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The evolution of a one-dimensional velocity distribution is studied in the presence of a monochro-
matic large-amplitude periodic force which is turned on adiabatically. The periodic Vlasov-Poisson
equations are solved in the presence of a linearized Fokker-Planck collision term. For a constant
driving force, the system is found to approach, after transient oscillations, a steady state which is
maintained by one wave at the driving frequency. This is in contrast to the result in the absence of
collisions where the steady state tends to be supported by several waves. An analytical solution for
the steady-state distribution function in the presence of a driven large-amplitude wave is obtained
by a Hamiltonian approach. The distribution function is expanded in powers of a small parameter
F proportional to the collision strength. Prom the expansion, the zeroth order term is shown to give
the space-averaged distribution function correct to first order in F. Comparison with the results
of the simulations and of the harmonics expansion method shows that the solution estimates the
distribution with good accuracy. The plateau in the wave trapping regime is analyzed, and the
current driven by the large-amplitude traveling wave is determined.

PACS number(s): 52.25.Dg, 52.35.Mw

I. INTRODUCTION

ModiGcation of a particle distribution by a periodic
force is of great importance in plasma physics, and ap-
pears as a central problem in a number of statistical sys-
tems. Large-amplitude plasma waves can be driven in
plasma by electrostatic probes and exciters [1, 2], and
by several processes such as parametric instabilities and
beat-&equency mixing of laser or rf beams. These pro-
cesses have applications in plasma heating and current
drive [3, 4], plasma diagnostics [5], ionospheric sound-
ing [6), and plasma lasers [7]. In many of these applica-
tions, the particle velocity distribution is strongly modi-
fied, and nonthermal particles and particle diffusion are
generated, the modeling of which is of contemporary in-
terest in physics. In various contexts, the plasma wave
is driven by an external force which sustains the oscilla-
tions against various damping mechanisms [8]. In such
a system, collisions cause effects which are also found to
be important in the theory of conGnement of particles by
magnetic mirrors and in the neoclassical theory of plasma
diffusion in magnetic confinement systems [9].

Detailed studies of the evolution of a Vlasov equation
in the presence of monochromatic nonlinear oscillations
have been conducted by several authors [4, 10—13]. Much
of the work has concentrated on the studies of dispersion,
damping, particle acceleration, and wave coupling of a
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nonlinear wave. By using perturbation theory, so-callea
generalized quasilinear equations [11]have been derived
for studies of the evolution of the particle velocity dis-
tribution and the wave electric Geld. Recently, the ex-
istence of stable time-asymptotic states has been proved
and their dependence on initial and boundary conditions
has been analyzed for slowly evolving systems by using ki-
netic theory based on adiabatic invariants of the equation
[4]. Particle and Vlasov-Poisson simulations of the evo-
lution of a large-axnplitude wave [14, 15] have indicated
the formation of a bump in the distribution at velocities
above the phase velocity with a consequent sideband in-
stability [16] leading to the generation of a multitude of
modes causing the Battening of the bump.

In the presence of collisions, the steady-state velocity
distribution of particles has been solved analytically 6..om
the perturbed Vlasov equation in the limit of weak col-
lisions and weak oscillation amplitude for special types
of Fokker-Planck collision terxns [9, 17, 18]. Using the so-
called Lenard-Bernstein collision operator [19],Zakharov
and Karpman [17] solved the perturbed Vlasov equation,
and calculated the wave damping decrement by a Hamil-
tonian approach for the deeply trapped and untrapped
particles. They ass»rned that ux, /v~, vx, /u„e /v„, and

v, /u are much smaller than unity. Here, v 2xjx, is the
trapping width of the particles in the wave potential,
v~ = ur/k is the wave phase velocity, u, is the electron
thermal velocity, v, is the collision &equency, and u and
I%' are the wave angular &equency and wave vector, re-
spectively. In the opposite linear limit of weak oscilla-
tion axnplitude or strong collisions, i.e., when v&/cu v, is
small, the distribution function and damping have been
solved by perturbation theory based on small wave am-
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plitude [18,19]. Here, vs is the bounce &equency of the
particles in the wave potential. By n»clerical integra-
tion of a Fokker-Planck equation, evidence for the sim-
ilarity between the Vlasov and Fokker-Planck solutions
at the early phase of evolution has been obtained [20].
However, the computer r»n~ were too short to reach
the Fokker-Planck eq»i&librium, and no definite conclu-
sions were drawn on the existence of the large-amplitude
time-asymptotic states [4, 11,21] predicted by the Vlasov-
Poisson equations.

In the present paper, the evolution of a one-
dimensional velocity distribution and the wave is investi-
gated in the presence of collisions and a large-amplitude
periodic force by solving the Vlasov-Poisson equations
with a Fokker-Planck collision term. The difFerences in
the time-asymptotic solutions with and without collisions
are shown to ensue &om the different time-asymptotic
spectra of waves developed in these two systems, and
from the dHFusion of electrons &om the bulk distribution
to the wave region in the presence of collisions. In or-
der to compare the results with an analytical theory, the
Vlasov equation with a Fokker-Planck collision term is
solved in closed form for the steady-state distribution in
a periodic configuration in the limit of weak collisions.
The solution extends the result of Zakharov and Karp-
man to large wave amplitudes, and makes a comparison
with simulations possible.

In order to obtain the solution, the Fourier expansion
E f (H)e' " is applied for the distribution having the
dependence f (H, y), where H is the Hamiltonian of the
particles and y is the periodic coordinate. Since the con-
stant H trajectories of the trapped particles are closed in
phase space, f(H, y) has to be defined in a nonstandard
way outside of this trajectory to accomplish the Fourier
expansion. We find that the solution obtained agrees
with the solution found by the harmonics expansion of
the Boltzmann equation and reduces in an appropriate
limit to that obtained with the Lenard-Bernstein colli-
sion term in Ref. [17]. The solution is found to be valid
for small v, /vs and viz/v~v, . No separate restrictions on
vs/v, are assn~ed.

In the limit of vanishing collisionality, the distribution
only depends on H, and is obtained from the lowest or-
der expansion. However, as will be demonstrated in the
present paper, this distribution is not the same as the
one obtained in the absence of collisions. It will be shown
that, in an asymptotic expansion in the collision param-
eter I', the space-averaged distribution has no O(I') cor-
rections. Consequently, as will be confirmed by our sim-
ulations, the steady-state distribution is modeled by the
lowest order solution with good accuracy in practical ap-
plications. It is shown that for weak collisionality the
solutions only depend on the two parameters v„/vs and
v, /vg. This makes it feasible to efficiently survey the set
of possible nonlinear states and the driven current in a
large parameter range.

In Sec. II, we first present the analytic result for
the time-asymptotic state in the presence of a nonlin-
ear wave. In Sec. III, the simulations with the Vlasov-
Poisson system in the presence of a Fokker-Planck colli-
sion term are presented and discussed. Here, the compar-

isons of the n»clerical results with the analytical solution
for the distribution function, driven current, and electric
field are presented. The conclusions are given in Sec. IV.

II. TIME-ASYMPTOTIC SOLUTION

For driven modes in the presence of collisions, the
steady-state distribution function can be obtained from
the perturbed Vlasov equation

Bf Bf eE Bf+ v — cos(kz —ut) = I'C(f), (1)Bz me Bv

where f(t, z, v) is the distribution function of electrons
with mass m, and charge —e in the phase space (z, v) at
time t. E is the constant amplitude of the total electric
field which is sustained by an external field, and which
oscillates with the wave n»mber k and angular frequency

On t.he right-hand side, I'C(f) gives the efFect of col-
lisions on the conservation of f in the phase space. C(f)
is ass»~ed to have the form

8 Bf/Bv + (v/vz) f
~(lvl)

which with r((v[) = v„/((v( + v ) reduces to the lin-
earized one-dimensional Fokker-Planck collision model
[22] in the high velocity (~v[ )) v, ) and low velocity

(~v~ && v, ) regimes. Here, v, = gT, /m, is the elec-
tron thermal velocity, and I' = (Z; + 2)v,vs/v gives
the strength of collisions. Here, Z; is the average charge
of plasma ions which are ass»med to form a stationary
background, v, = n, e4in A/(4zeozmzvs) is the collision
&equency, and v„= ar/k is the wave phase velocity.

(2)

A. Fourier expansion

By introducing the new variables u = v —v~ and y =
kz —ut, Eq. (1) can be written as

Bf Bf eE Bf+ ku — cos(y) = I'C(f). (3)
By me Bu

Using y and the energy H = m, u2/2 + (eE/k)siny as
independent variables, and following the derivation in
Ref. [17], the steady-state equation reduces to

Bf'(H, y) rm2 8 u'(H, y) &Bf'(H, y)

f+(H, y) l u/k+ r +.(H )rf( "'
(4)

where 8/Bv = mu+(H, y)8/BH The superscr. ipt + in-
dicates whether one should choose the positive or the
negative sign in the definition of the relative veloc-
ity u = +g(2/m )[H —(eE/k)siny]. We first note
that in the limit I' -+ 0 it follows &om Eq. (4) that
8f+(H, y)/By -+ 0, that is, f+ -+ g+(H). This is as ex-
pected because in the limit of weak collisions the Ha~i&-
tonian trajectories of the particles are weakly perturbed,
and the distribution function only depends on H, when
r~0.
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We de6ne the following Fourier expansions:

f+ {H,y) = ) ge+ (H) e' ",
e

u+(H, y)/~+(H, y) = ) a,+(H)e'",

v~/~+(H, y) = ) b,+(H)e'"

rm'
. ' Ae+(H). (9)

Here, the integrals $ dy are performed over one period
of the constant H trajectories in the phase space (u, y).
We have for the untrapped particles

(u/k (u/kdy= ~ dy = 2zbo (H),

u(H, y) u+ (H, y)
~(H, y) o ~+(H, y)

and for the trapped particles

dy = 2~[ho+(H) —bo (H)],7. H, y

dy =2~[as+(H) —ao (H)],'r H, 'g

respectively.
The function go (H) was obtained from the lowest or-

der expansion of Eq. (4)

ao (H) ~

o + + bo (H) o = 0, (10)

which gives

ae (H) o + o +b~+(H) o = D,

where D is constant. For the untrapped particles, D has
to vanish so that the condition gp ~ 0 for H

by assuming the system to be periodic in y with the pe-
riod 2'. For the untrapped particles, the constant 0
trajectories in the phase space (u, y) are continuous and
periodic in y, while for the trapped particles they form
separate closed curves appearing periodically in y. In or-
der to be more exact in our definition, we generalize any
function 8(H, y) so that 8(H, y) = 0 if y is outside of
the closed curves. When this generalization for the func-
tions f+{H,y), u+{H, y)/r+{H, y), and v„/ 7+(H y) is
adopted in Eqs. (5)—(7), the Fourier transforms ge (H),
ae+(H), and be+(H) are defined in a unique way.

With the help of the expansions, we solve Eq. (4) to
first order in I':

4P/k

( )

e

is fulfilled. For the trapped particles, we use the fact
that go (H) = go (H), which is a consequence of the re
quirement that the trapped particle distribution function
should be continuous at u = 0 in the limit I' + 0. Con-
sequently, we find the solution in Eq. (8) with the given
definitions for the integrals over one oscillation period.
When v. is constant and equal to unity in the definition
of the collision term in Eq. (2) and vs/v, is taken to ap-
proach zero, the zeroth order solution (8) approaches the
zeroth order solution in Eqs. (23) and (25) of Ref. [17] for
the untrapped and trapped particles, respectively. This
result was obtained with the Lenard-Bernstein collision
term in the small-amplitude limit.

The space-averaged distribution function fo+

f+dy obtained Rom Eqs. (8) and (9) is found to

equal z f g& (H)dy to first order in I . In order to see
this, we first note that

[e
' " —( —1) e' "]h[sin(y)]dy = 0 (12)

) g,
+ (H) e'"dy

ggp

) [e'"" —(—1)"e '""]g (H) dy = 0. (13)
p)1

Therefore the corrections to fo ——
z fs go (H)dy for

finite I' have to be at least of second order in I'.

B. Harmonics expansion

The result is in agreement with the one obtained &om
the harmonics expansion of Eq. {1),

F
in(kv —cu)p„+ —(p„ i + p„+i) = I'C(q„), n ) 0,

2m Ov

(14)

in(kv —cu)q„+ —(q„ i + q„+i) = I'C(p„), n ) 1,
2m Ov

(15)

which divides Eq. (1) into two sets which are only coupled
through the perturbation terms on the right-hand side.
We have expanded f = g„ f„(v)e' i" l and de-

fined f„—(—1)"f „=p„and f + (—1)"f = q„.
Setting I' = 0 in Eq. (15) is equivalent to expanding
Eqs. (14) and (15) to first order in I' and making the
system (14) and (15) independent of I'.

The coefficients in the expansion f = P„f (v)e'""
can now be calculated from the solution in Eqs. (8) and

(9) as f„= 2 f Pege(H)e'e&e ' "dy, where we have

holds for any integrable function h and for any integer
m. If we also note the corollaries of Eq. (12):

(H y), —,end„( 1)e ( y), ,end
~(H, y) ~(H, y)

/ ieyd — )e / ievd
~(H, y) 7.(H, y)

e y=( —1 e y,

we find
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omitted the superscripts + in order to shorten the notation. We find for the functions p and q„

f„+(—1)"f „=— [e
' "+ (—1)"e'""]) At(H)e* "dy+ — [e

'""+ ( —1)"e'""]gp(H)dy . (16)2' 0 kiE 2m 0Egp

By direct substitution, we find that the solution in
Eq. (16) with gp(H) given in Eq. (8) satisfies Eqs. (14)
and (15) to first order in I'. The details of the proof are
deferred to the Appendix. We also note that according to
Eq. (12) —,

' f,
'

[e '""—(—1)"e'""]gp(H)dy = 0 so that
p has to be first order in I', and has no zeroth order part.
Correspondingly, the first order part of f„+(—1)"f „in
Eq. (16) vanishes, and therefore q has to be zeroth or-
der in I' and has no first order part. This proves that the
solution in Eq. (16) is an exact solution of Eqs. (14) and
(15), provided one sets I' = 0 in Eq. (15). The distribu-
tion function qp/2 obtained &om these equations equals

(1/27c) f& gp(H)dy.
The method based on solving Eqs. (14) and (15) can

be applied to solving Eq. (1) for different collision opera-
tors and for any collision strength. It also proves that the
error in obtaining the space-averaged distribution func-
tion &om the analytical solution in Eq. (8), obtained in
the limit I' ~ 0, is O(r2). When Eqs. (14) and (15) are
solved numerically, the harmonic series has to be trun-
cated by assuming f = 0 for n ) M, and only those
equations in (14) and (15) for which n ( M are taken
into account. Because of the truncation, the solution of
Eqs. (14) and (15) can become more inaccurate for in-
creasing amplitude of the wave.

0 Bf(vII)rC(f) = 2 ~DIIG( )d
Bv |9V~~

BG(v~)+ 2vrv~ Dx —
AII G(vz) dvz

0 BVg

x f(vii)). (19)

In the above equation, v~ and v~~ refer to velocities per-
pendicular and parallel to the electric field vector of the
wave, respectively. The terms Dx, Dll, and All are the el-
ements of the dHFusion tensor and the friction vector. In
defining Eq. (19), we have temporarily used the notation

v~~ for v, and have reserved the notation v for v = v&+v~~.
The two-dimensional electron distribution has the form

f(vII ») = f(vII)G(v~) = f(vII)
e e

(20)

where G(v~) is the virtual Maxwellian electron distribu-
tion in the perpendicular direction. The perpendicular
background distribution is constant in time.

For the collision operator in Eq. (19), we have defined

III. SIMULATION OF TIME BEHAVIOR

To show that the steady-state distributions obtained
&om Eqs. (8) and (9) are the time-asymptotic states, we
solve the evolution of the electron distribution &om the
one-dimensional Vlasov-Poisson system in the presence of
a Fokker-Planck collision term in periodic configuration
space:

DII = —) pl, ns([4(asv) —0'(ai, v)](1 —vII/v )

+2@'(as ) II/
')-

V

1
D =-) ~ [3~(" )-~(")]

V V

II
= ). 2a„v @(agv)—.Qnle VII

mIC V

(22)

(23)

BE(z, t)
Bx

P

en;
fdv —1

60

Here, ep is the vacuum permittivity, and n; is the neutral-
izing background ion density. The electrostatic waves are
adiabatically excited by an external field E, q (t)cos(kz-
ut), where E, q(t) grows from zero to a maximum value
by u„t = 2500. We use the linearized Fokker-Planck col-
lision operator [22] which in the high and low velocity
limits agrees with Eq. (2). The one-dimensional oper-
ator, obtained after integration over the perpendicular
velocities, has the form

Bf Bf Bf+ v —e[E(z, t) + E. , (t)cos(kz —~t)]
Ot Bx OV

=rc(f), (i7)

2 * -y'4(z)= e "dy
K p

and

4 (z) —z4'(z)
2x2

The collision constant is

e2q~2lnAeg,
Pk =

2 7

pep

(24)

(25)

(26)

where lnA g is the Coulomb logarit&~ and qg, is the

In the above equations, the sums (g&) are over differ-
ent particle species forming the background plasma. The
factor pg, is the collision constant, and nI, is the density of
species k. The factor ag is related to the inverse thermal
velocity of group k (ai2 ——mi, /2'). The functions 4 and
@ are defined as
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charge of species k. In our simulations we have used
the value 15 for the Coulomb logarithm.

Equations (17) and (18) are solved by the splitting
scheme [23] with an additional step for the integration of
the collision operator (cf. [24]). At the beginning of the
simulation, the electron distribution is Maxwellian.

Figure 1 shows the space-averaged distribution fo ——

(1/L) j fdic obtained from Eqs. (17) and (18) for n, =

id = (a)
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FIG. 1. The space-averaged velocity distribution in arbi-
trary units obtained from the simulation with v = 80 at two
time instants (a) tq ——2560m„and (b) t2 —29952&v~ The.
trapping regions ~o

—
v~~ ( ~2vb of the modes with difFer-

ent wave numbers are indicated by lines (see the right-hand
scale). (c) Also shown is the diiference of the distribution at
various intermediate time instants from the distribution at t I .

n,- = 2 x 10"m-', T. = 100 eV, lnA = 15, kAD —0.35,
= 1.22m„, and L = 27r/k, where T, is the electron tem-

perature, n, is the electron density, AD is the electron
Debye length, I is the length of the periodic box, and u„
is the electron plasma &equency. The angular &equency

of the external wave has been obtained from the hn-
ear dispersion relation of the plasma waves. With the
present parameters we find v, /w = 1.1 x 10 b (( 1 for
the collision kequency. To speed up computations, I' was
therefore multiplied by an acceleration factor e )) 1.

The velocity distribution function obtained &om sim-
ulations with K = 80 is shown at two time instants,
tq ——2560m„and t2 ——29952m„. Also shown is the dif-
ference of the distribution at various intermediate time
instants &om the distribution at tq. When comparing
the distributions at t ) 2tq/3 and at tq, no observable
changes can be found. Consequently, the distribution at
t = t2 represents the time-asymptotic distribution with a
good accuracy. At early times, the distribution has a pos-
itive slope in the resonant region which indicates acceler-
ation of electrons &om velocities below the phase velocity
to velocities above the phase velocity during the ramp-up
of the external electric Geld. In runs with zero collisional-
ity, the electrons are similarly accelerated but the positive
slope is found to rapidly Batten through the consequent
excitation of other modes with phase velocities around
v„by the sideband instability [15]. In the presence of
collisions, the extra modes are found to be damped and
the slope has a tendency to slowly Batten through the
collisional diffusion of the electrons &om the bulk distri-
bution to the resonant region. The results shown in Fig. 1
were found with a box length I equal to the wavelength
of the external wave. In simulations with 3 or 12 times
longer box length, the same time-asymptotic distribution
and similar damping of the excited additional modes was
observed although the spectrum of the excited modes at
the initial phase was more dense.

By changing the acceleration factor K,, no significant
change in the time asymptotic state was observed as
long as Kv, rb (( 1, where wb

-= vb = geEk/m, is
the inverse bounce time of electrons in the wave poten-
tial. At the steady state shown in Fig. 1, lcv, wb = 0.007
was found. The increase in I- has the tendency of de-
creasing Of/On in the trapping region. For very large
values of K, i.e., Kv, vt, & 1, the distribution approaches
Maxwellian. The observation that the time-asymptotic
distribution function has a negligible dependence on K

for rv wg « 1 is in accordance with the analytical result
obtained in the previous section. As is shown in Fig. 2,
the time-asymptotic space-averaged distribution function
obtained &om the simulation agrees well with the distri-
bution (1/2m) j go(H)dy obtained &om Eq. (8). For
smaller v, the agreement is found to be even better. In
calculating the distribution from Eq. (8), we have used
the electric field amplitude obtained by spatial Fourier
analysis of the total self-consistent field of the simula-
tion. The agreement with the harmonics expansion so-
lution from Eqs. (14) and (15), where harmonics up to
n = 5 were considered, is not so perfect, which indi-
cates the need to take into account fairly many harmonics
in the expansion when the wave has a large amplitude.
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FIG. 3. Time evolution of the electron current density in

the simulation shown in Fig. 1.
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FIG. 2. The average distribution fo(y) with y = v/vz ob-

tained from Eqs. (8), (14), and (15) for v„/vz = 7.88 and

v, /vq = 2.257, corresponding to the time-asymptotic state

obtained in Fig. 1. Here vq = rz /k = eE/m, k. The
solution by using series expansion (14) and 15) is shown for

M = 5 (dashed line). The analytical solution (8) is shown by a
dotted line. The time-asymptotic distribution (u„t = 29952)
solved from Eqs. (17) and (18) is shown for comparison (solid

line). The trapping region ~v
—v~~ ( ~2vq is indicated by a

persist longer and the system evolves for a longer time in
the manner of the collisionless case. In accordance with
the theory of sideband instability for collisionless plasmas

[16, 15], several waves around the phase velocity of the
main wave are excited which exchange energy, causing
the amplitude oscillations.

For very weak I', it has not been possible to reach the
steady state and to distinguish between the collisionless
and collisional cases because of limited computing time
in our numerical simulations. On the other hand, for fi-

nite I' the system has always been found to evolve to the
steady state which is described by Eq. (8) for weak col-
lisions or by Eqs. (14) and (15) also for strong collisions.
It is of interest to note the weak generation of higher har-
monics (or other Fourier components) of the electric Beld
in contrast to the large number of harmonics f„needed
to model the distribution function.

The distribution in the absence of collisions with the
same driving force as in the previous example, but with

2.0
C 0

kha- 0 350 = 1.050

l.e-

However, in the parameter regime v&2/v~v, & 0(0.1) the
calculations with the number of harmonics limited by
M=5—8 were found to give the shape of the distribution
and the current (see below) with a satisfactory accuracy.

Figures 3 and 4 show the time evolution of the elec-
tron current and the Fourier component kAD ——0.35 of
the electric field. The approach to the steady state can
be seen. In comparison to the case with no collisions,
the obtained current is larger because of the diffusion
of the electrons &om the bulk part of the distribution
to the resonant region. The time needed to achieve the
steady state described by Eq. (8) is found to be inversely
proportional to I'. Consequently, in the absence of col-
lisions a different steady state is found which cannot be
obtained from Eq. (8). For decreasing collisionality, the
oscillations in the current and in the amplitudes of the
excited waves seen in the early phase in Figs. 3 and 4

0.4-

0.0:. I I

e.o 12.0 1S.O
10 'u t

I

24.0 30.0

FIG. 4. Time evolution of the Fourier component kA~ ——

0.35 of the electric Seld in the simulation shovrn in Fig. 1.
The second and third harmonics are found to have small am-
plitudes.
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FIG. 5. The average distribution function solved from
Eqs. (17) and (18) in the absence of collisions (I' = 0) for
the monochromatic driving force used in the case of Fig. 1.
The trapping regions of the excited waves are indicated by
lines. The length of the simulation box was chosen to be
L = 12 x 2z/0. 35.

0.00i \ 0 % I 0 v \ 0 I

0 5 f0 15 RO
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FIG. 6. The normalized total current density of the dis-
tribution obtained from Eq. (8) versus the normalized phase
velocity y~ = v~/v& (solid lines). The corresponding results
obtained from Eqs. (17) and (18) are shown for y~/y, = 2.5

(~), 3.5 (S), and 5 (CI), where y, = v, /vq.

L = 12 x 2z /k, is depicted in Fig. 5 at time t = 3008~„'.
The space-averaged distribution in this case reaches an
apparent steady state through oscillations fairly quickly,
in accordance with earlier results &om particle and
Vlasov-Poisson simulations [13, 15]. A noteworthy fea-
ture in the present results is a Hat and broad plateau.
As shown by the Fourier analysis of the electric field, the
field structure is more complex than in the steady state
with collisions. Several Fourier modes are excited, which

play a role in the formation of the plateau. As in the
collisional case, the waves are excited by the sideband
instability after electron acceleration in the early phase
of the wave excitation. In contrast to the case with dis-
sipation, the waves with wave numbers (aad &equencies)
different &om that of the driving force are not damped
away in the collisionless case, and appear to persist. On
the basis of the present simulation, it is not possible to
say whether the distribution in Fig. 5 represents a true
steady state or not. Much longer simulations would be
needed to verify that, and the accuracy is not guaranteed
with the present method in the collisionless case.

The steady-state current density [qn, f vgo(H)dv]/
[J gp (H)dv] obtained from the analytical solution in
Eq. (8) is showa in Fig. 6 as a function of y„= v„/vg
and y = v, /v~. In the shown region, the current den-
sity obtained &om Eqs. (14) and (15) with M = 8 was
found to agree with the result in Fig. 6 with an accu-
racy better than 1%. As shown in Fig. 6, the current
density obtained &om the solution in Eq. (8) is found
to deviate less than 10'%%uo &om the solutions of Eqs. (17)
and (18) in the parameter range shown. The largest de-
viations are found for small y„, where the difference be-
tween the collision operators becomes more pronounced.
At very large amplitudes when the wave energy density
exceeds or is of the same order as the thermal energy
density of the plasma, i.e. , when (yp/y, ) /y4 ) 1, we

have found solutions with complex time behavior show-

ing transient double-humped distribution functions with

similar features to those obtained by Krapchev and Ram
[4] for a collisionless plasma. In this regime, the distri-
bution perhaps cannot be modeled with the linearized
collision model (2), and no comparison with the solutioa
of Eqs. (17) and (18) is shown in Fig. 2.

IV. CONCLUSIONS

The effect of a nonlinear periodic force on particle dis-
tribution in a linearized Fokker-Planck collisional plasma
has been investigated. The problem has been reduced
in the case of weak collisions to the calculation of the
approximate distribution function in Eqs. (8) and (9),
where a linearized Fokker-Planck type of collision oper-
ator term has been considered. The method is applied
to a study of the effects of a plasma wave w'ith a modest
energy on the particle distribution. It is expected that
the solution in Eqs. (8) and (9) can be further extended
to describe waves whose energy may be comparable to or
greater than the thermal energy of the particles [4, 21], or
the particle distribution in a magnetic well with a wide
trapped velocity cone, for studies of particle and energy
confinement by magnetic mirrors and of neoclassical the-
ory of plasma diffusion in toroidal magnetic confinement
systems [9]. Here, a more general Fokker-Planck collision
term has to be considered.

In the case of a driven large-amplitude plasma wave
and in the presence of collisions, the time-asymptotic dis-
tribution is found to be maintained by one wave only,
in contrast to the case with no collisions, where sev-
eral waves appear to maintain the distribution in the
steady state. The present results indicate that the time-
asymptotic distribution is insensitive to the collision rate
as long as the collision time is much larger than the
bounce time gm /eEk of electrons ia the wave poten-
tial. This is demonstrated by the expansion of Eqs. (14)
and (15) to first order ia I', where the dependence on
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I' vanishes, and also by our simulations. The analyti-
cal solution in Eq. (8) obtained in the limit I' + 0 can
thus be used with good accuracy to describe the distri-
bution for 6nite I'. No assumption concerning the ra-
tio vi, /v, is required, which makes this solution useful
for problems concerned with large-amplitude nonlinear
waves. By comparison with the simulation results, the
I' ~ 0 solution has been found to be valid in the range
v, /vs (( 1 and vi, /v, vy ( 1. For very weak collisions,
it has not been possible in the numerical simulations to
reach the steady state and to distinguish between the
collisionless and collisional cases because of limited com-

puting time. However, for very slow collisional difFusion
it can be true that the collisional steady state described
by Eq. (8) for a single wave in a periodic box is never
reached in a realistic physical system because of nonideal
conditions (see below).

For strong collisionality, i.e., when the collision time
approaches or becomes smaller than the trapping time,
the solution to Eq. (1) has to be found from the numeri-
cal solution of Eqs. (14) and (15). According to our sim-
ulations, the high collisionality is found to steepen the
distribution in the resonance region in agreement with
the results in Ref. [18]. Consequently, the asymmetry
of the distribution or the driven current created by the
wave is reduced.

The collisional efFects as they are presented in this pa-
per become important when the physical system is long
enough or periodic so that I /v ) u, , where v is the typ-
ical velocity of the particle, L characterizes the length of
the system, and v, denotes the typical collision time. In
systems which are short compared to the collision length
or strongly inhomogeneous, boundary and gradient ef-
fects dominate and more detailed studies of the distri-
bution are needed. An additional ingredient which may
also alter the present results is the onset of stochasticity

I

in the particle orbits on a time scale smaller than the
collision time. The stochasticity can arise because of ad-
ditional overlapping of trapping regions of electrostatic
modes in velocity space or because of nonideal geome-
try of the system [25]. These phenomena may cause the
breakdown of the invariants of the trapped particle mo-
tion thus leading to time-asymptotic distributions difFer-

ent from the present theory. It is important to note that,
in the periodic simulations of the present paper, such ef-
fects have not been found in the presence of collisions. In
magnetized plasmas, the electron plasma waves are usu-
ally driven along the field lines, in which case the present
unmagnetized theory should be suKcient. It has also
been shown in the case of current drive in magnetized
plasmas [26] that the one-dimensional description of the
wave-particle interaction captures the salient features of
the higher dimensional solutions. For accurate calcula-
tion of f(v), a fully two-dimensional or three-dimensional
numerical treatment would be necessary.
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APPENDIX

In order to show that f +(—1)"f „in Eq. (16) satisfy
Eqs. (14) and (15) in our paper, we find for the left-hand
sides (LHS) of these equations

2' rm2
(LHS) = ink(v —u/k) — [e '""6 (—1)"e'""] ) . Ar(H)e' "+ go(H) dy2' 0 kiE

EQO

F g
2'

+ [
—*'(n,—1)y + —i(~+1)y y ( 1)fl—1 ~(n, —i)y y ( 1)~+1 ~(n+i)y]

fA 2K 0

xm(v —u/k) ) . A&(H)e' "+ go(H) dy.
kx8

-g~p
" (Al)

The last term in Eq. (Al) can be partially integrated by noting that [e '(" i)" + e '("+i)" 6 (—1)" e'("
(—1)"+ie'("+i)"]= 2cos(y) [e '"y p (—1)"e*""].This term then reads [note that —

& cos(y) &~~ Ar(H) =
& Ar(H)]

2 m2
k(v —ur/k) — ) . [i(E —n)e ' "P i(E+ n)( 1) e* y]Ar(H—)e' "dy

2~ 0 kiE
Egp

1
+k(v —u/k) —

[
—inc ' " p in( —1) e'""]go(H)dy.

2K Q

(A2)

Consequently, the zeroth order (in I') parts of the LHS in Eq. (Al) sum up to zero. From this we can deduce that
the zeroth order part in Eq. (16) satisfies the homogeneous parts of Eqs. (14) and (15). The terms to first order in I'
in Eq. (Al) sum up to give

2'
(LHS) = — 3 I'm (v —u/k)[e ' " p ( 1) e*"y]AI(H)e' "—dy

0
(A3)
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'""p ( 1)"—e'""]go(H)ffyI
0 v —ur/k ( cl 1( ~/k 1

( "')='-"- /")aH .(H, „) aH'T '.(H, ,)T 2- .
ify

2' p BH BH T L(H) r(H, y)

gp + e ~ .t (d/k

The right-hand side (RHS) of Eqs. (14) and (15) in the main text can be found to first order in I' by substituting
gp(H) for f T. his gives

By noting the definition of At(H) in Eq. (9), we see that the sum of the terms with I g 0 in the RHS equals the LHS
given in Eq. (A3). Therefore, the solutions for p„and q„ in Eq. (16) satisfy Eqs. (14) and (15), provided the term
with E = 0 in Eq. (A4) vanishes for all integers n. This takes place when gp(H) is given by Eq. (8), which closes our
proof.
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