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We study the mean exit time of a &ee inertial random process from a region in space. The
acceleration alternatively takes the values +a and —a for random periods of time governed by a
coTnroon distribution Q(t). The mean exit time satis6es an integral equation that reduces to a
partial differential equation if the random acceleration is Markovian. Some qualitative features of
the behavior of the system are discussed and checked by simulations. Among these features, the
most striking is the discontinuity of the mean exit time as a function of the initial conditions.

PACS number(s): 05.40.+j, 05.60.+w, 05.20.Dd, 05.90.+m

I. INTRODUCTION

Many stochastic models in the literature are high-
damping models, that is, they represent systems for
which inertial efFects can be neglected. This simplifi-
cation allows one to deal only with position variables
X(t) without having to worry about independent asso-
ciated velocity variables X(t). The dynamical equations
in these models therefore contain only the velocity X(t)
but not the acceleration X(t) [1,2]. However, in practice
the high-damping approximation is clearly not always ap-
propriate. There has therefore been a long-standing and
continuing (but not broadly successful) interest in devel-
oping methods to deal with inertial processes [3—6,8,9].
This paper deals with our own continuing efforts in this
direction.

The simplest inertial random process is described by
an evolution equation of the form

X(t) = F(t),

where F(t) is a noise whose statistics must be specified.
Our work has dealt principally with systems driven by
dichomotous processes, that is, ones in which F(t) is di-
chotomous noise that takes on the values ka with a given
switching probability density @(t) [3—6]. In recent work,
we focused on the joint probability density p(z, y, t), for
the probability that the position X(t) lies between z and
z + dz and that the velocity Y(t) = X(t) lies between
y and y+ dy. We also obtained exact equations for the
marginal probability density p(y, t) of the velocity and
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the marginal probability density p(z, t) of the position.
These densities were considered for the process (1.1) [3]
and also for one in which there is an additional damping
term proportional to X(t) [4,6]. In this paper, we con-
sider the exit time of the process (1.1) out of the interval
0&z&L.

Prom a dynamical point of view, the time evolution
of process (1.1) with a dichotomous driving force is de-
termined by two difFerent dynamics, z+(t; zc, yo), where
z+(t;zo, yc) and z (t;zo, yo) are, respectively, the solu-
tions to Eq. (1.1) with F(t) = a and —a, and with initial
conditions zo ——X(0) for the position and yo

——X(0)
for the velocity of the process. The system randomly
switches between these two dynamics at random times
governed by the switching probability density g(t). The
explicit expressions for z+(t; zo, yc) are

1 2z+ (t; zs, ys) = zo + yet 6 at—
2

(1.2)

Similarly, the random process

Y(t) = X(t) (1.3)

representing the velocity also has two difFerent dynamics:

(1.4)

The times to reach the boundaries 0 and L when the
system evolves deterministically under positive or under
negative acceleration are the beJ&istic times. We denote
them by 7o+(zo, yo) and rr+(zo, yo), where, for example,
vz+(zo, yo) is the time to first reach the boundary z = 0
if F(t) = a without ever having reached the boundary
z = L; similarly, for example, r& (zo, yo) is the time to
first reach the boundary z = L if F(t) = —a without ever
having reached the boundary x = 0.
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Note that the boundary that is crossed 6rst under
b~ istic motion depends on the initial condition, which
in turn implies that the forms of ro+(xo, yo) and of
Tl (zo yo) depend on the initial conditions. In partic-
ular, the following situations may occur (see Fig. 1):

Positiee acceleration. Here F(t) = a. If

yo + V'2azo ) 0,

the system first reaches the upper boundary x = L, and
does so at time

~L, (*o,yo) =+ —yo+ kayo + 2a(L —zo)

If instead

—yo —gyo' —2axo
o (zo yo)— a

¹yatiee accelemtion. Here F(t) = —a. If

(1.8)

yo —/2a(L —zo) ) 0

the system Srst reaches the upper boundary x = L, and
does so at time

yo —Qyo' —2a(L —xo)~, (*o,yo) =
a (1.10)

If instead

yo —/2a(L —xo) & 0,

then the system first reaches the lower boundary x = 0
and does so at time

yo + +2axo & 0,

then the system first reaches the lower boundary x = 0
and does so at time

yo + gyo + 2axo
ro xo~ yo a

(1.12)

As noted above, in this paper we consider the exit
time of the process (1.1) out of the interval 0 & x & L.
Note that the translational invariance of (1.1) implies
that there is no loss of generality in choosing these spe-
cific boundary intervals: the exit time out of an interval
zq & x ( z2 &om an initial point xo is the same as the
exit time out of the interval 0 & x & L &om an ini-
tial location xo —zq, with L =—z2 —zq. Our principal
formal interest is that of most studies of exit time or
6rst passage time analyses, namely, in obtaining integral
equations and, if possible, ~Inferential equations for the
mean exit time and related quantities [7]. We succeed in
this attempt: we find integral equations for the mean exit
time for arbitrary dichotomous noise, and we find equiv-
alent partial differential equations for this time when the
dichotomous noise is Markovian. However, we are not
able to find analytic solutions to these equations, and
therefore the interest in these expressions at this point
is primarily formal and serves mainly to confirm that
it is possible to 6nd such equations. In the process of
this derivation and with the help of the equations, how-
ever, we have been able to arrive at a number of interest-
ing qualitative and semiquantitative conclusions that we
have conRrmed or complemented with direct numerical
simulations. These will hopefully guide future searches
for analytic solutions to this and to more complicated
problems. Thus, after first laying out the formal analysis
in Secs. II, III, and IV we present our qualitative and
numerical results and discuss the behavior of the mean
exit time in Sec. V. We end with a brief s»minary in
Sec. VI.

11. INTEGRAI EQUATIONS FOR THE MEAN
EXIT TIME

We de6ne the first-exit-time probability density out of
the interval 0 & z & I as follows: Given X(0) = zo
and X(0) = yo, let f(t; xo, yo)dt be the probability that
the process X(t) exits the interval 0 & z & I within
the time interval (t, t + dt) without ever having left this
interval during the time span [0, t]. The fact that F(t) has
two realizations prompts us to define the two auxiliary
probability densities

f+(t; xo, yo) = f(t; xo, yoiF(0) = ka). (2.1)

If we assume that the initial values F(0) = ka occur with
equal probability, then

1-f(t; x, y ) = — f+ (t; x, y ) + f (t; x, y )] . (2.2)

FIG. 1. Solid curve: ballistic trajectory X(t) as given in
Eq. (1.2), that is, E(t) = a and yo + (2axo) ~ ) 0. The
system Sxst crosses the boundary L and does so at time

Dashed curve: ba&&istic trajectory when F(t) = a and
yo + (2axo) & 0. The system Srst crosses the boundary 0
aud does so at time 70+. A similar Sgure can be dragon for
E(t) = —a.

The auxiliary probability density f+ (t; xo, yo) satisfies
the following integral equation:

f'(t;*., y.) = +(t)h(t — (*., y.))

dt' t' dx

xdy f (t —t'; x, y)h+(z) y; t'~xo, yo),
(2.3)
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where

and

4(t) = dt'f(t')
t

(2.4)

f'('*. y.) = - '""'~( '(*'y.))
+ dt'e ' t'

xdx dy ~ s;x, y h+ x, y;t xp, yp

h+(z, y; t'~xp, yp)

= b(z —z+(t' *o y ))b(y —y'(t' yo)) (25)

and where x+(t', xp, yp) and y+(t', yp) are, respectively,
given in Eqs. (1.2) and (1.4). The quantity r+(xp, yp)
is the b~B~stic time to first escape through either of the
boundaries at x = 0 and L under the dynamics F(t) =
+a. In other words, depending on the initial condition
r (zp yp) is either rL (zp, yp) or rp (zp& yp).

Equation (2.3) is easily derived with the following rea-
soning. The Brst boundary crossing event occurs either
before or after the first time that F(t) switches from one
value to the other. The first term on the right hand
side of (2.3) accounts for the probability that the escape
occurs at time t = r+(zp, yp) before the first switch in
F(t), while the second term on the right hand side of
(2.3) arises from the fact that if the escape has not oc-
cured during the first time interval, then a switch must
have taken place at time t' (which must be smaller than
the ballistic time to reach a boundary). At time t' the
system is at position x = z+(t', zp, yp) with velocity
y = y+(t', yp). Analogous reasoning immediately leads
to the corresponding equation for f (t; zp, yp):

(2.6)

We define T+(zp, yp) and T (xp, yp) to be the mean
exit times out of the region 0 ( zp & L, —oo ( yp & oo,
if initially F(0) = a and F(0) = —a, respectively. We
note that due to the symmetry of the inertial process
(1.1) these two times are related to one another:

T (xp, yp) = T+(L —zp, —yp). (2.9)

Since

(zp yp) = —f—(s'zp yp)
Os s=p

(2.10)

(2.11)

we can use Eq. (2.8) to find a set of coupled integral
equations of the mean exit times. Straightforward ma-
nipulation gives

+(*"~o) L

&+(*p,yp) = &+(zp) yp) + dt&( )
0 0

xdz dyT z, y h+ ~, y;t xp, yp,

f (t; xp, yp) = 4'(t)h(t —r (zp, yp))

dt' t' dz

xdy f+(t —t', x, y)h (z, y; t'~zp, yp),
(2.6)

(ao,yo) L
&-(*., y.) = & (*., y.)+ «4(t)

0 0

xdz dy T+ x, y h ~, y; t &0, yp,

(2.12)

where now r (xp, yp) is the ballistic time to escape
through either boundary if F(t) = —a, and

h (z, y;t'~zp, yp)

where

'(*o ~o)
G+(*p, yp) = dt 4 (t).

0
(2.13)

= b(z —* (t' zp yp)) b(y —y (t'; yp)) (2 7)

The set of coupled integral equations (2.3) and (2.6) is
somewhat simplified by taking the Laplace transform to
obtain

Our next step is to rewrite Eqs. (2.11) and (2.12) in
a more explicit form that is more convenient for further
manipulation. The b function expressions (2.5) and (2.7)
allow us to carry out the integrals on the right hand sides
of (2.11) and (2.12) explicitly, with the results

v + (ao,yo)
dt @(t)h+(z, h; t~x„yp)

0

~+(*o,vo)
dt Q(t)h(z —x+(t; xp, yp))b(y —y (t; xp, yp))

0

(y —yl((y —yll((y —y'i e +~ '~ e r+(zp, yp)~a a a ' a

(y2 —y2) &
Xb x —mph

)i
(2.14)
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where e(x) is the Heaviside step function. Substitution
into (2.11) and (2.12) yields

T+(zo yo) = &+(zo yo)

yp+a~+ (xp, yp )
+ — dx

a
yo

xdy T (z, y)@ ~

III. DIFFERENTIA. L EQUATION FOK THE
MEAN EXIT TIME

To proceed further we must specify the form of the
switching probability density. We choose E(t) to be di-
chotomous Markov noise, for which the switching proba-
bility density is exponential,

g(t) = Ae "'
(A ) 0). (3.1)

Substituting this interval density into the integral equa-
tions (2.15) and (2.16) we find

T+(zo, yo) = t"+(zo, yo)

r y yo&xbi x —zo—
2a )

T (*o yo) = & (*o yo)

y

+ (LE
0 yp —a~ —(ap, yp)

(2.15) yo+~ (+o &yp)
~Ayo /cL

a yo
L

xdy dz T (z, y-)e "v~-
0

y'- y.'&xh z —zo—
l 2a )

(3.2)

xdy T+(z, y)Q
&y. —y&

a

y2
Xb X —Xp— (2.16)

2a

Equations (2.15) and (2.16) constitute a formal solu-
tion to the exit time problem. They are valid for any
form of the switching probability density @(t), and can
be used as a convenient starting point for numerical anal-
ysis when no further simplification is possible.

T (*o yo) = G (zo yo)

yo—Ayp /cL

yo —~~ (~o yo)
L

xdy dx T+(z, y)e""~
0

(3.3)
y' —y21

Xb X —Xp—
l 2a )

Taking the yo-derivative of Eq. (3.2) and reorganizing
terms leads to

r a + —
~

T+(*o,yo) —G+(zo, yo) + —T (*o,yo)
gByo ay - ' ' - a

a
(yo + ax+) dz T (z, yo + 7+)e " b(z —()a Oyp

so+a~+ I g ( 2 2 )+-.""~. (3.4)

where the dependence of ~+ on xo and yo is understood and where t,
' as well as the missing subscrip«n & is either

0 or I, depending on the imtial position and velocity. On the other hand, the zo derivative of (3.2) yields

T+(zo, yo) —&+(zo, yo)
20

8
(yo+a~ ) dxT (z, yo+~ )e 8(z —()-x~+

a t9xp 0

yp+a~+ L „.a r
+—e""'~ dx T (x, y) e "" b *—zo— y. )

2a
(3.5)
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If yp + /2azp ) 0, then 7+ = TI+(zp, yp), ( = L, and

yp y pa+ (ap, yp) = )j(yp + 2a(L —ap). (3.6)

Likewise, when yp + /2azp & 0 then v+ = Tp (zp yp),
(=O, and

yp + ap+ (ap, yp) = —
)( yp

—2aap.

Note that in both cases one has

(3.7)

[yp + ax+ (zp, yp)] = —"—
[yp + a7+ (zp, yp)].

Byp a Bxp

(3.S)

Thus, comparing Eq. (3.4) with Eq. (3.5) we obtain

( 8 8
' 8 '""8
I, Byp Xo

—A
~

T (zp, yp) + AT (zp, yp)

8 8=
~

a +yp+ —A
~

G+(zp, yp).( Byp Bzp

Analogous reasoning leads to the following differential
equation for T (zp, yp):

8
~

—a +yp+ —A
~

T (zp, yp)+AT+(zp, yp)
Byp Bzp

( 8 8=
~

—a +y()+ —A
~

G (zp, y()).
Byp Bzp

(s.io)

BT+ BT+
a +yp —A(T+ —T ) = —1,

Byp Bxp
(s.i2)

BT BT—a + yp —A(T —T+) = —1.
Byp Bzp

(3.13)

The left hand side of this system of equations is the ad-
joint of the system satisfied by the complete probability
density function p(ka, z, y; t) [3] because the full system
(E(t), z, y) is Markovian when Q(t) is exponential.

The set of Eqs. (3.12) and (3.13) can be combined to
yield separate second-order partial differential equations
for T+ and T . One easily obtains

82T+ 82T+ BT+
a 2

—
yp 2 + (2Ayp+ a) = —2A,

yp2 ~o2 Xp
(3.14)

8T BT DT—
yp 2 + (2Ayp —a) = —2A. (3.15)

yo Bx'Q BXQ

Using (2.13) one can immediately see that the inhomo-
geneous term in both of these equations is

8 8
~

+a +yp+ —A
~

G+(zp, yp) = —1. (3.11)
Byp Bzp )

Therefore the mean exit times T+(zp, yp) obey the fol-
lowing set of first-order coupled partial differential equa-
tions:

Finally we note that the quantity of physical interest
is &equently the mean exit time regardless of the initial
value of the noise [cf. Eq. (2.2)],

T(z(), y()) = —[T+(zp, yp)+T (z(), yp) .
2

(s.i6)

From (3.].4) and (3.15) one finds the fourth-order partial
differential equation

8 ~ +y'8 ~
-2 'y'8 .8yo o yo o

sBT 2 BT—4Ay() s +4Aa yp
zp Byp28zp

8 T—4a yp

2 82T
+4Aa + (4A2yp2 —sa ) = 0.

BypBzp Zo
(s.i7)

T+(L, yp) = 0

T+(o, y, ) = o

lf yp %0~

if yp &0.
(3.1S)

(s.19)

The average mean exit time, Eq. (3.16), satisfies the same
boundary conditions.

IV. FREE INERTIAL PROCESSES DRIVEN
BY GAUSSIAN WHITE NOISE

The partial differential equation for the mean exit time
simplifies considerably when the inertial process is driven
by Gaussian white noise. The equation can be derived
in a more straightforward way than by our procedure
[8], but alternative derivations are restricted to Gaussian
white noise whereas the strength of our approach is its
much greater generality. In any case, as is well known,
in the limit

a+ oo,
a2—= D ( oo
A

(4 1)

the dichotomous Markov noise F(t) becomes Gaussian
white noise. In other words, in this limit the process
given by Eq. (1.1) goes to the process

x(t) = q(t), (4 2)

where g(t) is Gaussian and 8-correlated noise,

(q(t)q(t')) = Db(t —t") (4.3)

In the Gaussian white-noise limit (4.1) we see from

To complete the story it is finally necessary to ob-
tain the boundary conditions that accompany the equa-
tions for T+ and T . From Eqs. (2.13) and (2.15) it
follows immediately that T+(zp, yp) = 0 if the ballis-
tic time to reach the appropriate boundary is also zero,
i.e., if 7 (zp, yp) = 0. Similarly, T (zp, yp) vanishes if

(zp, yp) does. On the other hand, it can easily be
seen that 7 +(L, yp) = 0 if and only if yp ) 0, and that
r+(0, yp) = 0 if and only if yp & 0. Therefore the appro-
priate boundary conditions for the escape problem are
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Eq. (3.16) and Eqs. (3.14) and (3.15) that the equation
for the mean exit time T(zs, yo) reads

T(xe, yp) = f (e, xp, yo). (5.2)

—D +yp

with boundary conditions

(4.4)

Another way of thinking about ~ is to note that it is
determined by the two time scales involved in the evolu-
tion of the random process. One is the average time the
noise retains a given value,

T(r., y. ) = o

T(o, y, ) = o

if yp) 0,

if yp &0.

(4.5)

(4.6)

In fact, using alternative approaches one can obtain
a more general result in this case. Thus, let Z(t)
(Zq(t), . . . , Z„(t))be an n-dimensional random process
whose dynamical evolution is given by the set of Langevin
equations

~=1/A, (5.3)

or the correlation time of the noise, 7; = 7/2. The other
is the time it takes the system to reach the boundaries in
a deterministic way, r+ and v (see Sec. I), denoted by
~g. This time depends on the initial position and initial
speed. For the sake of our speci6c argument we choose
zs ——L/2 and yo

——0 to fix the meaning of « In t. his
case,

Z'(t) = f'[2'(t)] + ).G' [2'(t)]& (t) (4.7) = QL/a. (5.4)

-D).G', (") ' +).f'(")
2 . . Bzp;Bzp & . t9zp;

92

with the boundary condition

(4.8)

where rl~(t), j = 1,2, . . . , n are Gaussian mutually inde-
pendent h-correlated random variables. The mean exit
time T(zs) out of a region R surrounded by boundary 8
satisfies the partial differential equation [1]

Consequently,

(5.5)

This relation allows one to identify two regimes in the
behavior of the mean exit time T(2, 0). When e ~ 0

(z « «), the system is driven by almost white noise. In

the opposite limit, as e ~ oo («&& ~), T is dominated

by the deterministic inertial behavior. The two regimes
are characterized by the exponent that gives the scaling
of T with e,

T(zo) = 0, Zp E 8. (4 9)

V. BEHAVIOR OF THE MEAN EXIT TIME

The process (4.2) corresponds to the choices n = 2, zq ——

z2 y, fi(z) = y, f2(z) 0 Gll G12 G21
and G22 ——1. In this case (4.8) reduces to (4.4).

When e -+ oo,

T(1/2, O) - -(~'+~-) = ~-'~',
2

(5.6)

(5.7)

a
A2L

(5.1)

If times and distances are properly scaled into dimension-
less form, then all results should depend only on the sin-
gle parameter e. Indeed, if times are expressed in units of
A, i e , t = At, and dis. ta. nces in units of L, i.e., x = x/L,
then T is a function only of the initial conditions and e:

As noted earlier, we have not been able to obtain an-
alytic solutions to the integral equations for the mean
exit time or even to the differential equations Eqs. (3.12)
and (3.13) appropriate for Markovian dichotomous fiuc-
tuations. Nevertheless, the derivation and the equations
themselves provide a great deal of insight into the behav-
ior of the mean exit time. We present this analysis for
the case of Markovian dichotomous Buctuations in this
section.

We begin by noting that three parameters characterize
the mean exit time in this case: a, the absolute value of
the acceleration; A, the rate at which the acceleration
switches &om one value to the other; and L, the length
of the interval. These three parameters combine in only
one way into a single dimensionless parameter e:

Therefore, unless there are unexpected unbounded mo-
ments in the problem we assume that the usual exponent
reciprocity holds so that

T(1/2, O) - e-'~', (5.9)

and therefore P = —2/3.
In order to test the crossover from P = —1/2 to P =

—2/3 we carried out direct simulations of the random
process X'(t) for different values of a, A, and L to obtain

T(2, 0) as a function of e. The results are shown in Fig. 2,
where the crossover from one value of P to the other is
evident. The dashed line on this log-log plot corresponds
to T = Ae / with A fitted for the value of T obtained

and P = —1/2. In writing Eq. (5.7) we have assumed an
equal probability for the two values of the initial accel-
eration. The exponent when e ~ 0 is obtained with the
following reasoning. For the free inertial system driven

by white noise, the mean square displacement goes as
t' [3],

(X') - t'.
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FIG. 2. Log-Log plot of T(s, 0)/7 vs s = a/(A L) The.
square symbols are simulation results for difFerent a, A, and
L. The dashed line gives the asymptotic behavior when e ~ 0,
that is, a line of slope P = —2/3. The solid line represents the
asymptotic behavior when e -+ oo and is given by a straight
line of slope P = —1/2.

by simulation with e = 10 . The solid line corresponds
to Eq. (5.7).

Much more interesting is the behavior of the mean exit
time as a function of the initial position and velocity. It
is easy to convince oneself that for a given value of e the
mean exit time has an absolute maxim»m for the case
considered above, that is, when the process begins with
zero velocity in the middle of the interval. For initial
conditions other than zp ——I /2 and yp = 0, the mean exit
time decreases and is more and more determined by 7"+
and v as the magnitude of the initial velocity increases
and/or the process starts nearer to one of the end points
of the interval. Two asymptotic expressions are readily
deduced &om Eqs. (1.6)—(1.12). When yp ~ +oo or
io -+ 1 (yp ) 0),

1 —zp
T(*o yo)-

yo
(5.10)

when yp -+ —oo or xo ~ 0 (yp ( 0),

Xo
T(*o,yo) - —=.

yo
(5.11)

Results for other regimes are obtained from direct simu-
lation of the process. These results are shown in Fig. 3,
where we analyze the mean exit time as a function of the
initial velocity yp for two difFerent values of the initial
position ~p. Several points are noteworthy in the Sg-
ure. First, let us focus on the initial position xp ——0.2.
The simulation results for T(0.2, yp) are shown by the
square symbols. The dashed line is the approximation
(5.11) and the simulations clearly approach this asymp-
totic behavior with increasing negative initial velocities.
The simulations show a maxim»m at around yp ——1 and
a decrease that would eventually approach the asymp-
tote (5.10) with increasing positive initial velocities. The
really interesting feature about the simulation is the dis-
continuity in the mean exit time observed at yp

———/0. 4.

FIG. 3. Solid curve: T(0, yp) as a function of yo for a =- 1,
A = 1, and I = 5. Square symbols: T(0.2, yp) as a function
of yo for the same values of the parameters. Dashed line:
approximation given by Eq. (5.11).

At this initial velocity the mean exit time j»mps in value

by about unity. The origin of this real discontinuity is
discussed below.

Next we focus in Fig. 3 on the initial position zp = 0.
The simulation results for T(0, yp) are shown by the solid
curve. Again a discontinuity, now even more pronounced,
is observed at yp

——0, where the mean exit time j»mps
by almost two units. Note that the mean exit time for
negative velocities is identically zero, as it should be: if
the process starts at the lower boundary with a negative
velocity it indeed exits the interval immediately.

In order to understand the origin of these discontinu-
ities we make use of the equations satisfied by the mean
exit time. In fact, it follows &om these equations that the
mean exit time is discontinuous along two curves in the
(zp, yp) plane. Although such a discontinuity is striking,
it is not new: in noninertial systems driven by persistent-
periodic dichotomous noise [10] the mean first passage
time also exhibits this unusual behavior. The discontinu-
ities arise &om the presence of the barriers, which cause
the phase space (zp, yp) to be divided into two regions
for T+ and T and into three for T. Let us consider the
case of T+ as example. The discontinuity of 7+(zp, yp)
[cf. (1.6) and (1.8)] along the curve

yo
——/2azo, (5.12)

~+( &+) L

= b,G+ (xo, y, ) + dt g(t)
~+(~o ~ ) p

xdx dyT x, y h+ x, y;t xp, yp,

(5.13)

causes a discontinuity in T+ along this curve. Indeed,
if we flx xp and approach y, —:—/2azp &om the right,
yp +y+, and &om -the left, yp ~ y, , in Eq. (2.11), the
deference T+(xo, y+) —T+(xp, y, ) reads

AT+(xp, y ) = lim T+(xo, yp) — lim T+(xp, yp)
Po ~Pc Po ~pc



1992 0 KAgJA gIM&ENBERGJAUNE MASOLIUERJ~s&p M. ~RRA,

where

1
gpss / (y g v

) ~ ( )~G+(*o,y-) = ~e

have ~ed the fact that aln deducing Eq. (5.14),
exp onentixponential @(t) leads to [see Eq. (2.13)]

1 ( ~~+G+(zp, yp) = —
i

1 —e (5.15)

s. 1.6) and (1.8) it follows thatFurthermore, from Eqs. (1.6, an

2zp~+(*o,y.+) = + 2zp) r+(xp, y, ) =

(5.16)

as a function ofresults for T xo, poFIG. 5. Simulatson res
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along the curve

yp ——/2a(L —xp) . (5.18)

inc, ives bath T+ and T [see Eq. (3.16)],Since T(zp, yp) involves a
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rameters of Fig. 5, that is, a = A = 1. The squares and
crosses are simulation results for higher values of a and
A while keeping a2/A constant at the value unity. As in
Fig. 6, the values of the mean exit time as a and A grow
converge to those of the kee inertial system driven by
white noise.

VI. SUMMARY

P U

p

SQ

FIG. 7. T(zs, 0) as a function of the initial position zo.
The solid curve is for the same a, A, and L as in Fig. 5. The
curve is the intersection of that Sgure arith the plane yo

——0.
The crosses ( x) are simulation results for a = 10 and A = 100,
while the square symbols (0) are obtained with a = 100 and
A = 10 . Aside &om the diHerences in the values of the mean
exit times at the boundaries (zs = 0 and 5), all the results
lie on a single curve that corresponds to the mean exit time
T(zs, 0) for the free inertial process driven by white noise of
intensity D = a /A = 1.

w'hile the square symbols correspond to the values a =
100, A = 104. Note that the discontinuities move ofF
the graph because they occur at larger values of yp as
a grows. Moreover, with increasing A and a the curves
converge to the curve of the mean exit time or mean first
passage time for a free inertial system driven by white
noise, as explained in Sec. IV.

Finally, Fig. 7 shows the intersection of the surface
T(2:p, Qp) and the plane yo

——0. More precisely, the in-
tersection we plot is with the plane yp —+ 0, as can be
seen &om the cMerent values of the mean exit time at
the boundaries. Thus, for instance, the mean exit time
at xp = 0 vanishes while it does not at xp ——I. The
solid curve again shows our simulation results for the pa-

The exit time out of an interval for a free inertial pro-
cess driven by a dichotomous random acceleration has
been analyzed both analytically and n»merically. We
have derived integral equations for the mean exit time.
If the dichotomous process is Markovian, these integral
equations reduce to partial differential equations that in
turn reduce correctly to those that have been obtained
by other methods in the limit of Gaussian white noise.

We have been unable to solve these equations analyt-
ically, but have found them useful in understanding the
behavior of the mean exit time obtained &om direct nu-
merical simulations of the process. The most interesting
aspect of this behavior is the appearance of discontinu-
ities in the mean exit time as a function of the initial
position and velocity of the process. We map out the
phase space behavior of the mean exit time, identify the
discontinuity curves, and provide a lower bound for the
values of the discontinuities.
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