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Dynamical simulation of a quantum harmonic oscillator in a noble-gas bath
by density-matrix evolution
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A density-matrix evolution method [Berendsen and Mavri, J. Phys. Chem. 97, 13464 (1993)]
coupled to a classical molecular dynamics simulation was applied to study a quantum harmonic
oscillator immersed in a bath of Lennard-Jones particles. Eigenfunctions of the three lowest levels
of the unperturbed oscillator were used as basis functions. Time-averaged populations of vibrational
levels obey Boltzmann’s distribution law. In the calculated vibrational spectrum asymmetric peak
broadening associated with blueshift is observed in a dense argonlike bath.

PACS number(s): 05.30.—d, 02.70.Ns, 03.65.Sq, 34.30.+h

I. INTRODUCTION

Molecular dynamics (MD) simulation is a valuable tool
for the calculation of equilibrium and nonequilibrium sta-
tistical mechanical quantities, especially for systems that
are too complicated for analytical treatment. Classical
MD simulations are based on the premise that particles
being simulated are described with sufficient accuracy
by the laws of classical mechanics. However, there are
many systems of interest for which classical mechanics
provides a sufficiently accurate description of the motion
for almost all the degrees of freedom, while for a small
number of degrees of freedom a quantum mechanical de-
scription is required. Quantum treatment of all degrees
of freedom would be impractical, even using the most
powerful computers.

The path integral (PI) method can blend classical and
quantum degrees of freedom and yield quantum dynam-
ics [1]. The traditional view of the PI method is that it
is not able to predict quantum dynamics due to numeri-
cal difficulties in the calculation of the multidimensional
phase integral [2]. The large phase cancellation makes
the integral calculation extremely difficult. However, re-
cently progress has been reported for some systems [3-6].
The traditional application of PI where the quantum par-
ticle is described as a closed necklace of beads gives only
correct ensemble averages but cannot be considered as a
quantum dynamical method.

The Car-Parrinello method [7] essentially solves
the many-electron Schrodinger equation in the Born-
Oppenheimer approximation for the ground state for ev-
ery time step, using a local deunsity functional Hamilto-
nian.

Quantum dynamical simulations provide a complete
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solution of the time dependent Schrodinger equation for
one or more quantum particles in an environment of clas-
sical particles. Wave packet propagation [8] falls into
this category. The method of Selloni et al. [9] decribes
the wave function on a grid and solves the time depen-
dent Schrodinger equation by a split operator technique.
The method is more general and could be employed for
reactive processes. The method of Selloni et al. is in
its original form restricted to the ground state Born-
Oppenheimer surface. Very recently a surface-hopping
method was applied to study nonadiabatic transitions of
a solvated electron, based on the scheme of Selloni et al.
[10-12]. In this case the method seemed to correctly pre-
dict the probabilities for nonadiabatic transitions, mainly
due to the large energy gap between the states and hence
low probabilities of hopping.

A density-matrix evolution (DME) method was re-
cently developed by us. The method is capable of blend-
ing classical and quantum degrees of freedom in MD sim-
ulations, while conserving the total energy. Its detailed
description is given elsewhere [13]. The DME method
was applied to nonadiabatic intramolecular proton trans-
fer in an aqueous solution [14].

Collisions between a quantum harmonic oscillator
(QHO) and classical noble-gas atoms were studied by sev-
eral authors [13,15,16]. These studies were restricted to a
single noble-gas atom and to collinear collisions. Herman
and Berne [17] studied the influence of a noble-gas bath
on the vibrational spectrum of diatomics by Monte Carlo
simulations. Berens and co-workers [18,19] simulated vi-
brational and rotational spectra of diatomics embedded
in an argon bath by classical molecular dynamics and
analytical quantum corrections. Lynch et al. [20] studied
by MD the vibrational spectra of hydrogen adsorbed on
Ni and Pd surfaces. A QHO immersed in a noble-gas
bath is a typical system where the argon atoms are de-
scribed with sufficient accuracy by the laws of classical
mechanics, while the QHO itself requires a quantum de-
scription. The model is a prototype for energy transfer
from translational to vibrational degrees of freedom and
with modifications of the potential the model can be ap-
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plied to proton tunneling in hydrogen bonds or to charge
transfer reactions.

We put a QHO at the center of the simulation box,
surrounded it with Lennard-Jones atoms, and applied
periodic boundary conditions. We avoided quantum or
classical treatment of rotations and translations of the
harmonic oscillator by fixing the QHO to the center of
the simulation cell and allowed vibrations to take place
only in the z direction. The QHO was approximated by
expanding its wave function in the three lowest eigen-
states and its dynamics was described by density-matrix
evolution equations, while for the noble-gas atoms classi-
cal equations of motion were assunmied. The quantum and
classical subsystems were properly coupled and the dif-
ferential equations were integrated simultaneously. Con-
servation of total energy was observed for a molecular dy-
namics simulation of QHO and classical noble-gas atoms
when no coupling to a temperature bath was applied.

The outline of this article is as follows. Section II de-
scribes the computational methods. Section III reports
the results of simulations using (i) a QHO immersed in
a diluted noble gas and (ii) a QHO immersed in a dense
noble gas. In Sec. IV some concluding remarks are given.

II. COMPUTATIONAL METHODS

The DME method, introduced recently into MD by
Berendsen and Mavri, is described in detail elsewhere
[13]. Here we give only the basic ideas underlying the
method.

The wave function of the quantum subsystem is ex-
panded on a properly chosen orthonormal basis set of
basis functions ¢:

M

B(E1) = D enlt)pnl6) , (1)

n=1

where £ denotes the coordinates of the quantum sub-
system. The M x M density matrix p is defined as
Pnm = CnC),. When ¢, are chosen as eigenfunctions of
the unperturbed quantum oscillator, each n can be iden-
tified with a quantum level. The n level system can be
described by the time dependent density matrix p with
dimension n x n. Note that the matrix p is complex
but Hermitian. Diagonal elements of the density matrix
represent populations of the levels, while the off-diagonal
elements contain phase information. A suitable choice
for the initial condition of the density matrix is p;; = 1,
and all other elements zero, implying that the quantum
subsystem is initially in its ground state, with unspecified
phase.

If necessary, the basis functions are orthogonalized. In
the present case, the latter step can be avoided, since
the basis set we use consists of Gauss-Hermite functions,
which are exact solutions of the unperturbed harmonic
oscillator. In the present study we applied the first
three Gauss-Hermite functions for a three level QHO
and therefore a minimal basis set was used. The H°
matrix elements can be calculated analytically, where

HY, = (n|H°lm) and H° stands for the Hamiltonian
of the unperturbed harmonic oscillator. Note that H°
is diagonal with the elements corresponding to the en-
ergies of the unperturbed quantum harmonic oscillator,
ie., B =(k+1/2)fw and k =0,1,2.

From positions of the classical particles acting on the
harnmionic oscillator the perturbation Hamiltonian matrix
elements can be calculated from

U N ’
Hn,m = Z<n|Hi |m)a (2)
=1

where H; stands for the interaction between the quan-
tum and the ith classical particle and the sum runs over
N classical atoms. A pair-additive interaction energy
between the QHO and classical noble-gas atoms was as-
sumed. The matrices H® and H are summed and the
Hamiltonian matrix is calculated, H = H® + H'. The
energy of the quantum subsystem can be immediately
calculated,

Eq = Tr(pH). (3)

Note that diagonalization of H is not required.

In order to couple the classical degrees of freedom with
the quantum subsystem it is necessary to calculate the
forces on the classical particles. Matrix elements for cal-
culation of the Hellmann-Feynman force are defined as

O0H
an,u - <n ‘% m>1 (4)

where u stands for the directions z, y, and z, respec-
tively, on each classical particle. The force acting from
the quantum subsystem on a classical particle in the u
direction is

FQ = Tr(pF.). (5)

The quantum force component was added to the classical
force,

N
P ©)
Pl

F,=F2 -

and this total force is used to update the velocity and
position of the classical particle.

The density matrix evolves with time according to the
Liouville-von Neumann equation [21]

d i
7P = 5(PH—Hp). (7)
The system of differential equations for the DME and
equations of motion for the classical particles are inte-
grated simultaneously. The MD scheme is somewhat re-
lated to the method of Selloni et al. [9], but an important
advantage is that excited states and hence nonadiabatic
transitions can be treated.

To summarize the DME-MD scheme, the classical sub-
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system is coupled to a quantum subsystem by forces that
are different for various quantum states, while the quan-
tum subsystem is coupled to classical degrees of freedom
by changes in H'. The equations of motion ensure that
total energy is conserved [13]. In the case that the ba-
sis functions are restricted to a description of the ground
state the method becomes adiabatic, i.e., dynamics is re-
stricted to a single Born-Oppenheimer surface and can
be related to recent adiabatic studies of proton transfer
reactions [22,23].

We modeled the quantum harmonic oscillator in one di-
mension along the z axis. We considered only deviations
from the equilibrium bond length described by a quan-
tum coordinate £ = r — rg, where r¢ is the equilibrium
bond length of the oscillator. The mass of the oscillator
and a force constant were chosen in such a way that the
frequency of the unperturbed oscillator was 1000 cm™?,
corresponding to a typical chemical bond stretching fre-
quency. When integrating the equations of motion, the
position of the quantum oscillator remained fixed at the
center of the simulation cell. An appropriate picture of
the system is a single chemical bond stretching on the
surface of a macromolecule or (chemi)sorbed molecule on
a catalyst’s surface. By transformations given elsewhere
[16] one can cast the model into a vibrating diatomic
molecule with appropriate scaling of reduced mass and
force constant.

The interaction energy between QHO and noble-gas
atoms was described by a Buckingham potential V =
Ae~? since calculations of the integrals using series
expansion (see Appendix) are relatively easy with this
functional form of the potential function. Values of pa-
rameters were A = 1 x 10° kcal/mol and b = 4 A-1.
Forces between QHO and atoms constituting the bath
were therefore repulsive for all distances. The interac-
tion energy between noble-gas atoms was described by a
Lennard-Jones potential V = 4¢(o'?/r'2 — ¢%/r%) with
o =3.405 A and € = 0.23845 kcal mol™?, corresponding
to the values for argon.

Equations of motion and DME equations were inte-
grated simultaneously by the fourth order Runge-Kutta
method with a time step of 0.1 fs for 20 ps. MD was car-
ried out at constant temperature and constant volume.
The algorithm of Berendsen et al. [24] was applied for
the temperature coupling to a bath with a temperature
of 1000 K with a coupling time constant of 77 = 50 fs.
The main reason for performing the simulations at 1000
K was that at this elevated temperature excited states
are more populated than at room temperature, which
makes the analysis more reliable. In addition, at elevated
temperature the relaxation time of the system is shorter,
which allows the use of shorter equilibration time. MD
simulations were performed at constant volume, using a
cubical simulation box with edge length of 15 A. Periodic
boundary conditions with a spherical cutoff of 7.5 A were
applied for the calculations of forces and interaction en-
ergies. We used two densities: a system of 27 atoms
corresponding to a reduced density of 0.316 and a sys-
tem of 80 atoms corresponding to 0.936. The densities
can be compared with the experimental solid triple point
density of argon of 0.9647 [25].

III. RESULTS AND DISCUSSION

The time evolution of the diagonal elements of the den-
sity matrix for a three level QHO in a bath of 26 Ar
atoms is shown in Fig. 1. Individual collisions of noble-
gas atoms with the QHO can be observed as separate
dips in the ground state populations and peaks in ex-
cited state populations. Since most of the collisions are
elastic and only a few collinear collisions were observed
in the simulation time due to the low density, the equi-
librium was not achieved during the 20 ps MD run. By
increasing the number of Ar atoms to 79 a rapid decay of
the ground state population and a simultaneous increase
of the excited state population were achieved in the first
couple of hundred femtoseconds (Fig. 2). Quantities were
analyzed between 2 ps and 20 ps. Average values of the
populations are given in Table I. Time-averaged popu-
lations appear to be Boltzmann distributed. Time aver-
ages of the diagonal elements of the density matrix can be
compared with calculated populations (i) assuming that
during the MD the quantum levels are fixed to their un-
perturbed values, which leads to an analytical expression
and (ii) taking into account the shifted energy eigenvalues
obtained by diagonalization of the Hamiltonian in MD.
Using eigenvalues from MD the average Boltzmann factor
and associated free energy differences between the vibra-
tional states of the QHO were calculated. Free energy
differences (Table I) reveal that in a simulated system
the spacing between the levels in terms of free energies
increases relative to the in vacuo value. It is worth men-
tioning that the first method represents an approxima-
tion that is valid if the perturbation of the quantum sys-
tem by the environment is weak, while the second method
is exact in the thermodynamic limit.

From the expectation values of the displacement £
the vibrational spectrum was calculated by fast Fourier
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FIG. 1. Time evolution of the diagonal elements of the den-
sity matrix for a three level quantum harmonic oscillator in a
diluted Ar bath at 1000 K (26 Ar atoms in a simulation box of
15 A x 15 A x 15 A): ground state poo (thick solid line), first
excited state p11 (thin solid line), and second excited state p22
(dashed line).
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TABLE 1. Populations of vibrational levels of a perturbed
quantum harmonic oscillator in a dense Ar bath at a tem-
perature of 1000 K. (a) Time average from the molecu-
lar dynamics run between 2 ps and 20 ps. (b) Analyt-
ically calculated from Boltzmann distribution by assum-
ing that the collisions do not shift the equidistant vibra-
tional levels, which are those of the unperturbed oscilla-
tor. (c) As in (b) but taking into account MD-calculated
averaged Boltzmann factors in the interval between 2 ps
and 20 ps. The values for —kT In{exp[—(E1 — Eo)/kT])
and —kT In{exp[—(Ez2 — Eo)/kT]) were 3.21 kcal mol™*
and 6.99 kcal mol™!, respectively, which can be compared
with the in vacuo values of 2.86 kcal mol™' and 5.72
kcal mol™!. Errors evaluated from 2 ps subaverages are
given in parentheses, and have been calculated according to
{Zil(m; — z)?/[S(S — 1)]}*/2. Herein S is the number of
subaverages and z is the average over subaverages ;.

|| Method | Poo | P11 P22 I
MD (a)|  0.864(0.012)|  0.122(0.010)| _ 0.018(0.002)
(b) 0.773 0.183 0.043
(c) 0.814 0.162(0.004)|  0.024(0.002)
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FIG. 2. Time evolution of the diagonal elements of the den-
sity matrix for a three level quantum harmonic oscillator in
a dense Ar bath at 1000 K (79 Ar atoms in a simulation box
of 15 A x 15 A x 15 A): ground state poo (a), first excited
state p11 (b), and second excited state p22 (c).

transform (FFT). Here we apply linear response theory,
which predicts proportionality between the experimen-
tal vibrational spectrum and the power spectrum of the
Fourier transformed time course of the vibrational coor-
dinate multiplied with a factor proportional to w [18,26].
Note that the factor (1 —exp~"/*2T) implying the ther-
mal equilibrium between the ground state and excited
states is already implicitly included in the DME equa-
tions. We assume that changes in the dipole moment
(for infrared spectra) or changes in polarizability (for
Raman spectra) are proportional to £. Since the value
of the factor w is one to two orders of magnitude lower
at frequencies between 0 and 200 cm™!, corresponding
to vibrational modes between the QHO and noble-gas
atoms, than at the resonance frequency, the simulated
band in the low frequency region is weak. We would like
to stress that in our MD simulations coordinate origin
and orientation of the QHO were constrained. Therefore-
the contributions to the spectrum due to rotation, corre-
sponding to low frequencies, were not taken into account.
In addition, no filtering techniques were applied in FFT
and we are aware that some artifacts due to truncation
and insufficient statistics are possible [18].

The siniulated spectrum is shown in Fig. 3. A blueshift
with distorted symmetry is evident for the 1000 cm™!
peak. In addition, a weak band appeared at frequencies
around 100 cm™!, corresponding to the intermolecular
mode of QHO and colliding noble-gas atoms. This low
frequency mode has the classical analogy of response of
a diatomic to a collinear collision with a noble-gas atom
by shrinking the bond length.

The spectrum can be compared qualitatively with the
experimental and simulated infrared and Raman spectra
of diatomics in an argon bath [17-19]. It is worthwhile
to emphasize that neither the experiments nor the pre-
vious simulations were performed at such a high temper-
ature. In addition, contributions due to rotations of a
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FIG. 3. Power spectrum of the Fourier transform of the ex-
pectation value of £ multiplied by w for a quantum harmonic
oscillator and 79 Ar atoms. Note that the vibrational fre-
quency of the unperturbed oscillator is 1000 cm™'. Abscissa
is given in cm™!, while the intensity is in arbitrary units.

QHO are missing in our simulated spectrum. In a sim-
ulated isotropic Raman spectrum of Brs in an Ar bath
by Monte Carlo techniques [17] a blueshift with distorted
symmetry was observed. The blueshift increases by in-
creasing the argon density at the densities that are com-
parable with our study. For very low densities a redshift
was predicted.

An additional comparison can be made with the exper-
imental [27,28] and carefully simulated [18] spectrum of
carbon oxide in an argon bath. Fundamental vibrational-
rotational bands with two peaks were observed in vacuo
and at low Ar densities and their coalescence is observed
at higher Ar densities. Experimental studies in dense Ar
were performed at temperatures of 97 K [27] and 298 K
[28].

The authors report an extreme sensitivity of the simu-
lated spectrum to the choice of the nonbonding parame-
ters in simulations. They obtained agreement with exper-
iment only if different nonbonding parameters were ap-
plied for the ground and excited vibrational states [17].
Since in our study the interaction energy between the
QHO and the bath atoms was only repulsive, no rotations
of the QHO were allowed, and our study was performed
at 1000 K, good agreement with the available experimen-
tal spectra cannot be expected.

The noble-gas atoms dynamics could be integrated
with a time step at least two orders of magnitude larger,
but since the DME equations require a time step of 0.1
fs the time step for the integration of the overall system
was taken as 0.1 fs. In the present case the straightfor-
ward usage of the multiple time step MD scheme, as in
the method of Selloni et al., is not applicable. A possible
implementation of the multiple time step MD would be
the integration of the quantum subsystem and the first
solvation shell of the noble gas with a short time step
and the rest of the system with a longer time step. The
time course of the density-matrix elements reveals that

they are rapidly oscillating functions with a frequency
corresponding to the instantaneous spacing between the
levels, which is most of the time close to the frequency
of the unperturbed oscillator. In future applications it
would be worthwhile to transform the DME equations
to eliminate the frequency of the unperturbed quantum
oscillator, which can be related to the rotating frame con-
cept in the theory of nuclear magnetic resonance [29]. We
expect that by inclusion of higher quantum levels even a
higher order expansion in terms of £ would be necessary
or numerical calculation of the integrals would be neces-
sary, as was performed in an adiabatic MD study of the
proton transfer process [22].

IV. CONCLUSIONS

Molecular dynamics simulation of a system with mixed
classical and quantum degrees of freedom was performed
by coupling classical and quantum degrees of freedom
by the density-matrix evolution (DME) method. In the
quantum MD scheme using the DME method, the clas-
sical subsystem is coupled to a quantum subsystem by
forces that are different for various quantum states, while
the quantum subsystem is coupled to classical degrees of
freedom by changes in H', which enters the DME equa-
tions. The forces on the classical degrees of freedom are
computed from a series expansion in the quantum coordi-
nates. Due to the fact that the calculations are based on a
limited set of basis functions, the DME method seems to
be the most suitable for quantum simulations of nuclear
degrees of freedom, where the energy levels are relatively
close to each other and the wave function is localized,
and for electronically excited states of molecules.

Populations of the vibrational levels of a quantum har-
monic oscillator are close to the Boltzmann distribu-
tion. We have simulated the equilibrium distribution of
quantum level populations using nonadiabatic quantum
molecular dynamics. From the averaged Boltzmann fac-
tor the free energy for the transfer from ground to the
excited vibrational levels was calculated and was found
to be larger than the corresponding in vacuo value. We
believe that a discrepancy between the populations cal-
culated by free energy differences and by MD averages
originates from the numerical errors introduced by series
expansion calculations of the integrals.

In the calculated vibrational spectrum of the harmonic
oscillator in the noble-gas bath at 1000 K a blueshift
and distorted symmetry, with a more intensive wing in
the direction of higher frequencies, were observed for the
band corresponding to the intramolecular vibrations. A
weak band was observed at about 100 cm™! correspond-
ing to intermolecular modes. The blueshift results from
the perturbation of the oscillator by the repulsive inter-
action with Ar atoms.

The DME approach seems to be readily applicable
to molecular dynamics simulations of complex systems,
where a few degrees of freedom must be treated by quan-
tum mechanics, while the rest of the system is described
with sufficient accuracy by the laws of classical mechan-
ics. We demonstrated by MD-DME simulation that
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populations of the quantum harmonic oscillator levels
obey the Boltzmann distribution law. This is an addi-
tional proof that coupling between the quantum subsys-
tem and the classical subsystem was realized properly.
Future work will be directed toward more complex appli-
cations, such as reaction dynamics of proton transfer or
charge transfer processes. In addition, the DME method
can easily incorporate an external field. It is a suitable
method for computational support of femtosecond spec-
troscopy, since it can easily simulate optical dephasing
and pulse echo experiments.
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APPENDIX

The details of the calculations of different matrix ele-
ments used for the calculation of H and of the Hellmann-
Feynman force will be presented here. The first three
Gauss-Hermite functions are

&, = Nyexp(—at?), (A1)
P, = N22yexp(—a£2), (A2)
®; = N3(4y® — 2)exp(—a§2), (A3)

where y = £(mw/R)Y/2. If € is given in A then y =
5.4475315 €. For a 1000 cm ™! oscillator the value of the
exponent is fixed a = 14.8378 A~2.

The contribution to the matrix element due to pertur-
bation of the QHO by a single noble-gas atom is given
by

Him= [ 2.4

x exp{—b[(z — £) + y* + 22|/?}
X @, (£)dE,

where it is assumed that the QHO was positioned at the
local coordinate system origin and z,y, z are the Carte-

(A4)

sian coordinates of a noble-gas atom. Note that the
equation above corresponds to the individual summation
terms in Eq. (2). The integral can be calculated analyti-
cally only if simultaneously y = 0 and z = 0. Due to the
fact that the probability density of the quantum particle
£ is narrow and is centered around £ = 0, a series expan-
sion of the term A exp{—b[(z — £)? + y® + 2%|*/2} can be
performed with respect to £ around £ = 0.

By introducing a new variable r = (z2 + y? + 22)!/2
the term V' = Aexp{-b[(z — €)% + y? + 2%]'/?} reads,
after the expansion and rearrangement,

V' & A 4 M€ + Af? + A3, (A5)
where
M= demtlel (A6)
1, _, (b%2?  ba?
A2 = EA ( 2 r3 ) (A7)

3 3 2 3 3
o= Laere (BLER #ab BI2PY

6 r3 rd

An important advantage is that the integral can now be
expressed in terms of integrals (m|n), (m|€|n), (m|€2|n),
and (m|¢3|n) that are independent of the positions of
classical particles and are thus calculated prior to the
MD run and stored.

With the same procedure the matrix elements for the
Hellmann-Feynman force are calculated for each term in
Eq. (4). The Hellmann-Feynman forces’ matrix elements
read

, —br
F, =~ bAu (Er— + 1€ + pa€® + uafa) ) (A9)
where
|z | e b 1
n1 = _—rz b + ; y (A].O)
| Zle7t (B2 3b 3
pe =g Stats) o (A11)

|22 e ® (b3 6b%2 156 15
=" \mtwtwte), A1)

and u stands for z, y, and z, respectively, and r is again
(zz +y2 +22)1/2'
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