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We show that the continuous feedback approach is highly effective for controlling chaotic systems.
The control design for the Lorenz system is presented as an example to demonstrate the strength of this

approach. The proposed control is able to eliminate chaos and bring the system toward any of the three
steady states. Two different control input locations are considered. Only one system variable is used in

the feedback. The control scheme can tolerate both measurement noise and modeling uncertainty as
long as they are bounded.

PACS number(s): 05.45.+b

The problem of controlling chaotic systems has attract-
ed great attention and interest in recent years [I—8]. It
has been demonstrated experimentally [2—4] that it is
possible to stabilize periodic orbits by applying intermit
tent perturbations to the system. This is based on the fact
that a chaotic attractor usually has an infinite number of
unstable periodic orbits embedded in it. Therefore, a
carefully chosen perturbation is able to stabilize some of
these unstable orbits [I]. In this paper, we approach the
problem from a different direction. Assume that the
model equations of the system, which may contain some
uncertainty, are available. We will show that the use of a
continuous feedback approach is highly effective for con-
trolling a chaotic system. The resulting system perfor-
mance is studied by rigorous analysis. We shall use the
Lorenz equation [9] as an example to illustrate this ap-
proach. Several previous experimental and theoretical
studies on controlling this system have been reported
[6,8]. However, nonlinearity was not fully addressed in
some analyses. This paper will show that the control can
drive the chaotic system to any of the three (stable or un-
stable) steady states, independent of initial conditions.
Furthermore, this control is effective even in the presence
of bounded measurement noise and uncertain parameter
variations.

This work is motivated by the following considera-
tions: in a physical system that exhibits chaos, it is al-
ways desirable to establish the model dynamical equa-
tions by invoking fundamental physical laws; one may an-
ticipate uncertainty in the modeling due to imperfect
knowledge of the system, if model equations can be
found, it is advantageous to exploit this knowledge to
manipulate or control system performance; a practical
control scheme should be sufficiently reliable that uncer-

tainties in the feedback signal (i.e., measurement noise)
and/or the physical model will not cause major changes
in performance; finally, the control design should be flexi-
ble so that if the desired system performance changes, the
control can be easily modified to accommodate the
change.

The control design procedure follows two steps. First,
determine the physical form of the controlling signal
(namely, the control location in the system equations).
This can be achieved by identifying the channel through
which (external) energy is transmitted to the system or
other influential parameters that may affect the system.
The system with control is in the phase space form:

X=f(X,u, t),

where t is the time, X is the phase vector, u is the control,
and f ( ) is the mapping that describes the system under
control. Second, design a feedback control scheme
u =u (X,t) to render a speci5c system performance. For
example, if stability around a preselected steady position
is desired, choose a Lyapunov function v & 0 and a con-
trol u such that v &0 along the trajectory of the con-
trolled system. Sensors are used to measure the current
state of the system. The control signal u is determined
based on on-line computation.

The Lorenz equation [9] is used to illustrate the advan-
tages of the continuous feedback approach because the
Lorenz system is one of the most studied chaotic systems.
Researchers can easily gain insight into the design and
compare system performance with and without the use of
control. The system representation is also, in a sense,
generic. It has been proposed that the same set of equa-
tions may be used to model various different physical sys-
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tems [10,11]. Furthermore, tolerating modeling uncer-
tainty is particularly important for this system since, in
some cases, the Lorenz system is a simplified (or truncat-
ed) model of the physical setting.

Consider the following Lorenz system with an external
control u added in the second equation:

trolled system yields

u — [xi x3]
2

If one chooses

'x3
I

x22

xi o(xz xi ),
xz =xi x2 x ix3 PX3+9

x3 =x ix2 bx 3+P(x, +—x2 ) .

(2a)

(2b)

(2c)

Let X:=(x„xz,x3) . Driving the state (x,y, z) to
(P,P, r —1) is equivalent to driving X to 0. We propose
the following linear continuous feedback control scheme:

Q = kx)

where k, the design parameter, is to be chosen later. The
physical motivation for this control scheme is clear. The
choice of u directly reflects the design intention: if x, is
far from 0, then the control action will be large to draw
the system to the target. If x

&
is close to 0, then the con-

trol action will be small to fine tune the system perfor-
mance.

The resulting controlled system is given by Eqs. (2a)
and (2c), and

xz= —(k —1)x,—xz —x,x3 —Px3 . (4)

The controlled system is continuous in X and hence a
solution exists. %'e will prove that X=O is globally
asymptotically stable and that X converges to 0 at least
exponentially if the system parameters are constant and
known. To prove stability, choose the Lyapunov func-
tion candidate,

u =
—,
' [[(k —1)/o]x, +x2+x3] .

Taking the derivative of u along the trajectory of the con-

x =o(y —x),
y =rx —y —xz+u,
z=xy —bz .

The physical meanings of x, y, z, 0., r, and b depend on
the particular system. This control location has physical
implications and can be experimentally implemented.
For example, in the toroidal thermal convection loop set-
ting, u corresponds to the asymmetric perturbation to the
wall temperature [6], or the change of the loop tilt angle
from the vertical [11].

We will address the control problem of driving the sys-
tem, specified by (x,y, z) to any of the three equilibrium
positions of the uncontrolled (i.e., u =0) system:
(EP, +P, r —1) and (0,0,0), where P:=[b(r —1)]'~2. We
assume r & 1 in this work since otherwise only one equi-
librium position (0,0,0) exists, which is the trivial case.

We shall first consider the control design for the equi-
librium position (P,P, r —1). The design for the other
two cases is similar. Define the new state variables
xi.=x —P, x2.=y —P, x3.=z (r —1). T—he system in
Eq. (1) can be transformed to

k & (P2/4b)+1, (7)

then the 2X2 matrix (say, 'P) in Eq. (6) is po»tive
definite. This in turns implies that

where 0& A3. =min[Am;„(0'), 1 j and Amm(qi) is the
minimum eigenvalue of O'. Furthermore, from

(5) we»v«illXII'&u&~zllXII' wh«e 0«i
:=—,'minI(k —1)/o, 1] and 0& A2. = —,'max[(k —1)/o, 1].
Global asymptotic stability of X =0 is proved. Next, we
shall show that X converges to 0 at least exponentially.
Using Eq. (8) yields i) & —(A3/A. z)u and hence, upon in-

voking the theory of difFerential inequalities [12],
u upexp[ —(A3/Az)(t tp)] where up=u [X(tp)] and tp

is the initial time. This in turn implies
' 1/2

exp

It is possible in some cases that one cannot find the
suitable control scheme directly by intuition or physical
arguments since chaotic models are often complicated,
nonlinear, and multidimensional. The dynamic charac-
teristics are not always obvious. However, one is often
able to work backward and find the feedback control
scheme under which the desired performance is assured
in the analysis. For example, in the above case, one
searches for an appropriate control scheme that ensures
that the Lyapunov derivative v has the desirable proper-
ties (e.g., being negative definite). In this way, the
designer will in fact make a constructive use of the
analysis tool, which can also help choose a control
scheme that may not be intuitively obvious but is practi-
cally efFective.

Some researchers may wonder whether one should use
feedback control for chaotic systems. A typical argument
is as follows: since the chaotic system is sensitive to small
errors, a small noise in the feedback measurement may
result in totally difFerent system performance. First, we
wish to point out that the controlled system no longer
shares the same dynamic characteristics of the original
uncontrolled system; the new dynamics include the con-
trol u. Second, we will prove that the current controlled
system is robust to measurement noise, meaning satisfac-
tory performance is still guaranteed if the measurement
noise is small.

Suppose that the measured state is
xi(t)=x, (t)+w, (t), where w, (t) is the measurement
noise. It is practical to assume that the measurement
noise is unknown, time varying, but bounded:
~w, (t)~ &w, for all t, where w, (~0) is a constant. The
linear feedback control law used for this situation is the
same as Eq. (3), except now that xi is replaced by x, :
u = —kx, . We now show that X of Eq. (2) under this
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control is (globally) uniformly ultimately bounded
(GUUB). This means that X will enter a sphere, centered
at the origin, in the phase space in a finite time and stays
there thereafter. Using the Lyapunov function in Eq. (5),
it is straightforward to show that

v =[right hand side of Eq. (6)]+xz(—kw& ) . (10)

Since —xzkw, & kw, lx21& kw, 11X11, we have
v & —

A, 311X11 +kw
& 11X11. Hence there exist constants

5, z&0, such that v & —&, for ail 11X11&(kw, /X3)+5, .
This results in GUUB upon invoking the standard argu-
ments in Ref. [13]. The radius of the sphere and the mag-
nitude of the finite time for GUUB both depend on A, 3

and w&. As $,~0, the radius ~0. In the extreme case
w, =—0, the performance displays asymptotic stability.

Another important issue that must be addressed in
control design is modeling uncertainty. Uncertainty
often arises from imperfect knowledge of the system or a
simplification in the modeling procedure. The control
scheme, which is designed based on the (approximate)
model, must perform satisfactorily even if the model is
not exact.

For example, in Ref. [9] the positive constants tr, r, and
b depend on the Prantle and Rayleigh numbers and the
physical configuration of the system. It is reasonable to
anticipate that these parameters change with time (e.g.,
due to temperature-induced viscosity change). We shall
show that tuning the design parameter k appropriately
preserves a satisfactory system performance. To simplify
the analysis, we only consider the case when both b and r
(hence P) are uncertain, time varying, but bounded:

Here "max" and "min" stand for the possible bounds,
which are known, of the designated parameters. Their
"nominal" values are denoted by r, b, and P, respectively.
The equilibrium positions are in terms of the nominal
values [hence (AY, RP, r 1}].Define —the new state vari-
ables x, :=x—P, x2.=y —P, and x3.=z (r 1). T—he-
system in Eq. (1) can be transformed to Eq. (2a) and
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asymptotic stability can be proved by taking the time
derivative of v = ,'[(r/cr)x +y +z—]along the trajecto-
ry of Eq. (1), which yields v = rx yz b—z2&0—. Ag—ain,
it can be shown that the control tolerates both measure-
ment noise and modeling uncertainty.

In practice, it is also possible to relocate the control to
the third mode:

FIG. 1. Trajectory history of x2(t) in Eq. (2) with o =10,
b = 3, r =28, and the initial conditions x&(0)=x&(0)=—8 and

x3 (0 )=0. (a) Without using the feedback control. (b) With the
feedback controls: Eq. (2) (k=10, solid line) and Eq. (14)
(dashed line).

xz=x, —xz —x&x3 —Px3+(r r)x, +(rf3 rP)+u—, —

(1 la}
x3 =x,x2 bx3 +P(x, +x—2 )+u ~ (14)

x, =x,x, bx, +P(x, +—x2)+[P b(r —1)] .— (1 lb)

Using Eqs. (3) and (5), one can show easily that by taking

k &(P /4bm;, )+[(rm,„r) /4]+1, — (12)

there exist constants g& 2 & 0, such that

Cillxll'+411xll . (13)

Hence there exist constants 8, z & 0, such that v & —
8& for

all 11X11&(g2/g&)+82. Again this results is GUUB. Fi-
nally, we note that both measurement noise and modeling
uncertainty issues can be simultaneously addressed by
combining the analysis shown above.

The control scheme for the equilibrium position
( —P, P, r —1) is the same—as Eq. (3), except that P is re-
placed by —P. The control scheme for the equilibrium
position {0,0,0} is given by u =—2rx in Eq. {1). Global

Note that this control is also physically implementable.
For example, in Ref. [6], u represents the heating rate.
Again, design u to drive X toward 0. The feedback con-
trol scheme is given by u = —Px, . The motivation for
this scheme is similar to that of Eq. (3). Consider the
Lyapunov function v =—'[(1/o }xf +x z2+x ~3 ] for all

XEQ, Q:= [x 1 11X11& ~2P]. Its derivative along the tra-
jectory of the controlled system is given by
v =—(x, —x2) bx3 Since v—&0 fo.r all XAO, X=0 is
stable. Next, since i =0 occurs at the set
M = [x& =x2,x3 =0], the largest invariant set within M
and Q is (0,0,0). By La Salle's theorem [14], one con-
cludes that X(t) +0 as taboo. Thu—s X=O is locally
asymptotically stable.

Computer simulations were performed with can=10,
b =—'„and r =28. The trajectory of x2(t) with and
without the feedback control in Eq. (2) or (14) is shown in
Fig. 1. Note that in this parameter range the three equi-



2334 BRIEF REPORTS 50

librium positions of the uncontrolled system are all unsta-
ble.

In summary, a continuous feedback approach for con-
trolling chaos is used. Given the system*s model dynamic
equation, the control is designed for a well-specified sys-
tern performance. The approach is applied to the Lorenz
system and is able to drive the system to any steady state.
In addition, the control can tolerate measurement noise

and modeling uncertainty. The control design can be
easily implemented in real physical systems.
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