurable sys-
tem variable and rk is the period of the desired UPO [17].
We refer to this process as time-delay autosynchroniza-
tion (TDAS). When synchronization with the delayed
state is successful, the trajectory of the controlled system
is precisely on the UPO and the feedback signal is com-
parable to the noise level in the system. All information
required to stabilize the desired orbit is provided by the
system in real time, except for the period of the desired
UPO and the gain of the feedback loop. We note that
TDAS has been used to control the dynamics of an elec-
trical circuit [18] and a laser [19]. However, its high-
speed capabilities [20] have not been addressed thorough-
ly in an experimenta1 system and there are no simple
theoretical guidelines to determine whether a system is
controllable.

In this paper, we demonstrate that TDAS is effective
for stabilizing the chaotic behavior of a high-speed,
chaotic electrical circuit: a diode resonator driven by a
10.3 MHz sinusoidal voltage. We emphasize, in particu-
lar, that TDAS can stabilize several different UPO's, it
automatically tracks changes in the size of the drive volt-
age (the control parameter}, and it is robust with respect
to unavoidable time lags associated with elements in the
feedback loop. We investigated the diode resonator be-
cause it was easy to modify the standard resonator to
operate at high speeds, it is well characterized [21],and a
variant of the OGY algorithm has been applied to it suc-
cessfully at low speeds [5]. The resonator consists of a
diode (type 1N4007, reverse recovery time -2 @sec) in
series with a 25 pH inductor (series dc resistance of 2.3
Q) and a 50 0 resistor which are driven by a sinusoidal
voltage Vd sin(cod t) (frequency cod /2@=10.3 MH. z).

The circuitry for affecting control of the chaotic reso-
nator is shown in Fig. 1. High-speed, low-noise opera-
tional amplifiers (Analog Devices, AD811) and low-loss
transmission lines were used to create the TDAS error
signal and inject it back into the resonator. Homemade
printed-circuit boards having well-defined ground planes
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FIG. l. Block diagram of the experimental setup. The cora-
ponents enclosed within the dashed square makeup the diode
resonator which is driven by a sinusoidal voltage. The addition-
al components are used to generate the TDAS error signal and
to inject it into the resonator.
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were used for propagating the signals over short distances
while commercially available 50 Q cables (RG 58-U) were
used for long-distance propagation to produce the de-
layed signal. We found that it was convenient to use the
voltage drop V(t) across the 50 0 resistor (proportional
to the current fiowing through the resonator} as the
dynamical variable to characterize the state of the reso-
nator. The voltage V(t) was sensed with a high-
impedance buffer to isolate the control circuitry from the
resonator and ensure that the observed controlled orbits
were indeed orbits of the original system.

The TDAS error signal was derived from V ( t) using
analog techniques. We directed half of the signal along a
short transmission line and into one port of a summing
amplifier while the other half was sent along a length of
cable, through an inverting amplifier and into the second
port of the summing amplifier. The cable length was pre-
cisely adjusted so that the signal propagating along it and
through the inverting amplifier was delayed by the period
'Tk of the desired UPO, where the subscript k signifies a
period-k orbit. In our circuit, ~k is simply given by
2nklcod Th.erefore. , we adjusted the time delay to t.„
when the error-generating part of the circuit was discon-
nected from the rest of the system. We note, however,
that the delay time could be adjusted to ~k in real time
while the control circuit was active, which may be re-
quired for an autonomous systems where ~k is not known
a priori. The amplifier in the delayed-signal path was ad-
justed to compensate for the loss (-13%at 10.3 MHz for
the period-1 cable, cable length of —19.4 m) in the cable
and it inverted the signal so that the output of the sum-
ming amplifier was proportional to [V(t) V(t ~k)]. — —
We found that it was necessary to further amplify and in-
vert this signal to establish control of the chaotic diode
resonator. Finally, the TDAS feedback signal passed
through a switch, was summed with the drive voltage,
and injected into the resonator. For closed-loop control,
the signal injected into the resonator is given by
V„(t)= Vz sin(codt)+ V,(t), where V,(t)=y[V(t tL}—
—V(t ~k tL )] deno—tes the TDAS fee—dback voltage, y
is the gain of the loop, and tL is the total time lag intro-
duced by the operational amplifiers. The time lag tL was
-24 nsec, which corresponds approximately to 4 of a
drive period. The TDAS scheme appears quite robust
against this time lag since control was easily obtained.

drive voltage V (V)

FIG. 2. Bifurcation diagrams of the resonator peak voltage
as a function of the drive amplitude. (a) The uncontrolled sys-
tem. Stabilizing and tracking the (b) period-1 UPO for
y= —3.2, (c) the period-2 UPO for y= —2.5, and (d) the
period-4 UPO for y = —2.5.

Before attempting control, we generated a bifurcation
diagram [Fig. 2(a)] to explore the dynamical behavior of
the high-speed chaotic resonator. The diagram was made
by plotting all the local maxima V„of V(t) that occurred
during a —10 @sec interval for several values of the drive
voltage Vd. We performed a simple liner transformation
of the data (V„~V„—0.027V&, where V„and Vd are
evaluated with the same units) to highlight clearly the dy-
namics of the resonator. It is seen that the resonator
displays a typical period-doubling route to chaos [21],
where the first Hopf bifurcation occurs at Vd-—0.78 V,
and the onset of chaos occurs at Vd ——1.98 V.

Control of the resonator was easily initiated by closing
the switch in the feedback loop at an arbitrary time and
adjusting y. Successful control was indicated by the ob-
servation of a small TDAS error voltage (less than 0.5%
of the drive amplitude for all cases, which is comparable
to the noise level) and the observation of a stable, period-
ic form of V(t). We found that there is a finite range of y
(typically an order-of-magnitude) over which control can
be maintained for a given drive amplitude. If the gain
was too high, the system underwent large-amplitude
chaotic behavior and V,(t) was comparable to the drive
voltage. When the gain was too small, the feedback was
insufBcient to keep the system on the UPO.

It was possible to stabilize and maintain control of a
period-1 UPO over the full range of drive amplitudes us-
ing y = —3.2. The TDAS error signal automatically
tracks [7,19] changes in the UPO as Vd changes because
it is self-generating. The tracking behavior of the stabi-
lized period-1 UPO is demonstrated by the bifurcation di-
agram shown in Fig. 2(b) where it is seen that period-1
behavior is maintained through the first Hopf bifurcation
and well into the chaotic domain. Recall that we have
transformed the data —the amplitude of the period-1 or-
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FIG. 3. Temporal evolution of the stabi-

lized (a) period-1 UPO (y= —3.2) and (b)
period-4 UPO (y= —2.5) with the associated
TDAS error signal expressed as a fraction of
the drive amplitude for Vz =2.4 V.

bit increases for increasing drive amplitudes.
We have observed the transient behavior following ini-

tiation of period-1 control. For drive amplitudes that
placed the system in the chaotic regime, it took anywhere
from -0.5 Itsec (best case) to —100 jusec (worst case) to
stabilize the period-1 orbit. During the longer transients,
the system often displayed nearly stable period-2 or -4
behavior as it converged to the period-1 orbit.

We have also stabilized period-2 and -4 UPO's using
appropriate lengths of the signal-delay cable. Figure 2(c)
shows the stabilization of a period-2 orbit using y = —2.5
with r2=4nltod. For Vd &0.78 V, the TDAS scheme
maintains control over the period-2 orbit throughout the
chaotic regime. The domain of control for the period-4
orbit did not extend over the entire chaotic regime as
shown in Fig. 2(d), where y= —1.4 with r4=8n/cod It.
is seen that control is maintained only over the range
1.5 ~ Vd &2.5 V. For higher drive amplitudes, no value
of y would stabilize the period-4 orbit.

To demonstrate that the TDAS signal is a small frac-
tion of the drive amplitude when the control is effective,
we simultaneously plot the temporal evolution of the er-
ror signal along with V(t) for V&=2.4 in the chaotic re-
gime. Figure 3(a} shows the stabilized period-1 orbit and
its associated TDAS error signal for y = —3.2. The peak
error signal is much less than 0.2% of the drive ampli-
tude and is not distinguishable from the noise. The situa-
tion is slightly different for the error signal associated
with the stabilized period-4 orbit shown in Fig. 3(b)
which is for the case y= —1.4. The error signal is just
distinguishable from the noise but is no larger than 0.4%
of the drive amplitude. We believe that the increase in
the amplitude of the error signal is due to frequency-
dependent loss (distortion) in the delay line which results
in an imperfect TDAS signal (we compensate only for a
frequency-independent lass).

We stress that the TDAS scheme stabilizes an UPO of
the chaotic system rather than creating new periodic or-
bits that are not directly related to the system. We
demonstrate this property by superimposing the first re-
turn map of the controlled system over the map of the
chaotic system. If the stabilized orbit is an UPO of the
system, its position will be located precisely on the map
of the uncontrolled system. The maps shown in Fig. 4
were generated by plotting the voltage V„ofthe nth peak
versus the voltage V„+, of the preceding peak. Figures
4(a)—4(c) are for V& =2.4 V. Figure 4(a) shows that the
stabilized period-1 orbit is indeed an UPO of the system.
It corresponds precisely to the intersection of the uncon-
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FIG. 4. First return maps demonstrating that the controlled
dynamics of the resonator are UPO's of the system. In each
plot, the map of the controlled trajectory (dark concentration of
points) is superimposed on top of the map of the uncontrolled
(chaotic) system (lighter points). For (a)—(c), V& =2.4 V. Con-
trolled {a) period-1 UPO (y = —3.2), (b) period-2 UPO
(y = —2.5), and (c) period-4 UPO (y = —2.5). (d) Unsuccessful
control of the period-4 orbit for Vd =2.6 V and the same pa-
rameters as in (c).

trolled return map with the line V„=V„+1. The experi-
mental conditions are the same used to generate Fig. 3(a).
Similar results are shown for the period-2 (-4} orbit in
Fig. 4(b) [4(c)] for the same conditions used to generate
Figs. 2(c) [3(b)].

We have also investigated the effect of TDAS on the
system when control of the period-4 orbit is attempted
for high drive amplitudes (Vd =2.6 V). Figure 4(d) shows

the return map of the system with and without TDAS
feedback where it is seen that the feedback is ineffective
at controlling the period-4 orbit. In this case, the size of
the error signal was several percent of the drive voltage.
Hence, the smallness of the TDAS error signal indicates
simply whether the observed motion is a UPO, thus
avoiding the complication of generating a return map.
We note that periodic orbits that are not UPO's of the
system could be obtained using the continuous feedback
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scheme. However, the TDAS error signal was large in
these cases.

Finally, we comment on how an all-optical implemen-
tation of TDAS might be used to control chaotic diode
lasers, which would be nearly impossible using traditional
techniques because the chaotic fiuctuations in the intensi-
ty of the laser (often caused by weak stray reflections of
light back into the laser) occur on a nanosecond or sub-
nanosecond time scale [22]. In the all-optical implemen-
tation, a small fraction of the light generated by the laser
would be used to create the TDAS error signal. The
necessary time delay and subtraction would be accom-
plished using the well-known properties of an optical in-
terferometer (a Michelson or Fabry-Perot interferometer,

for example) and the gain of the feedback loop would be
adjusted by varying the fraction of the light sampled
from the laser beam. Note that TDAS would require
only a small fraction of the light generated by the laser
because the laser resonator ampliGes the em'ects of any
Geld injected into it due to its large quality factor, or
Gnesse.
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