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Decay of quasibounded classical Hamiltonian systems
and their internal dynamics
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We study numerically the decay of a Hamiltonian system, whose transient bounded dynamics
is fully chaotic but non-necessarily fully hyperbolic. We show that the fully hyperbolic character
of the trapped orbits is related to a purely exponential decay law, while the existence of parabolic
trapped orbits leads to a crossover between an exponential decay and an algebraic decay. We relate
the behavior of the decay law to internal distributions that characterize the internal dynamics of
the system.

PACS number(s): 05.45.+b

I. INTRODUCTION

The present work is devoted to studying the decay
of quasibounded classical Hamiltonian systems. A qua-
sibounded system is a system whose dynamics can be
transiently bounded to a finite region of the phase space
where an infinite set of nonstable periodic orbits are in-
cluded before showing unbounded dynamics. The decay
process is the transition from the bounded motion to the
unbounded one. The decay law corresponding to a given
system is related to the bounded transient dynamics. In
recent works [1—3] the correspondence between the expo-
nential decay and foregoing chaotic motion on the one
hand and the algebraic decay and previous regular mo-
tion on the other hand has been extensively discussed.
As it is shown in Ref. [3] through an example, this cor-
respondence is not one to one. In other words, there
are fully chaotic systems, without regular islands, whose
decay law can be nonexponential. As we will show in
the present work, the exponential decay is related to the
fully hyperbolic subset of the invariant trapped set, that
is, the hyperbolic and isolated trapped periodic orbits,
while the fully chaotic systems can have nonhyperbolic
(namely, parabolic orbits [4]) and nonisolated trapped
periodic orbits that give rise to algebraic decay.

The invariant set of the system that we will study can
be fully hyperbolic or it can have a parabolic subset ac-
cording to the value of a simple parameter. Thus the
decay law may be fully exponential or show a crossover
between a stretched exponential and an algebraic decay.
We will show how the decay law can be related to the
foregoing internal dynamics.

Our work is organized in the following way. In Sec. II
we introduce the system; it is geometrically similar to
the Sinai billiard [5] but it is a finite well so we will call
it the Sinai well. . In Sec. III we show the results of a
n»merical study of the decay varying the control param-
eter that induces the mentioned behavior. Section IV
shows, using ergodic properties, how the temporal decay
law can be related to internal distributions that depend

II. THE SINAI WELL

Let us consider a point particle of unity mass moving
inside a two-dimensional square well of depth —Vp (Vp &
0) and side a. We distinguish three cases according to
the value of the total energy E = p2 j2 —Vp.

(a) E & 0. The particle remains trapped bouncing
elastically on the walls and the problem is indistinguish-
able from the square rigid box, i.e., a real billiard. We
will call this motion billiard.

(b) 0 & E & Vp. The particle remains in billiard mo-
tion if

+ sin glim i
p

(2.1)

where i = z, y are the two Cartesian components of p
and

1——are sin 1+Vp/E
(2 2)

is the limit angle. Requirement (2.1) is the condition to
have an internal reBection when the particle reaches the
square boundary. When condition (2.1) is not fulfilled,
the particle leaves the well at most in two bounces and
we will say that the particle is in free motion. For a
derivation of these results see Appendix A.

(c) E ) Vp. The particle is in free motion always.

on the internal dynamics. In Sec. V we use the results

of Sec. IV to establish the decay laws for several internal
distributions. In Sec. VI we find the actual decay law to
explain the results shown in Sec. III. Finally, Sec. VII is

devoted to discussions and conclusions. We include three
appendixes. Appendix A explores the condition having

bounded motion in a finite well even with E & 0. Ap-

pendix B shows properties and relations among internal
distributions while Appendix C shows the expected prop-
erties of the parabolic invariant subset studying Poincare
surfaces.
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We will restrict ourselves to case (b).
Since

~
p; ~

are constants of motion when the particle
is in the billiard motion, we can distinguish two disjoint
regions on the phase space: a bounded region that cor-
responds to the billiard motion (billiard region) and an
unbouaded region (free region).

As we can see, E & 0 is a necessary but not a sufBcient
condition to have unbounded motion. The accessory con-
dition [ p, [= const implies a rigid and immutable distri-
bution of energy among the two degrees of &eedom so
that
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/2& Vp,

(2.3)

while (p + @2')/2 ) Vp and the motion remains trapped
even if E & 0 (see Appeadix A).

Now, let us place a circular obstacle, that is, a rigid
circular barrier of radius B ( a/2, in the center of the
well. This change removes the condition [ p; ~= const. In
other words, the fulfillment of condition (2.1), that de-
termines the stay of the particle inside the well, can be
modified after each collision with the circular scatterer.
When the particle hits the circular scatterer there is a
rearrangement of the energy among the degrees of &ee-
dom. Therefore the particle could make a transition &om
the billiard region to the free one after colliding with the
circular barrier. Our particle inside the well can be seea
as a simplified model for a compound system that having
enough total energy to decay it does not decay until the
energy is conveniently rearranged.

In the followiag we will fix a (the side of the square
well) as the uulty of length. Moreover, accounting for
the fact that /2(E+ Vp) is the modulus of the velocity
because the mass m is oae, the ratio a//2(E + Vp) has
units of time, so we can take it as unity of time such that
the only dependence on the total energy E is through
condition (2.2). This election implies

~ p ~= 1 without
loss of generality.

The Poincare surfaces at the boundary of the well are
very useful because the limits between the billiard and
&ee regions are straight lines whose positions are deter-
mined by sin@i; given by expression (2.2). As is usual
for billiards [6,7] we could plot a point each time the
particle hits the bouadary. The ordinate would be the
tangential velocity eq ——cos8 and the abscissa would be
the distance l counterclockwise measured on the bound-
ary &om some chosen point (for example, a vertex of the
square) to the point corresponding to the bounce.

When the system is a real billiard (Vp ~ oo or E ( 0)
the dynamics can be described by an area preserving map
of a cylinder onto itself but as Vo is 6nite and 0 & E & Vo
there will be points mapped &om the billiard to the &ee
region. These trajectories will escape towards in6nity.
The present system is closely related to billiard problems
with holes at the boundary, that is, on the configuration
space (in particular with those of [1]). In our case con-
dition (2.1) introduces holes into the space of momenta.
Figure 1 shows the space of momenta and the mentioned

FIG. 1. Space of momenta. The momentum p lies on the
circumference or radius 1. The arcs of length 2/pm near the
axis p, y„correspond to the &ee region (holes) while the rest
of the circumference corresponds to the billiard region.

holes. The momentum of the particle is represented by a
point oa the circumference of unity radius. The collision
with the central scatterer can be seen, in such space, as
a map of the circumference onto itself. If a point of the
circumference is mapped in such a way that the final mo-
mentum lies on a hole (that is, (p (

or (p„) smaller than
siapi; ) the particle leaves the billiard region. More-
over, as the Sinai billiard problem (without holes) is fully
chaotic and ergodic, we expect that for any set of initial
conditions in the billiard region the I ebesgue measure of
the asymptotic trapped set will be zero when holes are
introduced.

For our study we can reduce the Poincare surface to
one side by introducing appropriate variables.

FIG. 2. Poincare surface reduced to a side. The ordinate
is oq and the abscissa is 2: = l + 1 —h (see the text). The hori-
zontal straight lines show + sin/i; that separate billiard and
&ee motions. The curves deSne regions according to which
side the particle is going to. Numbering the sides in coun-
terclockwise order, the points in I; correspond to particles
going to side i = 1,2, 3, 4 mI~sing the central scatterer. The
points in the primed regions I,' correspond to particles arriv-
ing &om side i but colliding with the central scatterer. The
small regions between Iz - Iq and I4 - I3 are I3.
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We also de6ne the distributions g(t) dt and f(t)dt as the

&action of particles whose first collision with the central

scatterer occurs between t and t + dt and the fraction

of particles whose time between two successive collisions

with the central scatterer is between t and t+ dt, respec-

tively. This latter is equivalent to the &ee path distribu-
tion because ] p [= const. The above distributions are
characteristics of the internal dynamics.

With our definitions, we write

ng(t) = Npmg(t),
t

n2(t) = Np(1 —m)m g(t )f(t —t~ l)dt~ l,
t(i) =p

t t(~)

ns(t) = Np(1 —m) m g(t '
)f(t ' —t ' )f(t —t~ l)dt~'ddt~ l

t(~) =p t(1)=p

t t(i —&)

n;(t) = Np(l —m)' 'm
t(i —1)—p t(i —2)=0

t (~) j=i—1

~ (t('))f(t( —t ' )f(t —t ) f(t —t ' '
)

t(i) =p
(4.S)

n(s) = nq(a) + n2(a) + ns(s) + ~ ~ ~

= No~g(s)(1+ (1 ~)f(s)+ (1 ~) [f(s)] +''')
Npmg(s)

1 —(1 ~)f(s)
(4.4)

Defining for convenience

Q(t) = 1 —N(t)/N, (4.5)

Taking Laplace transform and employing the notation
C[n(t)] = n(s) we obtain

A. Step function

Here we assume that g(t) is a step function.

g(t) = [ (t) — (t —T )]
p

(5.1)

where u(t) is the Heaviside function and Tp its width.
This means a constant rate of collisions with the central
scatterer for 0 ( t ( Tp. For t = Tp all the particles will
have collided.

Using (4.7), we obtain the corresponding f(t):
we have

f(t) = b(t —T,), (5.2)
mg(s)/s

1 —(1 —u) f(s)

Taking into account that (see Appendix B)

(4.6) that is, the delta function. This means a constant time
Tp between two successive collisions for all the particles.
So, the mean time between collisions is Tp.

Such distributions lead to

so that

we finally find

dg/dt = —g(0)f(t),

f(s) = 1 —sg(s)/g(o)

(4.7)

(4.S) that is,

Q() ~

~
~j p( os)

(Tps2) exp (Tpa) —(1 —tu)
'

t

Q(t) = — (1 —m)~'~ 'jdt',
Tp p

(5.3)

(5.4)

mg(a)/s
1+(1- )[g() /g(o) —1]

(4.9) where [t'/Tp] means the integer part of t'/Tp. That is,
calling n = [t/Tp], we have

Then, in order to know Q(t), we must be able to inverse
transform (4.9).

(5.5)

V. TEST

To establish the relevant characteristics of the internal
distribution about the decay law, we test (4.9) using four
distributions g(t). Three of them lead to the well known
inverse transformed Laplace function Q(t). The results
of the present section will be useful in Sec. VI.

and finally we find

Q(t) = 1 —(1 —m)"

ln(l —m)
1 —exp 7

Tp

and using (4.5)

(5.6)



1952 A. J. PENDRIK, A. M. F. RIVAS, AND M. J. SANCHRZ

N(t) = exp
0

ln(l —ip)

T (5.7)
C. Exponential function

In this case we assnme that g(t) is an exponential func-
tion.

B. Exponentially decreasing ladder 1
g(t) = —exp( —t/Tp) .

Tp
(5.ii)

Now, we suppose g(t) as a series of step functions
whose heights decrease geometrically.

Here Tp is the mean time between collisions. Substituting
in (4.9)

g(') =&) a" '(u( —(j —1)T.) -u(t jTp-)},
j=l

(5.8)

with C = (1 —ap)/Tp and ap ( 1. In the present case we
obtain

this gives

4(a) =
I(Tpa) (1+ip/Tp)

N(t) = exp( mt/T—p) .
0

D. Poorer decreasing ladder

(5.12)

(5.13)

ip(1 —ap)
Tps

Thus, using the preceding results,

N(t) = [1 —ip(1 —ap)]"
Np

exp (Tpa) —1

exp (Tpa) —[1 —io(1 —ap)]
. (5.9) Here we suppose that g(t) is a series of step functions

like (5.8) but the heights of the steps decrease according
to a power law.

1
g(t) = ) (1/j)~(u(t —(j —l)Tp) —u(t —jTp) }.

Tp((w), ,
(5.i4)

= exp
in[i —ip(1 —ap)]

Tp
(5.10) Here, ((p):—P. i 1/j~ is the Riemann function. Thus

we obtain

( ur [1 —exp (—Tpa)]Z exp (Tpa)

~ Tp((p) a2
& (1 + (1 —ip) ([1—exp (—Tpa)] Z exp (Tpa) —1}) ' (5.15)

where Z = P. i exp( Tpaj)/j~. Th—e Laplace inverse

transform of (5.15) is not a simple known function, there-
fore we must inverse transform numerically. However, we
can study its behavior at the beginning taking the limit
t + 0 (a ~ oo ). For such a limit

exp ( Tpax)—
l Xn (5.19)

ourselves to p = n integer equal to or larger than 2. At
first, we replace the sum of (5.16) by the integral

.exp ( Tpaj)—lim. ~~ ) . exp (—Tpa) )j~j=l

therefore (5.15) becomes

(5.16)
Then, using the identity [8]

1
E„(z) = [exp(—z) —zE„ i(z)]

and

ip ) exp (Tpa) —1

g((p)Tpa2) exp (Tpa) —(1 —ip)
(5.17) exp ( Tpaj)—

jnj=l
(5.2i)

N(t)
exp

Np

ln(1 —ip)
) (5.18)

that is, exponential decay. To see the behavior for the
long t tail we take the limit t m oo (a m 0). We restrict

we obtain

Tp 1
Q(a) ——a exp (Tpa)E„ i(Tpa),

((n)a Tp

that means

(5.22)
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N(t) T,'" "
(t + T )(ra —1) ' (5.23)

which is a power law decay.
In su~mary, we conclude that distributions g(t) that

decrease exponentially or faster lead to exponential decay
laws while an algebraic decrease of g(t) corresponds to an
initial exponential decay that changes into a power law
decay for long times. This fact is related to the well
known anomalous cMusion and the algebraic tail for the
velocity autocorrelation function that take place in the
periodic Lorentz gas when the horizon of the particles
becomes infinite [9—11].

VI. DECAY AND NONISOLATED PARABOLIC
PERIODIC ORBITS

As we have said, the velocity autocorrelation func-
tion that corresponds to the square periodic Lorentz gas
shows a crossover between a stretched exponential and
an algebraic decay when the diameter of the scatterers
(2R) is smaller than the distance between their centers
(a = 1). This behavior can be related to the parti-
cles that travel along channels defined by the directions
such that v„/v~ = zq/z2 (here zq and z2 are coprime
integer numbers) and they miss the scatterers. For the
square array there are at least two such open channels
corresponding to x direction and y direction. Using the
notation of Ref. [9], we will call these channels a and
P, respectively. The nn~ber of open channels increases
when the radius of the scatterer decreases. Thus when
~5/10 & R & ~2/4 we have other open channels (p)
that correspond to v„/v = +1. There is an equiva-
lence between the mentioned che~~els and the noniso-
lated parabolic periodic orbits in the system. I et us first
consider the fully billiard problem. The channels a and

P correspond to particles secularly rebounding between
two opposite sides missing the circular scatterer. The
channel p corresponds to particles whose velocities are
parallel to the diagonals of the square (+z /4 directions)
secularly going from one side to the adjacent and since
R & ~2/4 they can miss the circular scatterer. Now let
us consider our system with holes in the space of mo-
menta. Condition (2.1) introduces the billiard and free
regions and the periodic orbits that correspond to a and
p channels lie in the free region. Therefore there are no
parabolic periodic orbits trapped on the billiard region
unless R & ~2/4 and in such a case a crossover between
the exponential and algebraic decay occurs, otherwise the
decay is exponential for all t. These arguments together
with the n»clerical study of Sec. III and the results of
Secs. IV and V suggest the following ansatz for g(t):

g(t) = C'l [u(t) —u(t —To)]

+) a;u(1 —(R/R, , ))D;(1—(R/R, , ))
i=2

x ) (1/j) (u(t —(j —l)TO) —u(t —jTO)) ~,
2=2

where D;(x) are monotonic increasing functions of z be-
tween 0 and 1 such that D, (0) = 0 and D;(1) = 1, a;
are weight constants, and C is the normalization con-
stant. The first contribution to (6.1) is the step function
and it is responsible for the initial exponential stretch.
The second, when it does not vanish (that is, at least
R & ~2/4), comes from particles whose positions and
velocities lie close to those corresponding to parabolic
orbits (open channels in the Lorentz gas). The ratios
a;u(1 —(R/R, , ))D;(1—(R/R, , ))/C can be seen as the
fraction of the initial distribution on the phase space clos-
est to the parabolic orbits that results when R (R,,

As we have just said, we ass»me that the first term of
(6.1), namely, the step function [u(t) —u(t —Ts)] gives
rise to the initial exponential stretch in the decay law.
So, according to (5.7) or (5.18), To must be related to
the exponent

ln (1 —ur)

0
(6.2)

On the other hand, the ergodic result for the mean time
between collisions is known [12]:

(1 —~R')
2R

When R & R„,we have

TO=7

(6.3)

(6.4)

because in such a case, Tp is the mean time between
collisions. But what happens when R (R„? To answer
this question, Fig. 5 shows the exponent resulting from
the best exponential fit to the stretch exponential decay
together with the exponent predicted by (6.2) assuming
7 = Tp as a function of R. The agreement between the
curves suggests that

(1 —z R2)
2R (6 5)

agDg(1 —(R/R, )) = b, (R) (6.6)

even when R & R„. Let us remark that v is the mean
time between collisions only when R & R„. If R & R„,r is the mean time between collisions for the fraction of
particles that decays exponentially. That is, the ergodic
result (6.3) is valid only for the hyperbolic region of the
phase space.

In the following we will use (6.1) to extract information
about the internal dynamics from the observed decay in
Sec. III.

We restrict ourselves to the case of one open channel.
In other words, there are only parabolic periodic orbits
such that v„/v = kl. Because in this case there is only
one critical radius, in the following we drop the subindex.
That is, we rename R, = R,, = ~2/4.

Calling

(6.1) and using (4.9) and (6.1) we obtain
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(s) =
To{1+&(R)K(2) —I])s'

[1 —exp (—Tps)] exp (Tps)[exp (—Tps) + b, (R)P']
1+ (1 —tp)([l —exp (—Tps)] exp (Tps)[exp (—Tps) + b, (R)Z'] —I) ' (6 7)

where Z' = g. 2 exp( Tps—j)/j and we have used the
normalization constant

1

Tp{1+ 6(R)[((2) —I])
(6.8)

b, is the only free parameter of (6.7) so inverse transform-
ing numerically (6.7) and fitting the actual decay we have
determined E(R) for several R. The results are shown in
Fig. 6. Then assuaging the simple form for b, (R),

b(R) = ai 1— R y'
2/4)

(6.9)

since

ln b, = P ln (1 —R/R, ) + ln a, (6.10)

(1 —R/R, )
2

(1 —R/2R, )
(6.11)

P and a can be determined through the best linear fit.
We have obtained P = 1.4776 and n = 0.2741. The fit is
shown in Fig. 6. Figure 7 shows the decay predicted by
(6.7) using (6.9) and the above parameters for four R's
that correspond to systems with only one open channel
(only one parabolic region) and the corresponding actual
decay calculated numerically as in Sec. III.

The parameter P = 1.4776 is consistent with the re-
sults obtained through the study of the Poincare surface
on the boundary (see Appendix C) that leads to

VII. SUMMARY AND CONCI USIONS

In the present work we have studied the decay of a
transient bounded system that does not have regular is-
lands in the phase space. We have established two well
defined behaviors depending on the values of the param-
eter R. Both kinds of behavior are separated by a critical
value R = R . One of them corresponds to a purely ex-
ponential decay law and it occurs for R ) R, while the
other shows a crossover between a stretched exponen-
tial and an algebraic decay ( 1/t) and it occurs when
R & R . %e have related this observed decay to proper-
ties of the internal dynamics using the ergodic assump-
tion that the velocities of particles hitting the central
scatterer between t and t + dt are»niformly oriented af-
ter colliding. Under this hypothesis we have shown that
distributions g(t) such that all the particles inside the
well collide with the central scatterer after a finite time
(finite horizon), that is, exponentially or faster decreas-
ing g(t), lead to a purely exponential decay law. On
the other hand, when g(t) has any algebraic tail for long
times (I/t I) the decay law shows a crossover between an
exponential initial decay and an algebraic tail for long
times.

In our system, finite horizon implies that only periodic
orbits with at least one collision with the scatterer are
allowed in the billiard region. This kind of orbit is hy-

perbolic due to the divergent properties of the circular
obstacle. Thus the purely exponential decay corresponds
to a fully hyperbolic billiard region and the invariant set
of trapped conditions will be the mentioned hyperbolic

—3.00
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0.1

0.01

—4.50
0.001 =

—5.00
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—5.50—3.00 —2.50 —2.00 —1.50 —1.00
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t
In(1 —R/R, )

FIG. 6. The best linear fit to InE vs ln(1 —R/R, ) deter-
mines P = 1.4776 and n = 0.2741.

FIG. 7. Actual decay (solid lines) and predicted decay
(dashed lines) by using the Laplace inverse transformed func-

tion of expression (6.7) with P = 1.4776 and n = 0 2741 for.
four radii (B = 0.23, 0.25, 0.27, 0.29).
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periodic orbits. This set has zero Lebesgue measure and
a kactal dimension. It is easy to calculate this latter
for the set projected on the space of momenta using the
recipe found in the introduction of Ref. [3] and Eq. (5.7)
applied to the circn~ference of unity radius.

On the other hand, a g(t) with infinite horizon is com-
patible with periodic orbits that miss the central scat-
terer. They are coincident with periodic orbits of an
integrable problem, namely, the square billiard. These
orbits are parabolic, that is, lightly»~stable but noniso-
lated. Thus when there are such orbits the billiard region
is not fully hyperbolic and the invariant set of trapped
conditions has a parabolic subset in addition to the hy-
perbolic one.

Thus we conclude that the g(t) of the Sinai well whose
central scatterer radius is R has two contributions. The
first one corresponds to particles whose initial conditions
lie about the hyperbolic zone of the billiard region. We
model this contribution as a decreasing step function
of width To(R) given by the ergodic theory. The sec-
ond one corresponds to particles whose initial conditions
are asymptotic to the parabolic periodic orbits. It must
vanish for R & R,, and its weight increases accordingly
as R decreases starting &om R = R,. where these spe-
cial values of R correspond to the maximum radii such
that the parabolic orbit i can exist. Thus we model this
contribution as an algebraic decreasing ladder times a
weight function that takes into account the above prop-
erties. To test our ansatz we have considered the system
when there is only one class of parabolic orbits, that is,
R, ( R & R„. By fitting the actual decay we obtain
results that are consistent with those corresponding to
study the characteristics of the internal problem, namely,
the billiard.

Another phenomenon that provides information about
the internal dynamics through the study of asymptotic
kee motion is the scattering problem. Recently, a rela-
tion between the decay problem and the time delay in the
scattering problem was found for nonhyperbolic Hamil-
tonian systems [13]. The present way to study the decay
can be improved to describe the time delay distribution
in the scattering problem [14]. For this it is necessary
to change g(t) &om one that corresponds to the micro-
canonical population to one appropriate to describe the
scattering process.

—Vo ifz&0andy&0
0 otherwise .

that is,

——Vp —————E,~II
2 2

(A2)

Region
V(x,y) =—Vo

A

egion t

(x,y) =—V

Let us suppose that the particle comes &om region I and
arrives at x = 0 in point A. The momentum of the par-
ticle pi defines an angle @; with the normal n at A as
is shown in Fig. 8(a). At first, we will study the condi-
tions required for the particle to move into region II. Of
course, the total energy E must be positive but it is not
enough. Moreover, the conservation of the y component
p„of the moment»m must be satisfied because the ex-
ternal force in this direction is zero. Thus we have the
following conditions:

(A1)
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APPENDIX A

The present appendix is devoted to exploring the con-
ditions (2.1), (2.4) and the definition of Qb (2.2), to
have billiard motion with total energy E ) 0.

Let us consider the two-dimensional motion of a par-
ticle in the potential defined by

(b)
FIG. 8. One particle with total energy E ) 0 moving on

the plane x-y. In the Srst quadrant the potential is V = —Vo

(region I) while it is V = 0 in the others (region II). (a) The
particle can enter region II because Q; & @u at A. (b) In
this case Q; ) v)~; at A and B, so the particle is refiected,
remaining in region II.



1956 A. J. PRNDMK, A. M. P. RIVAS, AND M. J. SANCHL~'

and

pI »nW, = pn»na-
l(a, t) = vtcosa+ (R —v t sina ) ~

That is,

R[.om these relations we conclude that pII & pI and there-
fore vj; ( a. Because the mmci~nm a is m/2, for a given
energy there is a maximn~ @, such that conditions (A2)
and (AS) can be f»ii~Hed. Thus, caHing @i;m such an
angle, from (AS), we have

where

bl(a, t) = dt-dl

dt

I(a, t)dt = 2~l(a, t)bl(a, t), (B2)

@II
sin@lim =

PI
(A4)

(v sin a)tscosA— dt.
(R2 —vlt2 sin2 a) '&2 (BS)

and relation (A2) implies the definition (2.2),

1

Ql + Vo/E

If tj, & Qi;, that is,

I pr„ I

& sin il'lim ~

PI
(A6)

a1
g(t)dt oc I(a, t)da dt.

~1

Here, az ——arcsin[R/gR + (vt) ). So, after a lengthy
but straightforward calculation we obtain

g(t)dt oc 4nvRdt . (85)

To obtain g(t) we must integrate (Bl) over all possible a
values such that the collision can occur.

the particle is perfectly re8ected and cannot enter region
II.

Ass»ming that the particle is refiected in A, we supose
it arrives at y = 0 in B [see Fig. 8(b)]. Now, to have a
second refiection we evidently need

I pr. I & sin 4'lim ~

PI
(A7)

p„'/2 & E .

On the other hand, starting from (A7) we obtain

p'/2 & E,
but E = (p + p„)/2 —Vs so conditions (2.S) hold.

(AS)

(AQ)

APPENDIX B

In this appendix we discuss useful properties of distri-
bution g(t) and f(t) for systems like the Sinai billiard
and Lorentz gas.

Let us consider one circular scatterer of radius B im-
mersed in a +~iform bi+mension~& distribution of moving
kee point particles all of them with»niformly oriented
»»ity velocities v. The fraction of particles that collides
with the scatterer between t and t + Ct whose velocity
subtends an angle a with the radial direction (i.e., the
straight line defined by the center of the scatterer and the
considered particle) is proportional to the area I(a, t) of
a circular shell of radius

Relations (A6) and (A7) are relation (2.1), that is, the
condition to have billiard motion in the square well. We
stress that the total energy must be E ( Vi) because to
satisfy (A6) and (A7), g~;m must be smaller than m/4.

We can develop an alternative form to formulate the
conditions (2.1) using (2.2). Starting from (A6) and tak-
ing into account that pi = /2(E+ Vs) we get

Therefore the fraction of particles that collides with the
scatterer between t and t+dt is independent of t. We can
represent this property as a map that preserves the n»m-
ber of colhding particles: for each particle that collides
at time t, extending its trajectory backward an arbitrary
tjme bt, we obtain another that collides at time t + &t.

Now, let us consider a system like a I orentz gas, that is
a system of point particles as above but with many fixed
scatterers. We tag a scatterer and we ask for f(t), the
distribution of particles whose time between a previous
collision with any scatterer and the tagged one lies be-
tween t and t + dt. As we will see, it is closely related to
g(t). The above considerations show that the g(t) of the
actual system is modified with respect to the g(t) corre-
sponding to the system with one scatterer by the shadows
and pen»mbras of the other scatterers. let us consider
all the particles that collide with the tagged scatterer at
time t. The fraction of such particles is given by g(t) and
we extend their trajectories backward a time dt. There
are two possibilities. (a) The prolonged trajectory lies
on the sea of particles and then there is a particle that
will collide at time t + dt and therefore it contributes to
g(t + dt). (b) The prolonged trajectory penetrates into a
scatterer, then it does not correspond to a colliding par-
ticle at time t+ dt and therefore it does not contribute to
g(t+ dt). So we conclude that —[g(t+ dt) —g(t)] is pro-
portional to the n»~her of particles that collides with the
tagged scatterer at time t aRer they have collided with
another scatterer. Thus

f(t) = q dt. ——dg
dt

(B6)

The constant g = 1/g(0) is determined by the normal-
ization condition
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because g(oo) = 0.
Consequently, we obtain for the mean time between

collisions x,

studying how the intersection of the area initially defined

A4AI2
tf(t)ch

0

1 dgt—dt
g(0) o dt
1

u(0)
(B8)

with its successive images decreases, that is, how the
n»mber of points arriving at side 1 &om side 4 missing
the circular scatterer and then going to side 2 missing the
circular scatterer decreases as a function of the number

of collisions with the sides, n. Figure 9 shows the initial
area. The curves AB and BC are given by

APPENDIX C

This appendix is devoted to studying the distribution
g(t) for long times corresponding to the billiard problem
when there is a nonhyperbolic invariant subset for the
decay. We will restrict ourselves to only one open channel
in the billiard region, that is, to having parabolic periodic
orbits such that v„/v = kl and ~5/10 ( R ( v 2/4.

We will consider the dynamics on the Poincare surface
corresponding to the boundary. That is, we will study the
map (I, v&) ~ (I', vt) which is induced by the dynamics on
the Poincare surface. As we have already mentioned, the
symmetries of the problem (corresponding to the group
C4„) allow us to reduce the map to only one arbitrarily
chosen side by the introduction of reduced variables

(1/2 —z) g(1/2 —z) + (1/2) —R y R/2
(1/2-*)'+ (1/2)'

(z —1/2) Q(1/2 —z) + (1/2)2 —R + R/2
(1/2- )'+ (1/2)'

(C3)

(C4)

They are determined by the straight lines tangent to the
circular scatterer that go to side 2 or side 4 &om the
point x, respectively. The intersection of the parabolic
invariant subset and the Poincare surface is the segment
II where I = (z = R/2R„v = v 2/2) and I' = (z =
(1 —R/2R, ), v = ~2/2). Here, R, = ~2/4. Therefore
the length of the invariant segment is

L = (1 —R/R, ) . (C5)

The map for points that go to side 2 missing the central
scatterer results in

x = (1+1—k),
(Cl)

1 —v~
(1 —x),

(C6)

where k = 1, 2, 3, 4 ro~merates the sides in counterclock-
wise order. Figure 2 shows several curves that divide
the surface in regions that are defined not only by the
side where the image of each point dwells but also by the
existence (or not) of an intercalated collision with the
central scatterer before arriving at that side. For exam-
ple, (x, v) 6 I2 means that the particle arrives at side 2
missing the central scatterer while (x, v) E I2 expresses
that the particle hits the scatterer before arriving at side
2. Figure 3 shows something like Fig. 2 but it is referred
to the antecedent of the points (z, v). Thus (x, v) E A2
means the particle arrives from side 2 missing the cen-
tral scatterer and (x, v) C A2 corresponds to incoming
particles &om side 2 that have hit the obstacle before
arriving. We remark that the curves of Fig. 3 can be
obtained from those corresponding to Fig. 2 through the
transformation (x, v) -+ (x, —v) which is just the time
reversal transformation. We also observe that the C4
symmetries are present. Thus the limiting curve that
separates the regions I2 and I2 can be obtained &om the
limiting curve that separates I4 and I4 through the trans-
formation (x, v) m (1 —x, —v) which corresponds to the
re8ection by the perpendicular plane that contains the
center of the circular scatterer and the middle point of
the side (that is, x = 1/2).

There are clockwise and counterclockwise parabolic pe-
riodic orbits. Without loss of generality we will concen-
trate on the former subset. Thus we are interested in

This map transforms points belonging to curve AB into
points belonging to curve BC and transforms BC to
curve DE of Fig. 9. Particularly we can verify that IP
is transformed onto itself.

ARer a few iterations the area of interest is reduced to
the four-sided figure shown on the right side of Fig. 10.

FIG. 9. Area Aq fl A4 and the invariant subset II' cor-
responding to parabolic periodic orbits v„/v = +1 when
R = 0.23.
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For long t, this means

imp 12=

Therefore the area is

(CIO)

FIG. 10. Wansformation of the area that remains near the
invariant subset II' when t ~ oo.

This quadrilateral is transformed into the approximate
parallelogram of equal area shown oa the left. We can see
that a triangular portion of such a parallelogram leaves
the region of interest. This triangle corresponds to par-
ticles that will hit the central scatterer. By inspection of
Fig. 10 we have

A(t) = 2l2(t)Lsina
1= 2rpL2 tan(a)—
t

( R1 1= v 2tan(o. )~ 1—
R. (Cl1)

where we have employed (C5).
In order to evaluate tan a we calculate the 6rst deriva-

tive of (C4) in I' so

Thus

(lg + ls)2—
2

)

112
(2l2 cos a + I )

1
tana =

~2(1 —R/2R, )

(C7) Thus we finally obtain

(1 —R/R, ) 1

(1 —R/2R. ) t '

and since

(C12)

(C13)

(l2 —l2) zp dl2

l2 l2 dt
I,2 cos o.

(2l2 cos a + L )
' (CS)

dA
g(t) -—

dt
(C14)

where we have introduced the time as t = 7pn, 7p ——v 2/2
being a characteristic time between two successive hits
against the sides.

Integrating (CS) we obtain

for long time we will have

(1 —R/R. )' 1

(1 —R/2R. ) t
(t —t, )

70

L I' 1 1 i is(t)
cosa ~l, (t) l, (O) y ls(0)

(CI5)

[1] W. Bauer snd G. F. Bertsh, Phys. Rev. Lett. 85, 2213
(1990).

[2] O. Legrsnd snd D. Soraette, Phys. Rev. Lett. 88, 2172
(1991);W. Bauer snd G. F. Bertsh, ibid 88, 2173 (1.991).

[3] C. F. Hillermeier, R. Bliimel, snd U. Smi&sasky, Phys.
Rev. A 45, 3486 (1992).

[4] M. V. Berry, in Topics in Nonlinear Dynamics (La Jolla
Institute), Proceedings of the Workshop oa Topics in
Nonlinear Dynamics, edited by S. Jorna, AIP Conf. Proc.
No. 46 (AIP, New York, 1978), p. 16.

[5 Ys. G. Sinai, Russ. Math. Surv. 25, 137 (1970).
[6] M. V. Berry, Eur. J. Phys. 2, 91 (1981).
[7] J. D. Meiss, Chaos 2, 267 (1992).

[8] T. S. Grsdshteyn and J. M. Rys&i&, Table of Inteyrals,
Series and Products (Academic, New York, 1980).

[9] A. Zscherl, T. Geisel, J. Nierwetberg, sad G. Rsdons,
Phys. Lett. 114A, 317 (1986).

[10) J. P. Bouchsud snd P. Le Dousssl, J. Stat. Phys. 41, 225
(1985).

[11] B. Friedmsn sad R. F. Martin, Jr. , Phys. Lett. 105A,
23 (1984).

[12] J. P. Bouchsud sad P. Le Dousssl, Physics D 20, 335
(1986).

[13) A. S. Pikovsky, J. Phys. A 25, L477 (1992).
[14) A. J. Feadrik snd M. J. Ssachez (unpublished).


