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Experimental determination of the efFective splay-bend elastic constant
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The temperature-induced surface alignment transitions in nematic liquid crystals are analyzed. It is
shown that it is possible to interpret the experimental data by means of an elastic model in which the
effective splay-bend surfacelike elastic constant is taken into account. This effective elastic constant is
defined as the sum of the usual splay-bend and spontaneous splay elastic constant. In this framework the
experimental data seem to indicate that the easy axis characterizing the nematic-substrate interaction is

independent of the liquid crystal. It depends only on the evaporation geometry (we use flat glass plates
vacuum coated by SiO) and on the surfactant dissolved in the liquid crystal. The value of the effective

splay-bend elastic constant is obtained for three different liquid crystals in the nematic phase.

PACS number(s): 61.30.Cz, 61.30.6d

I. INTRODUC. IION

The surface properties of a nematic liquid crystal limit-
ed by a solid substrate are usually described in terms of a
surface anchoring energy g. There exist a lot of papers
devoted to the origin of g [1]. g is expected to be a func-
tion of the physical properties of the substrate and of the
liquid crystal [2]. The surface nematic liquid crystal
orientation minimizing g is usually called the easy direc-
tion [3]. The actual surface nematic liquid crystal orien-
tation, in a sample presenting an elastic deformation, may
coincide or not with the easy direction. The difference
between the actual orientation of the nematic liquid crys-
tal and its easy direction, for a given bulk deformation,
gives an idea about the anchoring strength [4]. The sur-
face orientation may or may not depend on the tempera-
ture.

Recent experimental investigations show that the tem-
perature may be responsible for a kind of surface instabil-
ity, called the temperature surface transition [5-10].
Several papers are devoted to the analysis of the tempera-
ture dependence of the nematic liquid crystal orientation
[11-15]. In a recent paper one of us has proposed an
elastic model to interpret the temperature surface transi-
tions [16].

In this paper we want to extend the analysis presented
in [16],and to compare the theoretical predictions of this
model with the experimental data relevant to the temper-
ature surface transitions obtained in our laboratory for
different liquid crystals. We will show that the easy axis
imposed by an obliquely evaporated surface [8] to a
nematic liquid crystal doped with a surfactant for homeo-
tropic alignment is independent of the liquid crystal. The
macroscopic, and experimentally detectable, orientation
of the nematic liquid crystal can be interpreted in terms
of the effective splay-bend elastic constant. We will show,
furthermore, that, by taking into account the different

temperature behaviors of the effective splay-bend and the
usual elastic constants, it is possible to interpret the ob-
served temperature variation of the average orientation.
The best fit gives us also an experimental determination
of the efFective splay-bend surfacelike elastic constant.

Our paper is organized as follows. In Sec. II the model
is presented, and some special predictions are discussed.
The different contributions to the effective splay-bend
elastic constant are discussed in Sec. III. The experimen-
tal part is described in Sec. IV. Section V is devoted to
discussion of the experimental results and to the con-
clusions.

II. THEORETICAL MODEL

f(4 0' 0")= ,'k0'+ 'k'0"--
and the surface elastic energy g (Po, Po} is

g(go, go) =
—,'w sin (Po—P, )+—,'k, 3sin(2$o}go .

(2)

In these equations the prime means a derivative with

Let us consider a nematic liquid crystal sample, which
will be supposed, for simplicity, semi-finite. The Carte-
sian frame used in our analysis has the (x-y) plane coin-
ciding with the surface limiting the nematic liquid crys-
tal, occupying the z )0 half space. The problem will be
supposed one dimensional, i.e., all the physical quantities
depend only on the z coordinate. Furthermore, the
nematic director n is supposed to be everywhere parallel
to the (x-z) plane. The angle made by n with the z axis,
the tilt angle, will be indicated by P=P(z). In this frame-
work the total elastic energy per unit surface is given byF=, ', " z+g (1)

where the bulk elastic constant energy density

f (4 0' 0") is
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respect to z, and Po=g(0), Po=P'(0). Expression (2) for
f (P,P', P" ) generalizes the well known elastic energy
density proposed long ago by Frank [17] in the limit of
small deformations. k is the usual elastic constant, and
k' the second-order elastic constant [18,19]. In (3) the
Srst term on the right-hand side is the Rapini-Papoular
expression [3] for the surface anchoring energy, having
anchoring strength w and easy direction P, . The second
term is connected with the surfacelike elastic constant
k i3 introduced by Nehring and Saupe [20] and with the
surface energy proposed by Dubois-Violette and Parodi
[21]. The origin of these two contributions to the total
surface energy will be discussed in the next section. The
minimization of (1) gives [22]

P"~0 for z~ ~ .

In (9) b 2=(k '/k) is a mesoscopic length [18].
From Eq. (9) one deduces that the quantity

S =4 —b'0"

is z independent. Consequently, by using (11), $(z) is a
solution of the bulk equation

where P&
= lim P(z). The solution of (13) is

y(z) =y, +(((o—(t, )exp( —z/b ),

af d af d af
, +, „=0, ze[0, ], (4)

where P& and Po are determined by the boundary condi-
tions (10a) and (10b). By substituting (14) into (10a) and
(10b), simple calculations give

af
ay

ap" ap'

d af ag
d. ay- +

ay
=' '='

for the bulk, with the boundary conditions

(sa)

(5b)

and

ki3 4o
—4.

sin[2(go —P, }]— cos(2$o) =0,

(t'o
—

((}i =— sin(2yo)

and

aflim
d af
dz a/

(6a)

where L =(k/w ) is the extrapolation length [3]. By sub-

stituting (16) into (15) we derive, finally, that Po is given

by

lim =0. (6b)
sin [2(go—P, ) ]

sin(4$o)

L,

2b k

By observing that f is independent of ((}, the quantity

af d af
P

and

p~0 for z~oo . (6c)

Consequently the function P(z) we are looking for is the
solution of the differential equation

af d af
ay'+d a(("

satisfying the boundary conditions (Sb),(5c) and (6b),(6c).
By using (2) and (3), Eq. (8) and the relevant boundary

conditions become

is a constant. Using (7), the boundary conditions (5a) and
(6a) may be rewritten as

—p+ =0 for z =0,Bg

Po is the actual value of the surface tilt angle. When
this value has been determined, from Eq. (16) one obtains

Pi, =Po
—— sin(2$o)

for the bulk value of the nematic tilt angle. In the case in
which L «b, i.e., the anchoring energy is infinite, (17)
gives (t o

=P„as expected.
It is important to stress that the quantity experimental-

ly detectable is Pi„because P(z) —
Pb is difFerent from

zero only in the surface layer whose thickness is of the or-
der of b, which is negligible with respect to the thickness
of the usual samples. In fact, the optical methods, or the
method called "null magnetic Seld, " measure the quanti-

ty

(sin P)d= —f sin P(z}dz
d 0

=2—(sin P) + sin P„,d —2b
b

and

$1 b 2/ill 0 (9)
where

(sin P)& =—f sin P(z}dz= —f sin 4(z)dz .1 ~. , 1

b o b
(20}

—sin[2(go —P, ) ) +k» cos(2$o)go =0,
—k 'Po +—,

' k, 3sin(2$o )=0,
atz =0, and

(10a)

(lob)

Since b/d « 1, (19}shows that (sin P) =sin P&, as stat-
ed before.

In the following we assume that the anchoring energy
is characterized by an infinite anchoring strength w, and
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hence that $0=/, and pb is given by

sin(2$, ) . (21)

the closed surface X and v is the outward norma1. In our
case, in which the sample is supposed semi-infinite, the
contribution to the surface energy for unit surface is
found to be

In this framework the temperature dependence of pb is
due to the different temperature behaviors of k, 3 and k.

As discussed elsewhere, k» and k depend on the tem-
perature according to the laws [23,24]

g&3
=

—,'k»sin(2{{}p)gp

It follows that the effective splay-bend elastic constant in-
troduced in (3) is given by

k, 3 =c&S+c2S (22) k» kDvp+ k»

and [25]

k=k S (23)

where c„c2,and k2 are temperature independent. The
scalar order parameter S is given by [25]

1/2

S(T)=6 1— (24)
Tc

{r}b(T}=P, —— sin(2{{},),1 A

2 +T~ —T
(25)

where the parameters A and B are defined by

QT, c, c2A= and B=
2 2

(26)

where 6 is a constant and T, a temperature a little bit
higher than the nematic (N) ~isotropic (I}phase transi-
tion temperature. By substituting (22), (23), and (24) into
(21) we obtain

Consequently, the experimental data relevant to pb(T)
give information on k, 3 instead of the k» elastic constant
alone [see Eq. (21)]. However, it is important to stress
that k» never enters in the elastic theory alone. Only k»
appears, which is the only physical parameter detectable
and important in the elastic theory for nematic liquid
crystals.

Now we want to show that kDvp is connected with a
bulk contribution to the elastic energy, called spontane-
ous splay. Furthermore, we will show that k» and kovp
originate from the same intermolecular interaction. In
order to show this, let us recall the pseudomolecular ap-
proach to evaluating the nematic liquid crystal elastic
constants. The starting assumption is a two body interac-
tion law of the kind G (n, n', r ) between two small
volumes d r and d r' located in R and in R' =R+ r,
characterized by the average nematic orientation
n=n(R) and n'=n(R'), respectively [26]. In general,
G(n, n', r }may be expanded in power series in the follow-
ing manner:

Equation (25) gives the temperature dependence of pb,
the quantity experimentally detectable.

G(n, n', r)= —g J, b, (r)(n u)'(n' u) (n n')',
abc

(29)

III. THE Era'I't. j.IVE SPLAY-BEND
ELASTIC CONSTANT

In our theoretical model the surface energy is supposed
of the kind (3). In this framework, the phenomenological
description of the nematic liquid crystal is given in terms
of the elastic constants k, k', k&3, and w. In particular,
for what concerns the nematic liquid crystal-substrate
interface, the anisotropic part of the surface tension is
supposed to be [3]

g($0)= —,'w sin ($0—P, ) . (27)

The other term appearing in (3) is obtained by adding
two different contributions. One, which is a bulk term of
the kind k,3div(ndivn), is obtained by interaction over
the volume of the nematic sample [20]. The other one is
a surface term of the kind

where u=r/r and the coupling constants J, b, depend
only on the modulus of r and not on its direction, since
the described interaction 6 must be invariant with
respect to rotation. In the framework

~

n' —n
~

(Rn'}—n(R)~ &&1, it is possible to expand (29) in
power series of 5n=n' —n. After that it is possible to ex-
pand 5n; in power series of the components of r. All
these calculations are standard and described in great de-
tail in [26]. The results is that, in the mean field approxi-
mation, the elastic energy density of a nematic liquid
crystal is given by

f=f0+—,'[k»(divn) +k23(n. rotn)

+k33(n Xrotn) ]+k,3div(n divn)

+ (k32+ k24)div(n divn+n X rotn }+k, divn .

(30)
gDVP(40 40) 2 kDVP»n(240){{ o (28)

proposed for the Srst time by Dubois-Violette and Parodi
[21] long ago. The term gDvp has the same form as the
k&3 contribution. In fact, fo1lowing the Gauss theorem, is

f f f k, 3div( ndivn d}~=@ xk, 3v ndivnd7.
7

where ~ is the volume of the nematic sample limited by

In (30) f0 is the energy of the undeformed state, and
k ]] k 22 k 33 k,3, and k z4 the usual elastic constants of
nematic liquid crystals [20]. Finally, k, is constant linear
in the first-order spatial derivatives of n called spontane-
ous splay [26]. In the spherical approximation for the in-
teraction volume [27] the usual elastic constants are
found to be
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J4(a, b, c)
',&, (a+b+1)(a+b+3) a+b —1

J4(a, b, c ) ab
k~2= —,

' T +C',b, (a+b+1)(a+b+3) a+b —1

J4(a, b, c)—1 +C',b, (a+b+3) a+b+1
b

(a+b+1)(a+b+3)

10 —,

0—

Depasit

6~(8(ti0

(31)

where

J4(a, b, c)=4nfJ., b, (r)r dr .a, b, c (32)
20

I

60

In (32) ro is of the order of the molecular dimension
[28]. The elastic constant of spontaneous splay is given
by [26]

k, = —
4 g f f f J, 1(r)b[( nu)'+

abc N

(n.u )
a + b + 1

]

FIG. 1. Average nematic liquid crystal orientation vs the
temperature for the NP8A liquid crystal. The tilt angle is mea-

sured with respect to the geometrical normal of the substrate.
The sample assembly and the definition for the sign of the tilt
angle are given in the inset.

Xr dr dQ, (33)
IU. EXPERIMENT

where V~ is the interaction volume. In the bulk, where
VN is a complete sphere, k, is identically zero because in
the expansion (29) the n=——n equivalence implies that
a+b, b+c, and a+a are even numbers. In a surface
layer, whose thickness is a few molecular dimensions, Vz
is not a complete sphere and k& is not identically zero.
Furthermore, it is odd in n as follows from (33), as ex-
pected. It reaches its maximum value on the surface lim-
iting the sample.

By comparing (33) with the expression for k, I given in
(31},we can derive that k, has to be taken into account
whenever kI3 plays some role. Furthermore, by taking
into account that k, (n) = —k, ( —n), as follows from (33),
we have that the energy term connected to k &, which is
k&divn, may be rewritten as

%e have measured the average tilt angle in nematic
liquid crystal samples of thickness d -30 pm. The liquid
crystals used in our experiments are ZI.I 1623
( Tz I =80'C), ZLI 997 ( Tz I =78 'C), and NP8A
(TN I=60'C) by Merck, containing the surfactant ZLI
584, giving homeotropic orientation on a Sat surface, dis-
solved inside. TN I is the nematic~isotropic phase tran-
sition temperature. The samples were prepared from
plane glass surfaces on which a SiO layer was obliquely
deposited by vacuum evaporation at an incident angle of

k
&
divn =

2 kDvpn v divn, (34)

where now kDvp(n}=kovp( II). Hence the Dubois-
Violette —Parodi term is connected with the spontaneous
splay. It is equivalent to a surface term because k„as
underlined before, is different from zero only in a surface
layer whose thickness is a few molecular dimensions.

From the above it follows that in all the experimental
analyses it is possible to derive information only on the
effective splay-bend elastic constant k, 3

=k,3+k Dvp.
Very recently Pergamenshchik [30] has shown, in a phe-
nomenological manner, that the term (28) is all the time
negligible with respect to the k&3 term. According to our
pseudomolecular analysis, this is not usually true.

I

40

i(~)
FIG. 2. As in Fig. 1 for the ZLI 997 liquid crystal.



50 EXPERIMENTAL DETERMINATION OF THE EYE'ECTIVE. . . 2097

60' (with respect to the geometrical normal). Usually this
kind of surface gives, for a pure nematic liquid crystal, a
planar anchoring with the easy axis perpendicular to the
evaporation direction [14]. The two glasses forming a
cell were mounted so that symmetrical boundary condi-
tions were obtained (see Fig. 1). The observed average
orientation in the sample, because of the presence of the
surfactant, was tilted at an angle P with respect to the
surface normal. The other aspects of technique (the sam-

ple realization, control of temperature, and optical deter-
mination of the average orientation of the nematic liquid
crystals) are described in detail in Ref. [8]. In the present
investigation the average orientation has also been mea-
sured using the null magnetic field method. The experi-
rnental data have been obtained with three different sets
of samples. The results are shown in Figs. 1-3.

We have fitted the experimental data by means of Eq.
(25) obtained by supposing infinite anchoring energy, and
hence P, is supposed to be temperature independent.
The parameters of the best fit are reported in Table I. We
stress that T, is a little bit larger than T~I, as expected.
From the value of T, obtained by the best fit and taking
into account that at room temperature the scalar order
parameter is of the order of 0.6, we have obtained the
coefficient b, appearing in (24). The value of P, has been
found to be approximately the same for the three sets of
experimental data.

V. DISCUSSION

The parameters of the best fit reported in Table I give
us the opportunity to derive important conclusions about
the nematic liquid crystal-surface interaction. In fact,
from the experimental result that P, is approximately the
same for different liquid crystals containing a surfactant
and limited by the same surface, we may deduce that

(i) The easy axis characterizing the nematic liquid
crystal-substrate interaction depends on the angle of
evaporation and on the surfactant, but it is independent
of the liquid crystal;

(ii) the anchoring strength is very large, and the an-
choring may be supposed strong;

(iii) the observable nematic tilt angle Pb is difFerent
from the true surface tilt angle $0,' it depends on the elas-
tic properties of the nematic liquid crystal by means of
the elastic ratio k,3/k.

A possible consequence of the above reported interpre-
tation of the experimental data is that usually the nemat-
ic liquid crystal-substrate interaction is characterized by
strong anchoring energy. The experimentally detectable
anchoring energy strength originates from the elastic
properties of the liquid crystal. The temperature depen-

30-

20—

10—
a

0—

-10—

-20
I

20
l

40
l

60 80

FIG. 3. As in Fig. 1 for the ZLI 1623 liquid crystal.

dence of the average tilt angle may be deduced by suppos-
ing that the surface scalar order parameter is equal to the
bulk one.

Let us consider now the last three columns of Table I.
They represent an experimental determination of the
efFective splay-bend surfacelike elastic constant. In our
paper, as has been stressed before, this effective elastic
constant is defined as the sum of the usual splay-bend
elastic constant k» introduced by Nehring and Saupe
[20] and the spontaneous splay elastic constant ki intro-
duced by Dubois-Violette Parodi [21]. Up to now only
one other estimation of this parameter has been published
[31],but since the theoretical analysis of the experimental
data was based on a wrong theory [32], just its order of
magnitude is meaningful. Our analysis shows that the
linear component c& in the scalar order parameter of the
k J3 elastic constant is smaller than the quadratic com-
ponent c2 in the same parameter. The analysis shows,
furthermore, that cz is of the same order of magnitude as
the usual Frank's elastic constant k2. c, is found to be
negative, whereas c2 is positive. The trend of k, 3/k vs
the temperature, evaluated with the parameters of the
best fits, for the liquid crystals considered is shown in
Fig. 4. At room temperature (20'C) the ratio k, 3/k is of
the order of 1.51 (NP8A), 1.79 (ZLI 997), and 1.75 (ZLI
1623), i.e., positive and close to 2. The only one theoreti-
cal estimation of this ratio has been done for the
induced-dipole —' induced-dipole interaction [28,29]. Ac-
cording to the theoretical model of Refs. [28,29], for
nearly homeotropic nematic samples k,3/k is of the or-

TABLE I. Best-fit values of parameters obtained for various liquid crystals.

Liquid crystal (cl/c2) (c, /kz) (c2/k2) (k,3/k) P, (deg) t, ( C) t~-I ( C)

NP8A
ZLI 997
ZLI 1623

—0.08
—0.10
—0.10

—0.1
—0.2
—0.2

1.7
2.0
2.0

1.51
1.78
1.74

35
35
35

62.2
82.3
81.0

60
78
80
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1.8—

1.6—

1.4—

to conclude that the dispersion forces are not the most
important ones for the nematic phase considered by us.
This is not surprising, because other forces, like steric
ones, are expected to be more important in organic mole-
cules giving rise to nematic phases.
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FIG. 4. Ratio k,3/k vs the temperature evaluated by means
of the parameters of the best St. (a) NP8A, (b) ZLI 997, and (c)
ZLI 1623.

der of —1.2 (see the Appendix). By comparing the
theoretical prediction (deduced on the hypothesis that
the dispersion forces are the only ones responsible for the
nematic phase) and the experimental values it is possible

In this Appendix we want to evaluate the k»/k ratio
for a nematic liquid crystal in nearly homeotropic orien-
tation„ in the case in which the intermolecular forces re-
sponsible for the nematic phase are due to induced-
dipole-induced-dipole interactions.

Let us consider a Cartesian reference frame of the kind
used in Sec. II and a nematic molecule just on the surface
(z =0) in homeotropic orientation (/=0, n~~z). In this
situation Eq. (33}becomes

k~(z =O, n~~z) = —
—,
' g f f f J, b, (r)b(cos'+ '8 —cos'+ +'8)r dr sin8dt'Jdq&,

abc 0

where

(A2)

J3(a,b, c)=4'f J, b, (r)r dr .a, b, c

Expression (A2) holds for a nematic liquid crystal hav-
ing n(0)~~z. Let us consider now the case in which
G(n, n', r) is due to the induced-dipole —induced-dipole
interaction [28,29]. In this situation the quantities ap-
pearing in (31) and (A2) are given by [26]

where cos8=n u. Simple calculations give for k& the re-
sult

k, (z =O, n~~z}= —
—,
' g J3(a,b, c) b

(a+b)(a+b+2) '

J3 4(a, b, c)=J3,4(5o05b05 2 65,)5s)5„

+ (95,25b25,o),
where J3 or J4 are constants. By substituting (A4) into
(A2) and into the expression (31) giving k ~3 one obtains

k, (z=O, niiz)=0,

and hence, from (34) it follows that knvp=0. Conse-
quently

kDvp+ k &3 k» {j
k k k 5

Of course, this result holds only in the case in which the
dispersion forces are the most important ones.
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