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Discontinuous scaling of hysteresis losses

C. N. Luse and A. Zangwill
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332
(Received 17 December 1993)

We study the dependence of hysteresis loop area A4 on the frequency Q and amplitude H of the driving
field for several mean-field treatments of the kinetic Ising model. An unusual discontinuous double-
power-law scaling behavior is found in all cases. In the low-frequency regime, it is found that
A— A, ~HY*Q?38,(Q/H"), where A, is the zero-frequency value of the loop area, §, is a scaling
function, and ¥ is a model-dependent exponent. In the high-frequency regime, the loop area itself scales
with frequency and amplitude as 4 ~ H°Q ™!, where a is also a model-dependent exponent. The transi-
tion between these extremes is sharp and can be characterized by an amplitude-dependent critical fre-
quency. We also note differences in behavior above and below the critical ordering temperature 7.

PACS number(s): 64.60.Cn, 75.60.—d, 75.70.—1i, 42.65.Pc

The phenomenon of hysteresis is notable as an example
of a dynamic, nonequilibrium process that is also of tech-
nological importance. For example, in the context of bi-
stable optical and magnetic devices, one desires accurate
and repetitive switching between two states of a system
that are degenerate in the absence of an external drive.
Here we focus attention on the energy dissipated per cy-
cle, i.e., the hysteresis loop area, for the case of a periodi-
cally driven system. Previous theoretical [1-4] and ex-
perimental [5,6] treatments of this problem have demon-
strated that this quantity varies as a power law in both
the amplitude H and the frequency Q of the driving sig-
nal #(t)=H sinQt at low frequency. For a model with
continuous symmetry, Rao, Krishnamurthy, and Pandit
[1] found that this scaling disappears for an intermediate
range of frequencies and then reappears (with different
exponents) in the limit Q— . Most recently, extensive
Monte Carlo simulations of lattice Ising models have
been used to suggest [4] that the loop area obeys dynami-
cal scaling in the form

Q2
HY

A~H*Qb¢ (1)

for all values of H and Q where §(x) is a scaling function
with the properties

const for x <<1

—0 for x>1, 2

9(x)= l
and a, b, and y are scaling exponents. It was also
claimed in this work that the loop area obtained from the
mean-field limit of a kinetic Ising model with Glauber dy-
namics [7] satisfies (1) as well.

The purpose of this paper is to report the results of nu-
merical computations that reveal the existence of an
unusual discontinuous dynamical scaling of the hysteresis
loop area for three related mean-field models of Ising dy-
namics. Our results do not agree with those reported in
Ref. [4]. Indeed, the fact that no relationship such as (1)
can be expected to hold over the entire frequency range is
clear already from the following argument. When
Q—> o0, the system is unable to respond to the input sig-
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nal and the steady-state magnetization M simply assumes
its zero-field equilibrium value. No loop area is generat-
ed. Similarly, in the limit Q—0, fluctuations eventually
drive the system to the equilibrium state corresponding
to the current value of #. The loop area is again zero
since the equilibrium value of M is a single-valued func-
tion of # (except at #=0). But if fluctuations are
suppressed (as in a mean-field treatment), the system can
be trapped in a metastable state where M <0 while 7 >0
(and vice versa) for fields less than the coercive field # .
The system returns to equilibrium only when the field
exceeds # ., at which point #f and M have the same sign.
The result is a nonzero adiabatic loop area A4:

lim A =4,>0. (3)
Q-0

Since the right-hand side of (1) goes to zero as {} —0, one
must add A4, to it to correctly reproduce the low-
frequency limit. Since this guarantees an incorrect high-
frequency limit, there is no single scaling relationship val-
id for all frequencies.

To discover the correct scaling behavior, we have stud-
ied three related mean-field equations of motion for the
average magnetization of an Ising model with z nearest
neighbors and ferromagnetic exchange J:

dM _ 1 | zJM +FH
i - M +tanh T R 4)
aMm _ 1 | zJM +H . zJM +H
at - [ M cosh ————kT l+smh ——kT t ] ,
(5)
and
d—M=i(BM —CM3+%) . (6)
dt T

The kinetic equation (4) arises [8] when a mean-field ap-
proximation is made to the master equation description
of Ising dynamics assuming that the rate to flip a spin is
given by Glauber’s prescription:
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(E{—EL)/kT
wis,— —s,)= L XBUEIZERAT] ™
7 cosh[(E{—E})/kT]

Here, the subscripts I and F refer to the initial state with
spin S; and the final state with spin —S;, respectively,

and Ejf is the energy associated with the jth site, i.e.,
(8

Ef=—S; |#+ 3 JS,,

nn

The notation nn refers to nearest neighbors of the site j,
and the time scale is set by the constant 7, which we take
to be unity.

The kinetic equation (5) arises similarly [9] if the single
spin flip rate is assumed to take the form
Ef

T | - 9)

W(Sj—>—Sj)=-l—exp
T

This choice satisfies detailed balance as well and may be
interpreted as an Arrhenius-type rate if the zero of ener-
gy is presumed to coincide with the energy of the activat-
ed transition state. Note the contrast with the Glauber
rate, which depends on the energy change associated with
the process. One easily checks that (4) and (5) have the
same metastable and equilibrium states.

With the choices B < To—T and C >0, the final kinet-
ic equation (6) arises most naturally when the double-well
free energy function F{M}=—1BM?*+1CM*—%M ap-
propriate to systems with Ising symmetry [10] is inserted
into a purely relaxational version of the time-dependent
Ginzburg-Landau (TDGL) equation of motion

M 1 6F

dt T 8M (19
Indeed, if one integrates the right-hand side of (4) or (5)
with respect to M, a qualitatively similar double-well
function results.

Equations (4), (5), and (6) were integrated numerically
subject to a sinusoidal applied field 7#(z). After initial
transients died away, the area of the hysteresis loop over
one complete cycle was computed from

A=PMd7 . (1

This is numerically equal to the energy dissipated as heat
by the system per field cycle.

We consider the case of T < T first. For all three
models, we observed two different scaling relationships of
the form (1): one valid from the lowest frequencies up to
an amplitude-dependent critical value of the frequency
and the other valid from this critical value up to the
highest frequencies. The low-frequency and high-
frequency data collapses for the TDGL equation (10)
with B =C =1 are illustrated in Figs. 1 and 2, respective-
ly, for amplitudes 7 > 7 ranging from 1.0 to 7.0 and
for frequencies ranging from 0.05 to 20.0. These results
were obtained as follows. First, the exponents a, b, and ¥
[cf. ()] in Fig. 2 were chosen to yield the best collapse of
the data with the largest values of the scaling variable
Q/H?. The vertical dashed line indicates where data col-
lapse breaks for lower values of this variable and thus
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FIG. 1. Log-log plot of the low-frequency data collapse for
the TDGL model. The data which fit (14) are not plotted.

defines an amplitude-dependent critical frequency
Qc(H). Next, we eliminate all the data with frequencies
greater than Q.. Finally, the exponents a, b, and ¥ in
Fig. 1 were chosen to produce the best collapse of the
remaining (low)-frequency data. Similar results were
found for the other two kinetic models. All the low fre-
quency data are well fit by the scaling form

Q

ar | (12)

A=A,+HQg,

with a value of ¥ that depends on the details of the kinet-
ics: y=1.2, 0.5, and 0.5 for the TDGL, Glauber, and
Arrhenius models, respectively. The scaling function
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FIG. 2. Log-log plot of the high-frequency data collapse for
the TDGL model. The vertical line marks the transition from
the low-frequency scaling form (12) to the high-frequency scal-
ing form (14).
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9. (x) is slightly different in the three cases as well.
These results disagree with those reported by Acharyya
and Chakrabarti [4] for the Glauber model but agree with
the analytic results of Jung et al. [5] for the TDGL mod-
el at very low frequency, where &, (x) can be taken to be
a constant.

All the high-frequency data are well fit by the formula

EUEN 13)

A ~H2/3QZ/39
H HY

where y ~0.82, 0.3, and 1.1 for the TDGL, Glauber, and
Arrhenius models. The scaling functions are again
different in the three cases. In fact, they differ in just
such a way so that all of the high-frequency data are well
described by the expression

A ~H(2+Sy)/3ﬂ—l . (14)

As noted by Acharyya and Chakrabarti [4], the simple £
dependence in (14) follows immediately from (11) if the
free energy is quadratic in M. The response is linear in
this case and the Fourier spectrum of the time-dependent
magnetization M (¢) contains only the fundamental fre-
quency of the driving field. This situation will occur if
the system remains in the immediate vicinity of one of
the zero-field maxima or minima of F{M}. The system
will then generate highly elliptical hysteresis loops cen-
tered around one of the extrema, and this is in fact what
we observe. Careful study of Fig. 2 reveals a curious
feature of the high-frequency data. For sufficiently large
values of ) ( independent of H), some of the loop data ap-
pear to collapse onto a “knee” that joins smoothly onto
the curves (13) or (14). Unfortunately, we have been un-
able to identify a distinguishing physical characteristic of
these “schizophrenic” points which, of course, technical-
ly belong to the low-frequency data collapse.

So long as T < T, all the scaling exponents reported

above are independent of temperature. In fact, the abso-
lute value of the loop area itself is temperature indepen-
dent in the high frequency regime, despite the fact that
some of the loops are symmetric while others are asym-
metric. This is not the case at low frequency where, e.g.,
Ag=Ay(T).

When T> T, F{M} has a single minimum for all
values of #f and the adiabatic loop area A is identically
zero. We find that the high-frequency scaling behavior is
exactly the same as for T < T. Moreover, the loop area
remains temperature independent and equal to the value
found below T.. However, in contrast to the results re-
ported in [4] for the Glauber model, we were unable to
obtain data collapse of any of the low-frequency data
when T > T.

In conclusion, we have found that the hysteresis loop
area exhibits discontinuous double-power-law scaling
behavior in several mean-field approximations to the
periodically driven kinetic Ising model. Two of three
scaling exponents are found to take values independent of
the kinetic details. Above T, scaling is obtained at high
frequency only. But below T, an amplitude-dependent
critical frequency separates two distinct scaling regimes.
This discontinuity arises as a consequence of the presence
of a nonzero adiabatic loop area 4,. Although formally
A, must vanish if fluctuations are taken into account,
there will be experimental situations where fluctuation
effects will not be observable on the time scale of the dy-
namic measurements. This appears to be the case for the
bistable laser system reported in Ref. [5], and we predict
discontinuous scaling in that instance.
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