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We directly evaluate the flow and structural properties of three-dimensional random porous media
at a microscopic level via lattice gas automata. The length scale associated with the pore structure
and the geometric factor accounting for pore shape, connectivity, and tortuosity used in empirical
models are independently measured. It is shown that the empirical models greatly underestimate
the effect of the structure of the medium on flow properties. The tortuosity, in particular, is shown
to have a much larger effect than accounted for by empirical models.

PACS number(s): 47.55.Mh, 82.20.Wt, 05.40.+j

I. INTRODUCTION

The hydraulic conductivity of a porous medium for
single-phase fluids is expressed, by analogy with electri-
cal conductivity, by giving the permeability k£ defined by
the phenomenological Darcy equation written here in dif-
ferential form [1]:

k
v=—-VP, 1
m (1

where v is the volumetric flow, P the hydrostatic pres-
sure, and p the fluid viscosity. While the physical ba-
sis underlying the Darcy equation is well understood [2],
what remains unknown is how the permeability, which is
dependent only on the structure of the porous medium,
can be predicted from other porous media properties. It
is clear that the property of permeability should be linked
to other properties of the porous medium—internal sur-
face area, porosity, pore size distribution, etc.—since all
such properties are manifestations of the geometrical ar-
rangement of the pores. However, to uncover the rela-
tionships is possible only if one is able to understand ex-
actly how all these properties are conditioned by the ge-
ometrical properties of the pore system. To date the un-
derstanding of the relationship between media properties
and the permeability has been poor. A direct approach
to finding relationships between the various properties
of random porous media has been limited to establish-
ing empirical relationships, often aided by dimensional
analysis and theoretical considerations. Of the many dif-
ferent empirical approaches for the treatment of single-
phase flow, hydraulic radius models [1, 3] have resulted
in excellent correlations.

In hydraulic radius models the porous medium is as-
sumed to be equivalent to a conduit, the cross section of
which has an extremely complicated shape, but, on aver-
age, a constant area. The theories all make use of the
fundamental observation that the permeability, in ab-
solute units, has the dimensions of length squared. It
is argued that a length should be characteristic for the
permeability of a porous medium. This length is called
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the “hydraulic radius” Rj. In analogy with laminar flow
through tubes we define the average pore or seepage ve-
locity v, in the flow channels by
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Up (2)
where L. is the average path length for flow and c is a
shape factor associated with the channel cross section.
The pore velocity and the macroscopic velocity v defined
in Eq. (1) are related by v, = %l—f The division of v by
¢ is used to define an average interstitial velocity. The
multiplication by %— is a correction for the fact that a
hypothetical fluid particle used in the macroscopic flow
equations and flowing with the macroscopic velocity v
covers a length L in the same time as an actual fluid
particle flowing at velocity v, covers the effective length

L. [4].
Combination of Egs. (1) and (2) and Darcy’s law gives
c

This is the basic form of all hydraulic radius theories, dif-
fering only in the method of calculating the mean square
hydraulic radius and in the definition of the geometric
factor (_—LL:':“—)“ It is useful to rewrite (3) as

k = kol%®, (4)

where [ is the length scale associated with the pore struc-
ture and k¢ is the geometric factor accounting for pore
shape, tortuosity, connectivity, etc. and is a function of
the pore geometry only.

The problem with the hydraulic radius approach is
that the substantiation of the empirical equation is im-
possible. The length scale ! and the geometrical param-
eter ko have to be determined by independent means in
order to perform a valid check of the theory. In principle
one requires a method to determine the macroscopic flow
parameters, while providing information about the local
flow configuration. Lattice gas methods have been shown

2134 ©1994 The American Physical Society



50 DIRECT EVALUATION OF LENGTH SCALES AND . ..

to be capable of solving these problems [5, 6].

In this paper we determine the flow properties of three-
dimensional random porous media over a large range of
porosity using lattice gas automata (LGA) [7]. The LGA
solution allows the direct evaluation of various flow and
structural properties used in empirical models based on
the hydraulic radius concept. We investigate the varia-
tion with porosity of the length scale parameter ! defined
by the pore structure and the geometrical parameter kg
describing the pore shape, tortuosity, and connectivity.
Comparing the hydraulic radius model predictions for
these parameters with the simulation data shows that the
models ignore a very strong effect that pore geometry has
on flow in porous media. The tortuosity, in particular,
is shown to have a much larger effect than accounted for
by these models.

II. IMPLEMENTATION
OF THREE-DIMENSIONAL LATTICE GAS
AUTOMATA

LGA are discrete analogs of molecular dynamics, in
which particles with discrete velocities populate the links
of a fixed array of lattice sites. The lattice gas model we
use in this paper was originally proposed by D’Humiéres,
Lallemand, and Frisch [7]. In this method a four-
dimensional face-centered hypercubic lattice (FCHC) is
used. A four-dimensional single-speed model is required
because no three-dimensional single-speed lattice model
yields a stress tensor which is isotropic to fourth order in
the velocity. The FCHC is the simplest lattice to meet
the required symmetry conditions. The FCHC lattice is
the set of all points in the four-dimensional lattice for
which the sum of coordinates is even. Each lattice site
has 12 nearest neighbors a distance v/2 away.

An exclusion principle is imposed so that no more than
one particle at a given site can have a given momentum
state. The configuration of sites evolves in a sequence of
discrete time steps. There are two microscopic updating
processes at each step—advection and collision. In the
advection step every particle moves from its present site &
to a nearest neighbor site at Z + €,,a =(1,2,...,24). In the
collision process the particles at each site are rearranged
subject to the constraint of local mass and momentum
conservation.

From the macroscopic transport equations for the par-
ticle distribution functions, the Navier-Stokes equation
can be obtained using a Chapman-Enskog expansion [8].
The continuum fluid properties are derived from large
scale averaging of the LGA solution of the transport
equations. Despite the discrete nature of the method,
this model is capable of exhibiting rich macroscopic
complexity such as turbulence [9]. Moreover rigorous
comparisons between theoretical predictions and lattice
gas simulations have been reported with impressive re-
sults [10].

An important feature of the lattice gas method is that
all operations are purely discrete, local, and logical—
ideal for high speed simulation on parallel computers.
A second feature of the method is its flexibility. In lat-
tice gas models boundary conditions are very easy to im-
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plement. Total reflection of particles at a solid bound-
ary simulates a macroscopic “no-slip” boundary condi-
tion; specular reflection of particles gives a macroscopic
“free-slip” boundary condition. Arbitrary complex solid
boundaries can be modeled by appropriate arrangements
of boundary cells. The application of lattice gas method
to the study of fluid flow in porous media is particularly
promising because of the relative ease with which com-
plicated boundary conditions can be implemented.

As described above, the basic operation of the lattice
gas algorithm involves the two steps of collision and prop-
agation. In the collision step, table lookup into prede-
fined collision tables is employed to replace the bit con-
figurations at each node on the lattice with its corre-
sponding after-collision configuration. In the propaga-
tion step the particles at every node propagate to their
corresponding nearest neighbor node. The first step, the
collision phase, is implemented using table lookup. We
use the table reduction algorithm of Somers and Rem [11]
and implement the code on a 16K Connection Machine
2. The flow channel dimensions are 128 sites along the
flow direction with a cross-sectional area 64x64. A mini-
mum of four simulations are performed for each porosity.
In each simulation the system equilibrates for 8000 steps
and measurements are taken from 8000 to 10000 steps.
Local flow information (e.g., local drag measurements on
obstacles) is consistently obtained within 2000 steps of
measurement in the lattice gas scheme with small rel-
ative errors. To create a pressure gradient across the
channel, we use a uniform forcing condition at the inlet
of the channel.

A crucial consideration in the lattice gas technique is
the assessment of the range of parameters in which the
lattice gas solution gives a faithful representation of the
hydrodynamic equations. In this respect, a crucial pa-
rameter is the size of the open pores. If the pore size is
too small, then it can become comparable to the mean
free path of the particles and true fluid behavior will not
be obtained within the pores. The average density for
our lattice gas runs was %, which gives a mean free path
of approximately 1.4 lattice units [6]. In order that the
LGA results approach the continuum limit, the mean size
of obstacles must be at least twice the mean free path of
the simulation [12]. We ensure therefore that the small-
est cross-section area of the pores is 4x4. The random
media are constructed by randomly depositing cubic ob-
stacles with a side length of 4 lattice units within the
channel. We systematically step through the lattice, ran-
domly placing obstacles of size 43 with probability 1 — ¢
within the lattice, i.e., no overlapping is allowed.

III. EVALUATION OF LENGTH SCALES AND
COMPARISON WITH HYDRAULIC RADIUS
THEORY

Among the hydraulic radius theories, the Kozeny the-
ory has had much success [1]. The permeability is ex-
pressed in terms of the specific surface Sy of the porous
medium, defined as the wetted pore surface per solid
(nonporous) volume of the bed, and the porosity ¢ by



2136

k= (c)(gg(—lf"’:ﬁ—)) ¢, (5)

where ¢, the Kozeny constant, a dimensionless number
approximately equal to ::,—, is dependent only on the flow
cross section. In the Kozeny theory, by analogy to Eq.
(4), the length scale [ is equivalent to the hydraulic ra-
dius, defined as l = R, = WLL@ , and the geometrical
factor is given by k¢ = c¢. The LGA solution to the
porous flow problem allows us to directly evaluate the
surface property So. In Fig. 1 we compare the predic-
tion of the Kozeny theory with our data. As one can see
the prediction of the theory is not satisfactory.
Empirical attempts to establish correlations between
properties of porous media are futile unless additional
parameters are introduced. A parameter often invoked is
the “tortuosity.” Tortuosity is related to the fact that the
actual flow path of the fluid is greater than the apparent
path length across the medium. As the Kozeny equation
neglects the tangential component of the velocity, the
equation is extended by introducing the tortuosity T as
an undetermined factor. This leads to the expression

k= (%)(;9;(—1?_—45—)) * ©

To date the tortuosity could not be directly measured. It
has therefore been largely used as an additional arbitrary
parameter relating the theoretically predicted permeabil-
ity to the measured permeability.

Carman [4] first realized the need to introduce a ge-
ometrical parameter similar to the tortousity into the
Kozeny theory. By fitting experimental data on packed
beds he determined the best value of the tortuosity
T~ % The Kozeny-Carman relation is thus given by

1 ¢ *
= (5)(sa) ¢ K
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FIG. 1. The log of the permeability k of the porous media
as a function of the porosity ¢. The curves are the prediction
of the empirical equations: Kozeny ( ), Kozeny-Carman
(- - -), and Blake-Kozeny (- - — - — ).
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FIG. 2. Comparison of the length scale I (in lattice gas
units) defined by the different empirical models plotted as a
function of porosity. (O) Hydraulic radius, ! = and
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The prediction of the model is shown in Fig. 1. The
theory is in reasonable agreement with the data at higher
porosities.

An empirical equation that has resulted in excellent
correlations for flow in random porous media, partic-
ularly at lower porosities, is the Blake-Kozeny equa-
tion [13]. In this model, the specific surface of the porous
medium is related to the average particle size within the
medium. Defining the mean particle diameter D, as the
diameter of the hypothetical sphere with the same Sy as
the medium, one can express D, = s% [14]. This approx-
imation, coupled with a slight change in the geometric
factor ko to % (rT= %), gives

6 oD, \
- (5) (72) ¢

The comparison of the prediction of the Blake-Kozeny
equation with the experimental data is shown also in
Fig. 1. The Blake-Kozeny equation is in remarkable
agreement with the lattice gas results for the full range
of the porosity. Only at the lowest porosities do we note
a significant difference between the Blake-Kozeny model
and our simulation data. The length scale ! in the Blake-
Kozeny model is given by | = 53—2{»—). It is difficult to
justify that the length scale based on the mean particle
size D, is a more meaningful measure of the length scale
of a porous media than the hydraulic radius [15]. A plot
of the magnitude of the length scales defined by (5) and
(8) is given in Fig. 2.

IV. DIRECT EVALUATION
OF STRUCTURAL PARAMETER

The parameter ko in Eq. (4) accounts for the connect-
edness, pore shape, coordination, and tortuosity of the
flow paths. The lattice gas method enables one to deter-
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mine the tortuosity of a random media and thus directly
measure the structure factor k¢ of the medium.

From the LGA simulations, the volumetric flow speed
at each node within the pore space of the medium is
known. To determine the tortuosity of the medium we
record all streamlines ( > 2000) crossing every lattice
node along an inlet plane. We then trace the streamlines
through the medium until they pass across a chosen out-
let plane. The integral length L; of the ith streamline is
measured. The streamline tortuosity 7; is then defined by
T; = %{‘L, where Ly is the macroscopic distance between
the upstream and downstream planes. The number of
steps it takes to move along the streamline is recorded
as t;. As the overall volumetric flow varies greatly from
one streamline to another, we do not define the tortu-
osity factor by simply averaging over the N streamlines
Efv:I T;/N. We choose instead to weight the streamline
tortuosities by the overall volumetric flow associated with
the streamline, which is proportional to ti_l. We there-
fore define a macroscopic tortuosity factor T' = % of our
random media as T = 3N ¢717;/ E?’;l .

All of the popular hydraulic radius theories assume
that the structure factor ko is approximately constant
over a wide porosity range. For example, Carman de-
termined experimentally that the best value for the tor-
tuosity factor is % for the range of porosity 0.90 < ¢ <
0.25 [4]. Our determination of the tortuosity factor T
as a function of porosity is shown in Fig. 3. According
to the definition of kg, the tortuosity T of the medium
should be given by T2. We find that T varies from 1.0
at porosities near 0.90 up to values greater than 50 at
porosities less than 0.40. Clearly the models do not cor-
rectly account for the strong effect of the structure of the
medium. The quantities T and T2 have been defined by
various authors as the true tortuosity of the medium. We
believe that the actual value will lie somewhere between
these values [16]. We show in Fig. 4 the Kozeny theory
prediction (6) with our direct determination of Y. The
introduction of either definition of T greatly improves
the prediction of the Kozeny theory.
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FIG. 4. Kozeny theory prediction with the two definitions

of the tortuosity T defined in the literature. ( ) The pre-
diction of the original Kozeny theory (Y = 1). The two other
curves show the prediction of Eq. (6) with the tortuosity T
givenby Y =T (---)and T =T2 (- - - - - ).

In the literature there is frequent disagreement be-
tween the experimentally measured permeability of a
porous sample and the permeability as predicted by the
Kozeny-Carman equation. Authors often make a contro-
versial claim that higher sample tortuosities are experi-
enced in the experimental samples than are accounted
for by theory [17]. Our results support these claims, par-
ticularly at lower porosities.

V. CONCLUSION

That the hydraulic radius concept gives a good match
to the data with a correct evaluation of the tortuosity is a
confirmation that this remarkably simple concept known
to be a good approximation under turbulent flow condi-
tions accurately describes creeping flow in porous media.
The results of our study show, however, that the approx-
imation used in most hydraulic radius theories, that the
tortuosity can be considered approximately constant over
a wide range of the porosity, is incorrect. The geometrical
parameter associated with the tortuosity of the medium
has a marked effect on the flow properties of porous me-
dia. The Blake-Kozeny equation, which matches the data
very well, does not predict a change in the structural fac-
tor kg over all porosities, in clear contradiction to the re-
sults of this study. The fit of the Blake-Kozeny equation
[Eq. (8)] to the data is simply fortuitous and is not due
to a better understanding of the flow properties. The
success of this model is due to the circumstance that the
approximation So = 6/D,, “corrects” in the same manner
as an increasing tortuosity for lower porosities and is not
based on a more meaningful measure of the length scale
associated with the pore structure.

Relating the permeability to other macroscopic prop-
erties of a porous medium has to date been chiefly empiri-
cal. The lattice gas method allows one to describe macro-
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scopic flow phenomena using large-scale averaging, but,
more importantly, provides microscopic detail crucial to
the understanding of relationships between the volume-
averaged parameters. In future work we will attempt
to ascertain which parameters in the determination of
macroscopic flow properties in more general porous me-
dia are most meaningful. In particular, in an extension
of this work we will study the effect of particle shape
and size on the permeability of unconsolidated media. In
these cases the empirical models have difficulty defining
meaningful parameters to characterize shape and pack-
ing structure. Finally, a critical study of the relationship
between the permeability (hydraulic conductivity) of a
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porous medium and the electrical conductivity is cur-
rently underway.
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