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Two-dinlensional stimulated Brillouin scattering
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The evolution of the stimulated Brillouin scattering (SBS) instability in time and two spatial dimen-

sions is studied analytically. An exact solution of the linearized equations governing SBS in a finite

homogeneous plasma shows that this two-dimensional instability usually saturates because of the con-
vection of the ion-acoustic wave, regardless of whether the associated one-dimensional interaction is
convectively or absolutely unstable. The steady-state intensity profile of the Stokes light wave is often

highly two dimensional.

PACS number(s): 52.35.Mw, 42.65.Es, 52.35.Nx, 52.40.Nk

Stimulated Brillouin scattering (SBS) in a plasma is the
decay of an incident light wave (0), also called a pump
wave, into a Stokes light wave (1) and an ion-acoustic
wave (2). The conservation of energy and momentum in
this process is re6ected in the frequency and wave-vector
matching conditions

0 1+~2 ko=ki+k2

the second of which is illustrated in Fig. 1(a). SBS is im-
portant in the field of inertial confinement fusion (ICF)
[1]because it can scatter the incident light away from the
target, thereby reducing the amount of energy available
to drive the compressive heating of the nuclear fuel. The
inhomogeneities of a typical ICF plasma complicate the
analysis of SBS considerably. However, as the main
effect of these inhomogeneities is to limit the region over
which SBS occurs, it is not unreasonable to model the in-
teraction region as a homogeneous slab whose dimensions
are chosen with the true plasma inhomogeneities in mind.

FIG. 1. Interaction geometry for SBS. The angular depen-
dence of yo, the temporal growth rate of SBS, stems from the
fact that k2 =2ko sin4i. The x component of vz is always nega-
tive.

This simplification facilitates the study of two-
dimensional effects, about which little is known [2].

The initial evolution of the SBS instability in a homo-
geneous plasma is governed by the linearized equations

Ulx~x A& = '70A2

(a, u,„—a„+u„a,+v, )A; =ty, A, ,
(2)

a„A,=yA, , (a, a„+a„+—a)A, =yA, . (3)

where A I represents the vector potential associated with
the Stokes wave, A2 represents the plasma density fiuc-
tuation associated with the ion-acoustic wave, y0 is the
temporal growth rate of SBS in an infinite plasma, and v2
is the temporal decay rate of the ion-acoustic wave due to
Landau damping. Explicit formulas for these two rates
are well known [3,4]. In the context of this paper, it is
more useful to exhibit their angular dependence explicitly
by writing yo=ys(sin(I))' and v2=vb sing, where the
subscript b refers to backward SBS. It follows from Fig.
1(b) that u)„=ut, ui„=u2sinp, and u2y=u2cosg. There
are two time scales associated with SBS in a finite plasma:
the (short) transit time of the Stokes wave and the (long)
transit time of the ion-acoustic wave. Since the transition
of SBS from an instability characterized by spatiotem-
poral growth to one characterized by a convective steady
state or by absolute temporal growth occurs on the latter
time scale, the t derivative was omitted from the first of
Eqs. (2).

Although the origin of Eqs. (2) was described for SBS
in a plasma, the equations themselves can be used to
model stimulated Raman scattering in a plasma and para-
metric instabilities in other nonlinear media, many of
which are truly homogeneous. Thus the results of this
paper are also relevant to current research in basic plas-
ma physics, parametric electronics, nonlinear optics, and
Quid dynamics.

The solution of Eqs. (2) is facilitated by changing vari-
ableS acCOrding tO x/I ~x U2xg/U2yIx +pl U2x~jlx~~
yoI. ~(ui. u2 ) y v2i ~u2 ~ ul Ai Al

iuzP A2 ~—A2. Using the new variables, Eqs. (2) can
be rewritten as
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Equations (3) can be solved analytically, regardless of
what initial and boundary conditions are imposed on the
wave amplitudes. However, the mathematical details of
this paper are minimized by the conditions

and

A, (O,x,y)=1, A, (t, O,y)=1, (4)

Az(O, x,y)=0, A2(t, x,O)=0, A2(t, l,y)=0, (5)

which are associated with the amplification of an exter-
nally generated Stokes wave in a rectangular plasma that
is completely illuminated by the pump wave.

Even though one could argue that Eqs. (3)—(5) describe
the simplest two-dimensional problem relevant to SBS,
their solution is neither easy to obtain nor easy to under-
stand. Thus it is advantageous to consider first the mod-
el equations

B„A)=yA2, (8, +r)y)Aq=yA),

together with conditions (4) and the first two of condi-
tions (5). This model problem contains the essential
feature of two-dimensional SBS, namely the evolution of
coupled waves as they propagate in different directions.

By using the characteristic variables r=t, g=x, and

g =y —t, the model equations can be rewritten as

r)&A& ——yA2, B,Az ——yA, .

It follows immediately that

Equation (8) is a standard equation of mathematical
physics. The domain for which its solution is sought is il-
lustrated in Fig. 2. It is evident from Eq. (8) that A, de-

pends only parametrically on the variable g. Physically,
this means that the evolution of A

&
on each characteris-

tic plane, labeled by its associated value of g, is indepen-
dent of the evolution of A& on the neighboring planes.
This property of A

&
and the characteristic lines associat-

ed with the evolution of A, in r and g are illustrated in

Fig. 3(a}.Because Eq. (8) is invariant under time transla-
tions, its solution can be written in terms of the elapsed
time ~ rc(rl), where —re=0 for rt&0 and re= —rj for
rt (0. Thus a particular solution of Eq. (8) is

A, (r, g; r) )=Is [2y [(~—rc}g]'

where Io is the modified Bessel function of the first kind
of order 0. By a fortunate coincidence, this solution has
the desired property that A

&
=1 on the bottom, rear, and

side boundaries of Fig. 2. In terms of the variables used
in Eq. (6), the elapsed time is t tc(t,y },where tc =0 f—or
y ~t and to=t —y for y &t. Thus the solution of the
model problem is

A, (t,x,y) =Ic[2y(tx)'~ ]H(y t)+t~y, —
(10)

Az(t, x,y}=(tlx)'~ I, [2y(tx)'~ ]H(y t)+t~y, —

where H is the Heaviside function.
Snapshots of A& are displayed in Fig. 4 for t =0.25

and t =0.75. In Fig. 4(a) most of the wave has yet to feel

FIG. 2. Shape of the interaction region associated with the
characteristic variables r, g', and g.

the effect of the boundary at y =0 and, consequently, is
still growing in time. The wave evolution is almost one
dimensional. In Fig. 4(b) most of the wave has already
felt the effect of the boundary and, consequently, has
stopped growing in time. The steady-state amplitude
profile of the wave is highly two dimensional.

The dependence of solution (10) on the elapsed time
and the fact that the growth of waves 1 and 2 at a partic-
ular location stops as soon as the information that a
boundary exists at y =0 reaches that location are both
due to the propagation of wave 2 in the y direction. To
understand these phenomena, consider the wave evolu-
tion in the neighborhood of an interior point (x,y). Ini-
tially, A, =l and Az=O. After a time interval dt,
A2=ydt. Even though the portion of wave 2 that was
originally at (x,y), with zero amplitude is now at

FIG. 3. Characteristic lines associated with the evolution of
A

&
and A2 are illustrated for (a) the model equations (7) and (b)

the SBSequations (11).
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FIG. 4. Snapshots of A i, obtained from the first of Eqs. (10),
are displayed for (a) t =0.25 and (b) t =0.75. In both cases,
y=4

(x,y +dy), it has been replaced by the portion of wave 2
that was originally at (x,y —dy). This replacement con-
tinues, as does the temporal growth of the portions of
waves 1 and 2 at (x,y), until t =y. At this time, the por-
tion of wave 2 at (x,y) has attained its maximal ampli-

tude, which is limited by the time available for it to grow
as it propagates inward from the boundary at y =0. This
growth time is none other than the elapsed time that ap-
pears in Eqs. (9) and (10). The preceding remarks are val-
id for arbitrary x. When t )y, the growth of wave 1 as it
propagates in the x direction is driven by wave 2, which
is in steady state. Since the amplitude of wave l at the
boundary x =0 is independent of time, wave 1 must also
be in steady state.

The extension of the preceding analysis to the SBS
equations (3) is straightforward. By using the charac-
teristic variables defined above, Eqs. (3) can be rewritten
as

a, A, =) A, , (a,—a,+a)A =yA, .

The domain for which the solution is sought is identical
to that shown in Fig. 2. As before, the evolution of A,
and A 2 on each characteristic plane, labeled by its associ-
ated value of g, is independent of the evolution of A

&
and

Az on the neighboring planes, and the solution of Eqs.
(1 1) depends on the elapsed time r ro(rt)—Thus., at any
interior point (x,y) the waves grow in time until t =y, at
which time their growth stops. Equations (11) differ from
the model equation in that the ion-acoustic wave propa-
gates in the negative x direction. Despite this difference,
which is illustrated in Fig. 3(b), Eqs. (11) can be solved
analytically. The general version of the one-dimensional
coupled-wave equations, in which v,„and u2„are arbi-
trary, has been solved by Bobroff'and Haus [5],and, more
recently, by Williams and McGowan [6]. Equations (11),
which were simplified by the assumption that vz„&&uj„,
have been solved by McKinstrie and co-workers [7,8].
[Although the solution of the latter equations is a special
case of the solution of the former, it is noteworthy in its
own right because it is easier to use and to interpret phys-
ically. ] For the initial and boundary conditions (4) and
(5), the Stokes amplitude is given by

Ai(t, x,y)=H(y t)f Gii(—x, t')dt'+t~y, (12)
0

where

G„(t,x)=y t —n+x
t+n

n +1/2

I „2+[2y[(t +)(nt n+)x]'~ ]—

t —n+x
t+n

n —1/2

I „2,[2y[(t+ )(nt n+)x]'i ]
—. (13)

XH(t +n)H(t n+x) exp—( —at)+5(t)H(t +x)
is the Green function that describes the effect on the Stokes wave of an impulse applied to itself. Similarly,

A2(t, x,y)=H(y t)f G&&(—x, t')dt'+t~y,
0

where
'n

(14)

G2, (t,x)=y I I22y[(t + )(tn—n +x)]'i ]t+n
n —1

I2„z[2y[(t +n)(t n+x)]'~ ]
—'H(t +n)H(t n+x) exp( —at)— (15)



50 TWO-DIMENSIONAL STIMULATED BRILLOUIN SCATTERING 2185

t, =(a/b —1)l„/vzsing,

where

(16)

I„vba=
2V2

~b 4yb

2 g2 U~U2
(17)

and the steady-state Stokes output is given by [7,8]

1' A( 1)=im
&

t, „—a+b (18)

When yb/(v, vz)' «vb/2v2, t, « l„/vz sing. The satu-
ration time and Stokes output are almost independent of
the ion-acoustic speed because the damping term dom-
inates the ion-acoustic equation and the amplitude of the
ion-acoustic wave is slaved to that of the Stokes wave. In
contrast, when yb/(v, vz)' =vb/2v2, t, -l„/v2 sing.
Because the convection term in the ion-acoustic equation
is comparable to the damping term, the saturation time
and Stokes output depend sensitively on the ion-acoustic
speed [7]. In both cases, the Stokes output is independent
of the scattering angle [8]. When yb/(v, v2)' & vb/2v2,
the interaction is absolutely unstable and the Stokes out-
put continues to grow in time with a growth rate that de-
pends on the scattering angle. Eventually, t » l„/v2 sing

is the Green function that describes the effect on the ion-
acoustic wave of an impulse applied to the Stokes wave.
No snapshots of the wave amplitudes are displayed be-
cause they are qualitatively similar to those of Fig. 4. In
the following discussion, the properties of the wave am-
plitudes associated with Eqs. (3) are described in terms of
the dimensional quantities associated with Eqs. (2).

Before one can fully understand the evolution of two-
dimensional SBS, one must first understand the evolution
of the reduced one-dimensional interaction with which it
is associated. This one-dimensional interaction is charac-
terized by the Green functions (13) and (15). Initially,
t « l„/v2 sing and the Stokes output A, (t,l„)grows as
exp[2yb(l„t sing/v, )' vb—t sing]. What happens sub-

sequently depends on how strongly the interaction is
driven. When yb/(v, v2)' &vb/2vz, the Stokes output
eventually saturates due to convection in the x direction.
The saturation time is given by [7,8]

and the Stokes output grows as exp[[2yb(vz/v&)'
—vb]t sing].

It is clear from the discussion following Eqs. (11) that
the growth time of two-dimensional SBS cannot exceed
the time taken for the ion-acoustic wave to convect
across the plasma in the y direction, regardless of wheth-
er the associated one-dimensional interaction is convec-
tively or absolutely unstable [9]. This convention time is
given by

t~ =ls/vg cosf . (19)

It follows from Eqs. (16), (17), and (19) that the growth of
near-forward SBS in a square plasma is limited by con-
vection in the y direction and is inherently two dimen-
sional. The stokes output is much less than that predict-
ed by the reduced one-dimensional model described
above. When yb/(v, v2)' & vb/2v2, the growth of side-
ward and near-backward SBS is limited by convection in
the x direction. Thus, the evolution of sideward and
near-backward SBS is almost one dimensional and the
Stokes output can be calculated using Eq. (18). When

yb/(v, vz)' & vb/2vz, the growth of sideward and near-
backward SBS is limited by convection in the y direction
and is inherently two dimensional. With the exception of
backward scattering, SBS is convectively saturated before
the Stokes and ion-acoustic waves can grow exponentially
in time with the absolute instability growth rate. The
preceding discussion is based on the assumption that ti,
the temporal pulse width of the pump wave, is infinite.
When ti is finite, the growth of SBS is limited by the
smallest oft„ti, and t, .

Finally, it should be mentioned that numerical simula-
tions of two-dimensional SBS have been made by Amin
et al. [10] for the complimentary case in which the ion-
acoustic wave is subject to viscous damping.
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