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Non-neutral dynamics of splay states in Josephson-junction arrays

Steve Nichols and Kurt Wiesenfeld
School of Physics, Georgia Institute of Technology, Atlanta, Geon@a 30339

(Received 8 February 1994)

We study the efFect of the phase dependent conductance on the splay state dynamics of series
Josephson arrays. In most cases, the splay states are destabilized, and the array evolves into a more
coherent state, e.g. , the in-phase state. A smaller parameter range exists where the splay state
becomes attracting.

PACS number(s): 05.45.+b, 74.50.+r

I. INTRODUCTION

Recent numerical simulations have uncovered a pecu-
liar puzzle concerning the nonlinear dynamics of one di-
mensional (i.e., series) Josephson-junction arrays. When
dc biased, these arrays can exhibit periodic oscillations
of the type variously called "antiphase" or "splay state"
behavior: each of the N oscillators has the same wave
form, yet no two oscillators are in phase [1—4]. The pe-
culiarity is that under a wide variety of circumstances
the splay states are neither stable nor unstable [5—7]; in
typical dynamical systems, neutral stability occurs only
at special parameter values, i.e., bifurcation points. But
these arrays exhibit neutrally stable splay states over a
wide range of parameters. The puzzle is why these arrays
exhibit this nongeneric behavior at all. Similar results
hold for splay states of globally coupled solid state laser
arrays [8,9].

Important steps toward solving this puzzle were made
by several authors for the case where the junction capaci-
tance Cg is negligible [10—13], i.e., using the so-called re-
sistively shunted junction model, corresponding to point
contact type junctions [14]. Indeed, Watanabe and Stro-
gatz [13] have shown rigorously that for C~ = 0 the
circuit equations exhibit an extraordinary structure of
the type normally associated with Hamiltonian systems,
even though the Josephson array is manifestly dissipa-
tive. Physically, this structure shows itself as constants
of the motion. While this implies directly the neutral
stability of the splay states, it is not the whole story. Ex-
isting numerical work [7] suggests that the nongeneric
neutral stability of splay states also holds in cases where
the junction capacitance is important, and no analytic
progress has been made in this direction.

It has also been shown that, when Cg ——0, breaking
the symmetry fundamentally changes the stability prop-
erties of the splay state [10,12]. However, this was done
in an ad hoc way, modifying the governing dynamical
equations in a way unmotivated by physical considera-
tions. The purpose of this paper is to see if a physically
relevant efFect, typicaHy ignored in theoretical studies of
the dynamics of Josephson-junction arrays [15],removes
the neutral stability of the splay state. Namely, we con-
sider the role of the phase dependent conductance [16],
sometimes called the e cos P term. We present the results

II. BACKGROUND

The equations of motion for a Josephson-junction ar-
ray can be derived easily from the Josephson relations
and simple circuit analysis [2,14]. The equations corre-
sponding to the N junction array shunted by a resistor,
inductor, and capacitor shown in Fig. 1 are given by

pter + (1 + e cos yI )yh + sin &ps + Q = Ig, ,
N

LQ+ RQ+ —Q = —)
j=l

(2.1)

(2.2)

t(t)

C3

FIG. 1. Circuit schematic for an RLC shunted Joseph-
son-junction array.

of numerical simulations for both Cg ——0 and Cg P 0
cases, for arrays of size N = 5. For Cp ——0, we gain in-
sight into the behavior of very large arrays by extending
the analytic work of Strogatz and Mirollo [11], valid
in the N m oo limit. We find that under most cir-
cumstances the splay states lose their neutral stability.
For very small e the numerical results are inconclusive,
though consistent with the splay states being neutrally
stable. Depending on the value of the conductance con-
stant e, the splay state becomes either stable or unsta-
ble; in the latter case the system is attracted to a more
coherent dynamical state, either a cluster state or the in-
phase state. Our analytic results for N ~ oo show that
for small e, one can make the splay state attracting or
repelling by controlling the sign of e.
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III. THE P = 0 CASE

For junctions with negligible capacitance, we set P = 0
in Eqs. (2.1) and (2.2), yielding the (N+ 2)-order system
of equations

(1 + e cos (pic)(pic + sill (pe + Q = Ig~,

1 1"--
LQ+ &Q+ —Q = —).A.

2=1

(3.1)

(3.2)

Following Ref. [11],in the N i oo limit we can define

p(rp, t) to be the density of oscillators at angle y at time
t. The summation in Eq. (3.2) becomes

where k = 1,2, . . . , ¹ Ig, is the drive current; Q and
Q are the charge and current in the BI,C branch of the
circuit; yI, is the quant»m phase cMerence across the
kth Josephson junction, B, I, and C are the resistance,
inductance, and capacitance of the BIC branch; e is a
paraxneter associated with the phase dependent conduc-
tance of the junction N is the n»aber of junctions in the
array; and P is a parameter that depends on the physi-
cal properties of the junction and is proportional to its
capacitance Cg. Time and current have been rescaled to
make the equations dimensionless. We consider the BIC
parallel load because it is the most general [2,11]. Note
that since e and P do not carry the subscript k, we are
implicitly assuming that all of the junctions are identical.

Previous studies of the stability of the splay states
treated the conductance as being constant, i.e., taking

0 in Eq. (2.1). However, the conductance actu-
ally depends on the phase of the junction because the
quasiparticle tunneling current depends on the quantum
states of the superconductors [16], which leads to the
(1 + e cos Pi, ) conductance factor in Eq. (2.1).

We ask the following question: what effect does the
@cosy term have on the neutral stability of the splay
states of a Josephson-junction array? In particular, is
the neutral stability an artifact of taking e = 0 or does
it persist when the phase dependent conductance efi'ect
is included? For the P = 0 case, we find that the e cos &p

term always breaks the neutral stability, but that the
splay state can be either linearly stable or linearly unsta-
ble, depending on the sign of e. For the P g 0 case, the
neutral stability seems to be preserved for small values
of 6.

In the next section we consider the P = 0 case: we
extend a calculation of Strogatz and Mirollo in order to
predict the efFect of the e cos P term on the stability of the
splay state and compare the predictions with numerical
analysis. In Sec. IV we turn to the P g 0 case, where
we have only numerical work to guide us at present. We
summarize our results in Sec. V.

I~ —Q —sin &p

1+ecosoc

Substituting this and Eq. (3.3) into Eq. (3.2) gives

We also have a continuity equation

= 0, (3.5)

which just says that the number of oscillators is conserved
locally (with respect to y). We are interested in the splay
states of the system. For finite N, these are solutions
in which all of the oscillators have the same wave form,
but are shifted in time from each other by increments
of kT/N, where k is an integer, T is the period of the
oscillation, and N is the total number of oscillators. One
such splay state is defined by

( T)
V i(t) = Vi+il t+ —

~N) (3 6)

Because of the permutation symmetry of the oscillator
array equations, the existence of one splay state implies
the existence of (N —1)!distinct splay phase states.

In the limit N -+ oo, Strogatz and Mirollo [11] iden-
tified the splay state with the stationary solution to
Eqs. (3.4) and (3.5). To see why this is reasonable, note
that the splay state condition (3.6) implies that Q(t) has
harmonic content only at &equencies 0, & N, & N, etc.
[1]. As N ~ oo, Q(t) becomes constant, so Q = Q = 0.
Moreover, condition (3.6) implies that the time inter-
val between successive crossings of a particular value y,
are equal and independent of y„ in the continuum limit
this means that the current J is a constant. From the
continuity equation (3.5),

0 0—p+ J =0.
Bc Bp

J = const implies that Bgp = 0.
Substituting the conditions s~ p(y, t) = 0, Q = 0, and

Q = 0 into Eq. (3.5) and integrating with respect to p
gives

I~ —sin yp«p' ~ = P)1+ecosoc
(3.7)

where po(y; e) is the stationary distribution of the splay
state and v is a constant. We can fix the value of v by
normalizing the density po(p; e)

LQ+(&+1)Q+ &Q = p(v»t)dv.
0 1+ccosp

(3.4)

1
N 2—) .4 = ~p(v» t)dv .

N j=1

From Eq. (3.1) the velocity field j is given by

(3 3) p((p, t)dry = 1
0

so that integrating Eq. (3.7) implies

(3.6)
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(d 1+@cosy
po yi&

2JI Ig~ —siil y
(3.9)

where ~—:QI~~ —1 and we have assumed that I~, ) l.
Meanwhile, substituting the splay state conditions Q =
Q = 0 into Eq. (3.4), we find

1 i ( I—g, (1 + cos y) + sin y l
G y;e = —tan

u sing I
1 (u t' Ig,i-+e—ln

l2 2m pe —sin y j
We now expand rI(y, t) as a Fourier series in G

2%'

—Qo = —dyC'
0 2x (3.1o) ~(y t) = po(y ) ). a-(t)e"'

so that Qp
——Ctat.

The next step is to test the stability of the splay state
by letting Q = Qp + q and p(y, t) = pp(y'e) + r)(y, t),
where q and g are infinitesimal. Substituting these re-
lations into Eqs. (3.4) and (3.5) and throwing out all
nonlinear terms we find

Iq+ (R+ 1)q+ —q = '
rl(y, t)dy,

1 Igg —sin P
C ~ 0 1+ccos(p

(3.11)

B (u. B f 1—g — q-
Bt 2n By qI~, —siny)

Ia~ —sin y
+B, ,g(yt) 1+,...y )l=0 (312)

We introduce the auxiliary variable [10,11]

G(y;e) = — po(y';e)dy
2x I —o

Using Eq. (3.9) and evaluating the integral, G is

OO 2'
) a (t) e ' (~")dy, (3.13)

2K m= —OO |( 0

po(y;e) ) a (t)e
u). B ( 1

By (I~, —siny)

) a (t)ime ' (~")G'(y; &) = 0. (3 14)

This expansion has the orthogonality property

2'
2m

ah

G�((P;e)
(

.
)d

y=O
(3.15)

where bi, p is the Kronecker delta. We multiply Eq. (3.14)
by exp[ —27rinG(y; e)] and integrate from 0 to 2x

Factoring pp(y;e) out of the Fourier coefficients will be
useful later. Substituting this expansion into Eqs. (3.11)
and (3.12) and using Eq. (3.9) we get

1Iq+ (R+ 1)q+ —qC

OO 2' 2') a (t) 2s'i(rn») G(y, e) (, )d q
2wi~G(y, e)

m= —oo
2x 0 (Ig, —siny)2

OO 2'
+iur ) ma (t) e '( ") (+")po(y; e)dy = 0.

m= —oo rp=O

Using the orthogonality property defined in Eq. (3.15) to
evaluate the integrals, we get

2'
( )

—2mira&(~;e)

2K —0

COS (P

(Iq, —siny)2
l(p

2' —2xiaG(y;e) cos p
'(27r p (I~, —sin y) )

iona . (3.16)—
and

1 (d
( )

2wira&(rP;e) d
1.2~ 0

and let q = p, then we can write Eqs. (3.13) and (3.16)
as the (infinite) system of first order equationsIf we make the definitions
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i=p
—1 R+1p= q — p+ ) c (~)a

a„=b„(e)p —iona„.

(3.i7)

(3.iS)

(3.i9)

ularly simple form, with the result that if we define p„
as the entry in right eigenvector corresponding to the p
variable and p as the entry corresponding to the a
variable, then the first order correction to the mth eigen-
value is given by (p~ Ab )/p, where

In the e = 0 case it turns out that b (0) = 0 for all
lnl g 1 [10], which radically simplifies the problem. We
have

Ab„(e) = b„(e) —b„(0).

In terms of the unperturbed matrix coefficients cn and
bn, this is

1 R+1q=p, p= —
&&q

—
Z

p+ ) c (0)a

a i ——b i(0) + is)a

~(1) Cn l(dA
—1 R+1 .
LC I 1—n 1+n

Ab„(e) .

(3.20)

ai = bi(0) —ildai,

a„= —iona„, n g +1

and all but four of the infinite set of eigenvalues can be
found by inspection [11].The corresponding eigenvectors
have a simple form; for any k j kl, we set ai, = 1 and
a„= 0 for all other n g +1. We see immediately that
the corresponding eigenvalue is A&

———ink: there is
thus an infinite set of pure imaginary eigenvalues, hence
the massive neutral stability. In this basis, it is natural to
label the neutral eigenvalues by the nonzero component
as where k g +1. (The four other eigenvectors have
a„=0 for all n g +1.)

Things are not so simple when we consider the case
e g 0, but we can still make progress by using perturba-
tion theory, treating the ~ = 0 case as the unperturbed
problem. We can write Eqs. (3.17)—(3.19) in matrix form
as

d-—z = [H + ~V(e)]z,
dt

where H is the unperturbed matrix defined by
Eqs. (3.17)—(3.19) with e = 0, V(e) is the matrix defined
by the differences between the unperturbed case and the
perturbed case, and w is a formal expansion parameter
that we will set to unity at the end. Of course, these ma-
trices are infinite dimensional, and in practice we have
to truncate at some value of n. In the Fourier basis, this
corresponds to including only a finite number of modes,
commonly known as a Galerkin truncation [17].

Standard perturbation theory tells us that the lowest
order correction to the eigenvalue corresponding to the
variable a is given by

(e„"'IV(e)le„")
(@(o)I@(o))

where 4 is the nth left eigenvector of the unperturbed(0)-

matrix and 4' is the nth right eigenvector, i.e., (H—
1)I4 ) = 0 and (O'„ I(H —A 1) = 0.

As mentioned above, these eigenvectors have a partic-

We can evaluate c„,c 1, c1, b 1, and b1 in closed form
(see Appendix B of Ref. [10] for more details). We have
been unable to integrate 6b„(e) in closed form, but it
can be evaluated numerically and tabulated (note that it
depends only on the single parameter Ig, ).

In Fig. 2 we plot the real parts of the eigenvalues cor-
responding to a2, a3, and a4 as a function of e, for some
typical set of system parameters. Based on just these few
eigenvalues, whose real parts are all zero in the unper-
turbed case, we conclude that the splay state is linearly
stable over some range of e ( 0 and otherwise linearly un-
stable. The nongeneric neutral stability seems to be bro-
ken by the presence of the phase dependent conductance
term, though the magnitude of the effect is rather small
(that is, the eigenvalues have rather small real parts).

Our next step is to compare these predictions based on
Eq. (3.20) with direct numerical integration of the circuit
equations for an array of five junctions. A detailed quan-
titative comparison of the eigenvalues, however, is not
possible: those based on the n = 5 truncation in a Fourier
basis of the inifinite N problem have no one-to-one cor-
respondence with the eigenvalues of the (exact) N = 5
array equations. This stands in contrast with the ~ = 0
problem, where a direct comparison is possible, and the
agreement is excellent [7,11]. The difference is that, in
the latter case, no truncation of the infinite-N limit was
needed: the eigenvalues divide neatly into two sets, with
four eigenvalues having (generically) a nonzero real part
and all other eigenvalues being pure imaginary, which
is precisely what one finds numerically for the finite-N
problem. In the e g 0 case, we expect that the four per-
turbed non-neutral eigenvalues are the same for both the
calculation and the numerics. We can qualitatively check
the other N —2 eigenvalues by checking if the asymptotic
dynamical state of the numerically integrated diH'erential
equations is consistent with the stability pr'ediction of the
analytic calculation. For example, for small positive e the
splay state is predicted to be linearly unstable, so after a
long enough time we expect to find the system in some
other type of (attracting) state.

Starting with ys's spaced at intervals of 27r/N, jr', 's

equal to Ig„and e = 0, we integrate Eqs. (3.1) and (3.2)
using a fourth order Rundle-Kutta scheme until the sys-
tem relaxes to a periodic orbit. Operationally, we are
picking an initial condition in our N + 2 dimensional
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phase space near the N —2 dimensional neutrally stable
manifold; the neutrally stable manifold is an attructor in
the full phase space, but motion on the manifold is neu-
trully 8table. We then turn e on and again integrate for a
long time. By computing the Euclidean distance between
points in phase space of successive zero crossings of one of
the y's (recall that the rp's are angles defined on a circle)
we can get some measure of whether the system is on a
periodic orbit and how long we have to integrate to elimi-
nate transients. To determine whether the periodic orbit
is a splay state, we also look at the time between suc-
cessive zero crossings Atp of any of the phase variables:
a splay phase state has b, ts's (very nearly) equal, an in-
phase state has Atp's approximately zero, and a cluster
state has some Atg's equal and some zero.

To characterize the stability of the periodic or-
bit, we use Floquet theory. First, we linearize
Eqs. (3.1) and (3.2) about some assumed periodic so-

(—cos p&
—e + I~a sin p&

—eQ' sin y& ~,
gk = /le(1+

ecosoc@&)

+ (1+ecosoc@&)
(3.21)

1 1"-
Iq+ Rq+ —q = —)

j=1
(3.22)

Floquet's theorem says that we can write the funda-
mental matrix 4(t) as the product of a periodic matrix
P(t) and a matrix exp(Bt), where B is a constant matrix
[18]. The eigenvalues of B determine the linear stability

1«ion (q' O' Vi " V iv) ««ing V s = Vi, +n»nd
Q = Q' + q, the linearized equations are

~ 001 I i i i
I

& i & &

I
s i i i

I
i i i r0 4 ~-dx lu I I i I

I
I I I I

I
I I I I

I
I
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FIG. 2. Plot of the real part of the eigenvalues corresponding to the az, a3, and a4 Fourier coefficients as a function of e.
These are exactly 0 for e = 0.
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of the periodic orbit. One way to compute B is to choose
4(to) to be the identity matrix and numerically integrate
the equations for one period T to determine 4(to+T) [2].
The eigenvalues of the resulting matrix, exp(BT), are the
Floquet multipliers which determine the stability of the
underlying periodic orbit: a multiplier with magnitude
precisely equal to 1 implies neutral stability.

Obviously, m~merical errors prevent us kom seeing
eigenvalues that are exactly 1. However, we know rig-
orously that the eigenvalue corresponding to the tangent
of the orbit i8 1, so by looking at the actual value of the
tangent eigenvalue we can get a measure of what error bar
to associate with the numerically detemined multipliers.
We measure eigenvalues &om 25 consecutive orbits and
look at the mean of the eigenvalues ~pi, ~

and the variance
of the eigenvalues with respect to 1 defined by

TABLE I. Near critical Floquet multipliers for the P = 0
case, with parameter values of R = O.l, I = 0.5, C = 0.5,
and Iq, ——1.9.

0.0

0.01

-0.01

0.1

-0.1

0.5

-0.5

II I

1.000899
0.999903
0.999156
1.001381
1.000064
1.000036
1.000208
0.999535
0.998845
1.000089
0.992344
0.989103
1.000022
0.997078
0.997078
1.089430
0.999871
0.999663

81x10
1.0 x 10
71x10
1.91 x 10

(1O '
(10 '

4.0 x 10
22x10
1.33 x 10

&10 '
5.861 x 10
1.1874 x 10

&10 '
854 x10
854 x 10

7.99775 x 10
2.0 x 10
1.1 x 10

Dynamical state
splay

(neutral)

splay
(unstable)

splay
(stable)

1 x 2 x 2 cluster
(stable)

splay
(stable)

1 x 2 x 2 cluster
(stable)
inphase
(stable)

In Table I we list the Floquet multipliers near 1 and
corresponding variances e for given values of e. There are
typically three; one corresponds to the tangent of the or-
bit. Using the e = 0 case we infer that for a variance with
respect to 1.00 less than about 10 the corresponding
multiplier can be taken as exactly 1.0. For e = 0.01,
0 is very close to our cutoff, but the average value of
the corresponding multiplier is a little greater than 1.0
and we conclude that the splay state is unstable, albeit
just barely: physically, the system evolves away from the
splay state only very slowly. Using the same reasoning,
we conclude that for e = —0.01 the splay state is asymp-
totically stable, in agreement with the earlier prediction.

For the case of e = 0.1, we find that the final dynam-
ical state is a stable 1x2x 2 cluster state [i.e., I'pi (t) g
&p2(t) = &ps(t) g A@4(t) = (ps(t)]. For the case of e = —0.1,

the Snal state ls the splay state but now lt 18 clearly
linearly stable. For e = 0.5 the 1x2x2 cluster state is
the Bnal dynamical state, and even more stable, and for

= —0.5 the splay state has apparently lost stability, and
the system is attracted to the inphase state.

The conclusion &om Table I is that for positive e the
splay state is always unstable, though for small e the dy-
namics are very slow and it might take a long time for the
system to leave the splay orbit. The splay state is linearly
stable over some range 0 ) e ) —0.1 for these parame-
ters, but for larger negative e the splay state eventually
loses stability. We have not made an extensive study as
a function of the other circuit parameters; nevertheless,
we can use these data to test whether the analytic calcu-
lation is reliable.

In Fig. 2 we have plotted the results based on the per-
turbation analysis using a truncation at n = 5, for the
same parameters as those used in the m~merical simula-
tions. Plotted is the real part of each of the near-neutral
eigenvalues versus ~. Since all it takes is one positive
eigenvalue to make the splay state unstable, the range
over which the splay state is stabilized is just the inter-
section of the individual ranges. Prom the 6gure, we see
that the eigenvalue for the coefficient a2 is approximately
proportional to e; the corresponding modal perturbation
to the splay state grows for e ) 0 and decays for e ( 0.
Similar behavior is seen for the eigenvalue correspond-
ing to the coefFicient as, though the plot indicates that
perhaps for e & —0.1 the curve might turn up and cross
the 0 axis again, rendering the splay state unstable. For
the eigenvalue of the coefficient a4, we see this happen
at e —0.05. Considering just the three eigenvalues in
Fig. 2, the splay state is predicted to be stable for the
range —0.05 ( e & 0; comparing this with numerical re-
sults in Table I gives us a measure of the range of validity
of the O(e) perturbation theory.

One limitation of this approach is that there are in
principle an irdinite number of coefBcients to be checked.
On the other hand, we find that the size of the real part of
the eigenvalues diminishes rapidly for successively higher
coefficients. For instance, Re(a4) has magnitude of order
10 s. This trend continues: for the much higher order
coefficients the real part of the corresponding eigenvalue
is efkctively zero.

IV. THE P g 0 CASE

The analytic calculation of the preceding section does
not readily generalize to the case where P g 0: we can
still pass over to a continuum lixnit, but we can no longer
solve explicitly for the splay state in closed form, much
less perform the corresponding stability analysis. Thus,
in this section we rely solely on numerical methods to
study Eqs. (2.1) and (2.2), using the same techniques as
described in the preceding section.

Our results are summarized in Table II. The e = 0
case gives us some idea of error bars for the numerically
determined Floquet multipliers, for our particular choice
of time step and integration time. From this, we deduce
that values of 0. less than about 10 6 are consistent with
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TABLE II. Near critical Floquet multipliers for the P g 0
case, with parameter values of P = 1.0, R = 0.1, L = 0.5,
C = 0.5, and Ig, = 1.9.

0.0

0.01

-0.01

0.1

-0.1

0.5

-0.5

lpl
1.000697
0.999611
0.997970
1.000225
0.999671
0.999073
1.000655
0.999709
0.998350
1.002025
0.974491
0.974491
1.000541
0.999590
0.997665
0.999073

1.000134
0.998927
0.997392

49x10
1.5 x 10

4.12 x 10
5.0 x 10
1.1 x 10
86x10
43x10
90x10
2.72 x 10
4.1 x 10

6.5069 x 10
6.5071 x 10

29x10
1.7 x 10

5.45 x 10
86x10

2.0 x 10
1.15 x 10
6.8 x 10

Dynamical state
splay

(neutral)

splay
(neutral)

splay
(neutral)

inphase
(stable)

splay
(neutral)

inp hase
(stable)

splay
(neutral)

neutral stability of the splay states. As a separate check,
we also look at the time series of the aymptotic dynamical
state to see if it is still approximately splay (i.e., b, ti, —
b, t~) or if the system has wandered away &om the splay
state into some other periodic orbit.

From the data, we see that for the cases of e = 0.01 and
e = —0.01 the 6nal dynamical states are still the splay
state and the cr's are consistent with neutral stability.
As we increase e to 0.1, the splay state loses stability to
a periodic in-phase state which is asymptotically stable.
For e equal to —0.1, the splay state seems to be neutrally
stable or possibly (weakly) linearly stable. At e = 0.5
the in-phase state is stiG the 6nal dynamical state and
has become xnore stable. For e = —0.5, the system again
ends up in a splay state which is either neutrally stable
or possibly linearly stable.

Unlike the results for P = 0, it appears that the neu-
tral stability of the splay state is preserved for some range
of e, which is somewhat surprising, and is otherwise not
neutrally stable. One possible explanation is that the
splay state undergoes a bifurcation at some critical value

between 0.01 and 0.1. Another possibility is that for
any s g 0 the phase dependent conductance term always
breaks the neutral stability, but by a very small amount
as measured by the Floquet multipliers for sxnall e. In

this scenario, it would appear that making e & 0 tends to
nudge the Floquet multipliers to values less than 1, mak-
ing the splay state asymptotically stable, while putting
e ) 0 tends to make the Floquet multipliers greater than
1, in the latter case causing the splay state to lose sta-
bility. If the multipliers were just barely larger than 1,
the dynaxnics could be so slow that our integration time
is not long enough to see the system leave the vicinity of
the unstable splay state, giving the appearance of neutral
stability.

V. DISCUSSION

In this paper, we have studied the effect of the phase
dependent conductance on the splay state dynamics,
both for junctions having negligible capacitance (P = 0)
and for junctions with substantial capacitance (p ) 0).
For the case P = 0, we have found good agreement be-
tween our perturbation theory calculation and nuxnerical
simulations: the presence of the the ecosoc term always
destroys the neutral stability of the splay state. For
sufficiently small values of ]e~, the sign of c determines
whether the splay state is stable or unstable. In this
regime, even when the splay state is rendered unstable
the effect is so weak that it takes a very long time —longer
than our simulations were run —for the system to settle
down to an attracting state. For somewhat larger values
of ]s] (~e] ) 0.1), we find that the splay state is always
unstable, and the array settles down to some more coher-
ent dynamical state, either the in-phase state or a cluster
state.

For P g 0 our study was restricted to numerics. For
the parameter values considered, there is a range of e for
which the neutral stability of the splay state is appar-
ently preserved. For larger positive values of ~, the splay
state becomes unstable and the system ends up in the
in-phase state. For large negative values of e, the results
are axnbiguous: the splay state is either neutrally stable
or weakly linearly unstable.
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