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The Blume-Capel model, a three-state lattice-gas model capable of displaying competing
metastable states, is investigated in the limit of weak, long-range interactions. The methods used
are scalar field theory, a numerical transfer-matrix method, and dynamical Monte Carlo simulations.
The equilibrium phase diagram and the spinodal surfaces are obtained by mean-field calculations.
The model’s Ginzburg-Landau-Wilson Hamiltonian is used to expand the free-energy cost of nucle-
ation near the spinodal surfaces to obtain an analytic continuation of the free-energy density across
the first-order phase transition. A recently developed transfer-matrix formalism is applied to the
model to obtain complex-valued “constrained” free-energy densities fo. For particular eigenvectors
of the transfer matrix, the f, exhibit finite-range scaling behavior in agreement with the analytically
continued metastable free-energy density. This transfer-matrix approach gives a free-energy cost of
nucleation that supports the proportionality relation for the decay rate of the metastable phase
I'x|Imfq|, even in cases where two metastable states compete. The picture that emerges from this

study is verified by Monte Carlo simulation.

PACS number(s): 64.60.My, 64.60.Qb, 02.70.Rw, 03.50.Kk

I. INTRODUCTION

The investigation of metastable states and their de-
cay through thermally activated nucleation has been the
focus of numerous works. (For reviews, see, e.g., Refs.
[1,2].) In a study of the analytic properties of the free
energy at the condensation point, Langer [3] conjectured

that the imaginary part of the free energy F analytically
continued from the equilibrium phase across the first-
order phase transition may be associated with the decay
rate of the metastable phase. A dynamical investigation
[4,5] showed for a wide class of models that the decay

rate I' may be written in terms of ImF as
r= %Hmﬁ[ , (1)

where (3 is the inverse temperature and « is a kinetic
prefactor that depends on the dynamics. (We set kg = 1
throughout this work.) Subsequently, Binder and collab-
orators [6-8] developed a scaling theory using a nonequi-
librium relaxation function to define the metastable
states and tested the theory by Monte Carlo simula-

tion on the two-dimensional Ising model. Schulman
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and collaborators studied by various methods metasta-
bility in the two-dimensional Ising model [9], in the one-
dimensional Kac model with algebraically decaying in-
teractions [10], in the Curie-Weiss model [11], and in a
dropletlike “urn” model [12]. In addition, Biittiker and
Landauer [13,14] studied nucleation in the overdamped
one-dimensional sine-Gordon chain, and Klein and Unger
[15,16] studied classical metastability in systems with
long-range interactions using a ¢3 field theory. Each of
these studies supported the validity of Langer’s treat-
ment. More recently Gaveau and Schulman [17] deter-
mined a rigorous upper bound for the decay rate for a
larger class of models than that considered by Langer and
used it not only to explain why Eq. (1) is usually valid,
but also provided an example in which Eq. (1) may not
appropriately describe the decay rate of the metastable
state.

One method for studying metastability that has been
used previously is the transfer-matrix approach. Priv-
man and Schulman [18,19] obtained an indication of
metastability in their transfer-matrix treatment of the
two-dimensional Ising model. Rikvold et al. [20-22] stud-
ied the stationary properties of metastability in a two-
state model with weak, long-range forces, the quasi-one-
dimensional Ising (Q1DI) model [23], with a constrained-
transfer-matrix (CTM) formalism. This method pro-
duces a set of “constrained” free-energy densities fa,
some of whose imaginary parts have been demonstrated
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to be related to the metastable decay rate [24]. In
particular, strong quantitative agreement was found be-
tween the imaginary part of the constrained free-energy
density and the analytically continued free-energy den-
sity. Recent studies of the two-dimensional Ising model
with nearest-neighbor interactions, also using the CTM
method [25,26], found that the imaginary part of the
constrained free-energy density is consistent with Monte
Carlo estimates of the metastable lifetime [27] and
agrees well with field-theoretical droplet-model calcula-
tions [1,3-5,28,29].

Our previous studies of metastability [20-27] have fo-
cused on systems with one single metastable state. In
the present paper we examine a system with two compet-
ing metastable states using scalar field theory, the CTM
method, and dynamical Monte Carlo simulations. The
purpose is twofold: to test the applicability of the CTM
formalism to a system with a more complicated metasta-
bility structure and to obtain a clearer understanding of
the implications of a recent result of Gaveau and Schul-
man [17].

This result of Ref. [17] can be summarized as fol-
lows. Consider a three-state system with two degenerate
metastable phases A and B and an equilibrium phase C,
and assume that the reaction path in phase space con-
nects the states only in the following way: A—B—C.
According to the Van’t Hoff-Arrhenius law [30], the de-
cay rate of A is I' yocexp(—BAF4_,g), where AF4_,p is
the height of the free-energy barrier on the path A—B.
Gaveau and Schulman argued that the procedure of ana-
lytically continuing the free energy for such a system from
C into A gives Im(F)xexp(—BAFp_¢c), where AFg_,c
is defined analogously as above, which when coupled with
Eq. (1) does not appropriately describe the decay rate of
A. Such a discrepancy would give rise to a fundamental
question about the physical interpretation of the imagi-
nary part of the constrained free-energy density Imf, in
our CTM formalism. Is Imf, related to the decay rate
in a system with competing metastable states? Based on
our analytic and numerical results in this paper, we will
argue that Imf, does indeed give the correct decay rate
of A.

The system we have chosen is a variant of the Blume-
Capel model [31-33] with weak, long-range interac-
tions. The Blume-Capel model is an S=1 Ising model
and is equivalent to a particular three-state lattice-gas
model. This model and its generalizations have been
studied extensively in the literature and have been ap-
plied to a variety of different systems (see, e.g., Ref. [34]
for some chemical applications) and studied with dif-
ferent techniques, including mean-field approximations
[31-33], position-space renormalization-group methods
[35], transfer-matrix methods, Monte Carlo finite-size
scaling methods [36], and Monte Carlo renormalization-
group methods [37].

The Hamiltonian for the original ferromagnetic
nearest-neighbor Blume-Capel model is given by

H=-J) 8.55+DY s5i—HY sa, (2)

(@,8) a

where the local spin variables s, at site a can take three
values s,={0,+1}. The spin-spin interaction is ferro-
magnetic (J>0), D is an applied field that either favors
(D>0) or disfavors (D<0) 3,=0, and H is an applied
magnetic field. The indices a and 3 run over a lattice,
and the sum ) , ) Tuns over nearest neighbors. Unfor-
tunately, the transfer matrix for this model is so compli-
cated that extending it to long-range interactions would
be impractical. We therefore introduce an alternative
model, the long-range Blume-Capel model, which we de-
fine in Sec. II in analogy with the Q1DI model [23].

Systems with long-range interactions are often useful
to study since they share many characteristics of mean-
field models, which are often exactly soluble. Among
these characteristics are the presence of metastable and
unstable stationary states, which exist for external fields
that lie between the first-order phase boundary and a
sharp spinodal. (In contrast, in systems with short-
range interactions, the spinodal is replaced by a smooth
crossover.) In addition, a number of physical systems
display behavior characteristic of long-range interactions.
Examples include supercooled water [38], superfluid *He
[39], superconductors [40], and long-chain polymer mix-
tures [41].

The remainder of this paper is organized as follows. In
Sec. IT we define the long-range Blume-Capel model, dis-
cuss its zero-temperature phase diagram, and calculate
exactly the finite-temperature mean-field spinodal sur-
faces. The analytic continuation of the free-energy den-
sity is considered in Sec. III. The constrained-transfer-
matrix formalism is briefly reviewed in Sec. IV, and its
application to the long-range Blume-Capel model is de-
scribed. Our numerical CTM results are presented in
Sec. V, and the finite-range scaling of the constrained
free energy is discussed in Sec. VI. Section VII con-
tains Monte Carlo simulation studies of the decay of
metastable states, and Sec. VIII contains discussions and
conclusions.

II. PHASE DIAGRAM
AND SPINODAL SURFACES

In this section, we define a Blume-Capel model with
weak, long-range interactions and calculate the zero-
temperature phase diagram and the finite-temperature
spinodal surfaces. @ The system consists of a one-
dimensional chain of L layers, each of which contains
N spins. The long-range Blume-Capel model is defined
by assuming that a given spin s, ;, where i=1,...,L and
n=1,..., N, interacts with each spin in the two adjacent
layers with an equal interaction strength J/N. We thus
replace J with J/N in the first term of the Hamiltonian
of Eq. (2) and allow the sum to range over all spins in
adjacent layers. We introduce the quantities

'—Mi—— 1 N s .
mt_ N - N n,t
n=1
N (3)
.=%=lzy
E=NTN i

3
|
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which are the magnetization density and the density of
nonzero spins in layer i, respectively. The Hamiltonian
for the long-range Blume-Capel model can then be writ-
ten as

L L L
H=-JNY mmi1+DNY ¢—HNY mi, (4)

=1 =1 =1

where periodic boundary conditions are imposed, that is,
(Vi) mpyi=m; and qr+i=¢;.

In the mean-field calculation, we assume that the con-
figurations of the system are translationally invariant, so
that m;=m and g;=q for all layers ¢=1,..., L. With this
simplification, we can define a mean-field Hamiltonian
HMF for the energy density as

HMF = _Jm? + Dg— Hm . (5)

In the limit N— oo, the densities m and ¢ take on con-
tinuous values in a domain Q={(m,q):|m|<q,0<q<1},
which defines an isosceles triangle in (m, g) space.
Before solving this mean-field model in general, we con-
sider its zero-temperature properties. In Fig. 1 the zero-
temperature phase diagram is shown. The three stable
states are (m,q) = (0,0), (—1,1), and (1,1), which are
located at the vertices of the domain Q. In the follow-
ing discussion we denote these states as (0), (—), and
(+), respectively. The thick solid lines in Fig. 1 are
first-order transition lines, which separate the (D, H)
plane into three distinct regions, each corresponding to
one stable phase, as indicated in the figure. The tran-
sition lines are found from a simple energy argument.
From the mean-field Hamiltonian of Eq. (5) we can cal-
culate the energy of the three stable phases: HM¥ (0)=0,
HMF(1)=D-H —J,and HMF(~) =D + H — J. By

equating these energies we obtain the transition lines.

FIG. 1. The zero-temperature phase diagram for the
long-range Blume-Capel model. The thick solid lines are
the first-order equilibrium transition lines, which divide the
(D, H) plane into three regions, with stable phases (0), (+),
and (—). The thin lines indicate the zero-temperature spin-
odals for each of the metastable phases.
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It follows from this argument that the three states have
equal energy at (D, H,T)=(J,0,0). The three states can
also exist as metastable states for certain values of D and
H outside the region where they are stable. The reason
for this is that as we cross a transition line by changing
the fields D and H, the previously global minimum of
HMF remains as a local minimum. As we increase the
fields further, we eventually reach a spinodal where the
local minimum in HMF coincides with a saddle point,
and the metastable state thus becomes unstable. The
spinodal lines at T=0 can be calculated by a simple sta-
bility analysis, in which we expand §H in terms of ¢
and ém around the stationary states and require that
0#H=0. The spinodal lines shown in Fig. 1 are all second-
order nonequilibrium transition lines. We obtain for the
(0) spinodal H=+D (D>0), for the (—) spinodal H=2J
(D<0) and H = 2J — D (D>0), and the (+) spinodal is
the reflection of the (—) spinodal about the D axis.

At finite temperatures the entropic contribution has
to be taken into account, so the first-order phase bound-
aries and spinodal surfaces have to be calculated from
the free energy. The mean-field free-energy density func-
tional can be calculated for a given m and ¢ using
the relation FMF = HMF _ TSMF  ywhere SMF is the
Boltzmann entropy density of the system, defined by
SMF=(1/N)1lng(M,Q), where g(M,Q) is the multiplic-
ity of spin configurations in a specific layer corresponding
to given values of M and Q. A simple combinatorial ar-
gument yields

o(M,Q) = <(Q ﬂw)/z) (N(}z(?}\}fﬁm) . (®)

Strictly speaking, FMF is a functional, but it is re-
lated to the thermodynamic free-energy density f by
f=mingg n)cn FMF(m, q). In the limit N—oo, FMF is
given to the leading order of Stirling’s approximation as

FMF — _Jm? — Hm + Dq + %T[Z(l —q)In(1 - q)
+ (g +m)ln(g +m)
+(g —m)In(g —m) —2¢ln2}. (7

The equilibrium free-energy density is obtained from
the global minimum of FMF within the domain Q. By
setting the partial derivatives of FMF with respect to
both m and ¢ equal to zero and defining an effective field
H.g = H + 2Jm, we obtain the stationarity condition as
a pair of coupled equations

m
= 8
9= tanh(Hoa/T) (8)
and
[1+ %exp(2D/T)] ¢* — 2q + % exp(2D/T)m* +1=10.

9)

By combining the two equations, we can write the sta-
tionarity condition as an equation only in m:
2sinh(Heg/T)

"= exp(D/T) + 2 cosh(Heg/T) o
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Equations (8) and (10) are identical to the expressions
found by Blume et al. [33]. Their simultaneous solution
cannot generally be obtained in closed form. A schematic
drawing of the mean-field equilibrium phase diagram can
be found in Ref. [42].

In order to calculate the spinodal surfaces, we require
that the local minimum in FMF that corresponds to the
metastable state is also a point of inflection. This crite-
rion is satisfied if we require, in addition to the vanishing
of the partial derivatives of FMF with respect to both
m and ¢, that the determinant of the Hessian matrix is
zero:

'MF MF
F, mm F. qm

FMF FMF =0, (11)
mq qq

where the subscripts denote partial derivatives with re-
spect to the subscripted variables. Inserting Eq. (7) for
FMF into Eq. (11), we obtain

2Jm? —2Jg+T =0. (12)

The spinodal field is obtained by the simultaneous solu-
tion of Egs. (8), (9), and (12), as a relation between D,
H, and T. We start by using Eq. (12) to eliminate ¢ from
Eq. (9), which gives

m*(16 — 4n) + m?[—32 + 4n + (16 — 4n)T/J]

+16 — 16T/J + (4 —n)(T/J)® =0, (13)

where n=exp(2D/T). This quadratic equation in m?
yields four solutions for m,

m==%

1 [4 + /41 = 2T/ D)2 + 8T/
2 4—-n

—T/J+1},

(14)

which we denote +m and £m_. To get the functional
relation between the fields, we use Eq. (12) again to elim-
inate ¢ from Eq. (8). Isolating H from the result gives

T 2IJm +2Jm? +T
H=-2Jm+3n [—2Jm +20m? + T]

(15)

By inserting the solution for the magnetization from Eq.
(14) into Eq. (15) we obtain the desired expression for the
spinodal field H in terms of the field D and temperature
T.

A three-dimensional plot of the spinodal surface in
(D,H,T) space, calculated from the above relation,
is shown in Fig. 2. It is symmetric under reflec-
tion about the plane H=0, due to the symmetry of
the Hamiltonian, Eq. (4), under the transformation
(8n,iy H)—(—8n,:,—H). Due to the singular behavior of
Eq. (15) at T=0, the bottom edge of the surface pictured
lies at T'/J=1/12. At T'=0, the spinodal surfaces are an-
chored to the zero-temperature spinodal lines shown in
Fig. 1. Starting from large positive D, we have four spin-
odal sheets corresponding to the four solutions. These
are indicated at the right-hand side of the figure. The

+
I
T . LR
0
° 0) i
0 D 0
J

~J

FIG. 2. The spinodal surface, shown in (D, H,T) space.
The whole surface is symmetric under reflection in the plane
H=0. Only the portion for T/J>1/12 is shown, floating
above the grid at T=0. The two sheets that merge along
the line /; are the (+) spinodal in front and the (—) spinodal
in back. This line of critical points terminates at the tricriti-
cal point (D./J, H:/J, T:/J)=(%1n2,0,2/3), which is marked
with a circle. The sheets that merge along the line I are the
(0) spinodal in front and the (—) spinodal in back. For the
sheets merging along the line I3 we have the (0) spinodal in
back and the (+) spinodal in front. The two (0)-spinodal
sheets intersect, cross the (+)- and (—)-spinodal surfaces,
and merge along the line l4. This line connects the point
(D,H,T) = (0,0,0) with the tricritical point.

(0)-spinodal sheets in front and in back merge with the
(—)- and (+4)-spinodal sheets along the lines I; and I3, re-
spectively. Below we obtain analytic expressions for the
lines 3, I3, 3, and l4, including the tricritical point where
all four lines meet. As we reduce D past D=2J, the (+)-
and (—)-spinodal sheets intersect and cross. The line of
intersection becomes !; above the tricritical point. The
(0)-spinodal sheets pass inside the (+) and (—) sheets
and merge along the line l4, as can be seen through the
rectangular window in the (+) sheet.

Obtaining analytical expressions for the four lines of
critical points is quite simple using Eq. (14) for the spin-
odal magnetizations. The lines are parametrized by the
appropriate critical temperature T,. The line /; is derived
by setting m_=0, yielding

2(2J — T.)

c

Dc=Tcln[ } ,H.=0 (16)

for 2/3<T./J<2. Similarly, I, is obtained from the con-
dition m_=m:

Dczgln[ 87 ] ,

2 |2T.—J
(17)
1 | V/-3T. /20 +1
H.=-2J\/-3T./2J + 1+ T.tanh™! [ X _"c/&2 T -
/2 +1+ a T i+ 1
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for 1/2<T./J<2/3. The line I3 is the mirror image of
I, about the plane H=0. The line I, is determined by
setting m_=0 as was the case for ;. The result for /4
is given by Eq. (16) for 0<T./J<2/3 and is a contin-
uation of /; below the tricritical point. The magnetiza-
tions m, along the lines of critical points are easily found
using Eq. (14). Along !, and l; obviously m.=0, since
H=0 along these lines, whereas along I, and I3 we have
m2 = 1-3T,/2J. The tricritical point is found as the in-
tersection of the lines l; and lp: T;/J=2/3, D;/J=%1n2,
and Hy;=0. These analytic expressions for the critical
lines are identical to the results obtained by Blume et al.
[33], which in that study were derived from the Landau
expansion of the free energy to sixth order.

In Fig. 3 the region of competing metastability at a
temperature 7/J=0.25 (well below T;) is shown. The
thick solid lines are first-order transition lines and the
thin solid lines are spinodal lines. The figure is similar
to the zero-temperature phase diagram in Fig. 1, except
for the smaller area of the central diamond-shaped re-
gion and the curvature in the (0) spinodals near H=0.
The lines separate the (D, H) plane into 17 regions, in
each of which we have drawn the free-energy density
functional schematically along the most probable mean-
field escape path, or mean-field reaction path, joining the
three states. Since this path must go through the sad-
dle points of FMF it can be shown from the stationarity
condition of Eq. (9) that, for the range of fields shown in
the figure, each mean-field reaction path is very close to
the border of 2 defined by g=+m. The global minimum

0.4

HIJ \:/
024 W 3

-0.4 + ¥
0.6 0.8 1

12 DIJ 14

FIG. 3. Finite-temperature phase diagram, showing the
region of competing metastability, where the spinodal and
equilibrium surfaces intersect the plane T/J=0.25, well be-
low the tricritical temperature. Thick solid lines represent
the first-order equilibrium transition lines and thin solid lines
are the spinodal lines. The thick dashed lines represent tran-
sitions between two metastable states, and the thin dotted
vertical line is the locus of equal barrier heights. In each sep-
arate region, the free-energy density functionals are drawn
schematically along the mean-field reaction path. The global
minimum corresponds to the equilibrium phase and local min-
ima represent metastable states. Solid dots indicate parame-
ter sets for which dynamical Monte Carlo simulations of the
decay of metastable states were performed (see Fig. 11).
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represents the equilibrium phase, whereas the remaining
local minima represent metastable states. For the D and
H values inside the large central diamond-shaped region,
two competing metastable states are present. As we cross
a spinodal line, the metastable state associated with that
spinodal vanishes. The thick dashed lines indicate where
the two competing metastable states become degenerate.
The thin dotted line for H>0 indicates points where the
activation barrier heights for the decays (—)—(0) and
(0)—(+) are equal, and the dotted line for H<0 is drawn
analogously. For H=0, the activation barrier heights for
decay of the (0) metastable state into the degenerate (+)
or (—) equilibrium phases are also equal by symmetry.
All lines except the exactly obtained spinodal lines have
been calculated numerically from Eq. (7) since they in-
volve finding the extrema of FMF  which has not been
done in closed form.

In order to properly characterize the decay of the
metastable phases in the long-range Blume-Capel model,
we must relax the assumption that the densities m; and g;
are translationally invariant. We will show that many of
the characteristics of the mean-field model remain, such
as the equilibrium and metastable configurations and the
spinodals, but we also show in Sec. III that the activation
barrier heights are significantly reduced, due to nucleat-
ing fluctuations of finite longitudinal extent not present
in the mean-field approximation. We can express the
Hamiltonian of Eq. (4) as

L L
H=—INS Lmips —m)* + NS HMF (mi,q:)

=1 =1

(18)

The free-energy density functional is then defined as F =
(H—TS8)/NL, where S is the Boltzmann entropy for the
LxN system. The stationarity condition for the free-
energy density functional F is then given by 2L coupled
equations

OFMF (m, ¢;)

—J(mit1 — 2m; +mi_q) + Bm

=0,

(19)
OFMF (m;, q;)

=0
0¢g;

for i=1,..., L, which can be represented by Egs. (8) and
(9) if we define Heg as a local effective field, Heg =
J(m;4+1 + m;_1), and replace m with m; elsewhere.

In Refs. [24] and [43] it was shown that a two-state
model with long-range interactions in an L%~ x oo cylin-
drical geometry can be mapped to a one-dimensional
field theory. We will show that a similar mapping can
be applied here. We define functions m(r) and q(r)
to be continuous in a dimensionless longitudinal coor-
dinate r and force m(r)=m; and g(r)=g; at integer val-
ues r=i. By Taylor’s theorem, if i < r < i+ 1, then
(Mmiy1 — my)? = [Vm(r)]? + O(VmV?m). Therefore, if
m(r) does not vary too rapidly, then the free-energy den-
sity F for a configuration described by {m;,¢;} is well
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approximated by the Ginzburg-Landau-Wilson form

L
F=1 /0 dr [3J(Vm)? + F¥F(m(r),q(r))] . (20)

The density profile (m(r),q(r)) of a stationary solution
(6F=0) is given by the Euler-Lagrange equation

d®m  QFMF

Tt Tom

=0,
m(r),q(r)

(21)

where (Vr) (m(r),q(r)) is restricted to lie within Q@ on
the ellipse defined by Eq. (9).

In Ref. [24] it was demonstrated that an equation of
the form of Eq. (21) has three types of continuous so-
lutions. For each local minimum (Mmin,gmin) of FMF,
there is a uniform solution (m(r),q(r))=("Mmin;gmin),
for which the free-energy density is given by the cor-
responding mean-field result. In addition, for each
local “metastable” minimum (mpys,qms) that is not
the (unique) global minimum, there exists a solution
that represents the lowest-lying saddle point between
(Mms;@ms) and a second minimum of equal or lower
value. If the second minimum is lower, the solution,
viewed as a spatial variation in m and ¢, has the shape
of a “droplet” embedded in a sea of the metastable con-
figuration (Mms,gms). The configuration (m,q) at the
center of the droplet is characterized by the solution to
FMF (1, q)=FMF (m14s, gms) on the arc of the ellipse de-
fined by Eq. (9) between the two minima. If the second
minimum is of equal value, the solution has an “inter-
face” shape, in which the system passes from one min-
imal configuration to the other. These saddle-point so-
lutions exist if the corresponding metastable minima of
FMF exist. This means that the spinodals derived ear-
lier in the section, which define the limit of metastability
for the mean-field Blume-Capel model, also define the
limit of metastability for the long-range model. Other
solutions to the Euler-Lagrange equation, which are os-
cillatory in space, can also exist, but we do not consider
them here since their associated free-energy densities are
higher than those for the solutions already described.

III. ANALYTIC CONTINUATION
OF THE FREE ENERGY

For the long-range Blume-Capel model with T'<2J
(Te=2J in the Ising limit D——o00), the free energy F in
the limit N — oo is not everywhere analytic, but rather ex-
hibits discontinuous gradients along the first-order phase
boundaries. However, if we vary the fields D and H con-
tinuously through the boundary, an analytic continuation
f of the free-energy density across the boundary exists
as an analog of the thermodynamic free-energy density,
but with the partition function constrained to configu-
rations that do not allow the system to decay into the
equilibrium phase. The analytic continuation is given
as the minimum of F that coincides with the thermo-
dynamic free-energy density at the phase boundary, but
increases as the fields depart from the boundary. When
the fields reach the spinodal surface, the metastable min-

1935

imum vanishes and the analytic continuation becomes
complex outside the spinodal. The objective of this sec-
tion is to calculate the leading behavior of f near the
spinodal surface. In Sec. VI we will compare the finite-
range scaling of Imf with that of the imaginary part of
the constrained free-energy density obtained numerically
from the constrained-transfer-matrix formalism.

Since the metastable state is translationally invariant,
the functional minimization of FMF in the space of trans-
lationally invariant configurations is sufficient to deter-
mine f for the metastable states of the long-range model
in the limit N—oo. Let subscripts to FMF denote par-
tial derivatives with respect to the subscripted variables,
evaluated at the spinodal. Let é,, = m —m,, §q = ¢—¢,,
60H = H—-H,, and 6D = D — D, denote variations away
from the spinodal. Holding D=D, constant and varying
H, we expand the variation of FMF from its spinodal
value AFMF = 7MF (1, 4 §,,., 45 + 64) — FMF(m,, ¢,) to
third order to obtain

AFMF = —mSH — §n0H
+ 1 (02 FNE + 26,m0q F ok + S2FF

mY mm 9T qq

+ G (O Fmmem + 30780 F

mmgq

+30m 02 Fomrs + 83 F aqs) +O(8%)

q~ mqq 9T 999

(22)

where we have shown only those derivatives that are not
identically zero. (Since FMF is stationary at the spinodal,
f,l‘,fF=.7’3’[F=0, and since the fields couple linearly to the
order parameters, all field derivatives other than those
shown are identically zero.) Since D couples linearly to
g, the stationarity condition FMF=0 gives an expression

q
for D in terms of m and ¢ that can be expanded to give

6D = —b6mFpt — bgFouk
— 3 (G2 F g + 206m0, F e + 83 Faat) + O(8°) .
(23)

Since we only consider variation in H, §D=0, and Eq.
(23) can be used to express d, in terms of d,,:

_ 1 (52 pMF MF MF

by = —abm = g (F Pt + o Py + 52 FME
+0(8%) (24)
where a = F)F /FMY = FMF/FMF | with the second

equality following from the condition for inflection as the
spinodal, given by Eq. (11). This expansion and those
that follow are valid if a is not singular. Analytic cal-
culation of the derivatives using Eq. (7) shows that « is
indeed regular. An expansion for d H analogous to Eq.
(23) is obtained using the linear coupling of H to m and
the stationarity condition FMF=0 at the spinodal. We
get

6H = 0, F)F + 5, FNF
+1(02 FME 4 200, F e+ O2F ) + O(8°)
= 1482, + 0(6%) , (25)

where v = f,“,f,ﬁm — Saf,h,f,l,",q + 3a2.7-',1\,'f£1 - a3f§g§ and
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we have used Eq. (24). Substituting the expansions for
04 and 6H into Eq. (22) we obtain

AFME = —m,6H — 1463, + 0(6*) . (26)

By inserting the expression for §,, in terms of § H from
Eq. (25), we obtain

AFMF — _m,6H — 224"12(H)*/? + O(SH?) . (27)

At this point we note that the only assumptions made in
the derivation of Eq. (27) are that the two fields couple
linearly to their respective order parameters and that a
free-energy density functional is well defined in terms of
the temperature, fields, and order parameters. This re-
sult is therefore not particular to our model, but rather
more general.

We now apply Eq. (27) to our long-range Blume-Capel
model. Inserting FMF from Eq. (7) and using the condi-
tion for inflection at the spinodal, given by Eq. (12), we
can express v analytically in terms of m, and T":

8m,J? [, 3T
¥ = T (m,—l-{—ﬂ) . (28)

Depending on the sign of m,, (m2 —1+3T/2J), and 6H,
the value of AFMF might be real or complex. For the
(0)-spinodal surfaces, the equation for the critical mag-
netization along the lines l; and I3 is m2 —1+3T/2J =0
as discussed below Eq. (17); hence for these surfaces,

. 3T, 3T
mi =1+ 5 <mi-1+32=0. (29)
Thus there are two cases. If m,6 H<0, we are inside the
(0) spinodal and AFMF is real, whereas if m;6 H>0, we
are outside the spinodal and AFMF is complex. [Refer-
ring to Fig. 2, m,>0 for the (0)-spinodal sheet in front
and m,<0 for the (0)-spinodal sheet in back.] For the
(+) and (—) spinodals we can use Eq. (14) for the ex-

plicit form of m2 to obtain
3T 1 T 14—n/1+2T(4—-n)/nJ
2 _ o .22
me -1ty = 2T 7t i_7q
T |1 7q n
o ——(1-/142T—T
- J ‘24—77( - )l
T
>—_>0 3
255>0, (30)

where we have used the inequality |z~1(1 — v/1 + az)| <
|a/2|. Therefore, if m,6 H>0, we are inside the spinodal,
whereas if m,6 H<0, we are outside. [Referring to Fig.
2, m,<0 for the (—)-spinodal sheet and m,>0 for the
(+)-spinodal sheet.] The results for the analytically con-
tinued free-energy density are summarized as follows:

—m6H — 242 |y| 25 H [/
(metastable state)

—m,0H i3 |y| /2|6 H|3/?
(outside the spinodal) ,

AFMF ~

(31)

where higher-order terms are neglected. Note that this
result verifies that every point on the spinodal surfaces
calculated in Sec. II is a branch point of f. From Eq.
(31) we see that outside the spinodal sheets Imf is pro-
portional to |H — H,|3/2. The form of Eq. (31), with ~
appropriately calculated, is true for any mean-field model
with two external fields, provided only that the fields cou-
ple linearly to their respective order parameters. In the
Ising limit (D——o0) for this model, Eq. (31) agrees with
the analytic continuation for a mean-field Ising ferromag-
net [11,44].

Note that if the fields are between the first-order phase
boundary and the spinodal, the analytically continued
free energy is real valued only in the limit of infinite in-
teraction range. However, we are interested in the scaling
of the free energy for systems with a long, but finite in-
teraction range. For such systems the continuation is
complex, but its imaginary part approaches zero rapidly
as N—oo. The decay of the metastable state happens via
the formation of a nucleating droplet of finite extent. The
free-energy cost AF associated with the formation of this
droplet is evaluated as the minimum barrier height for all
paths in phase space that connect the metastable state
to the stable state. Combining Langer’s result, Eq. (1),
with the Van’t Hoff-Arrhenius law [30], we expect the
imaginary part of the analytically continued free-energy
density to have a “Boltzmann weight” given by

Imf o< e BAF (32)

Since the density profile of the nucleating droplet can
vary longitudinally, we must relax the assumption of
translational invariance to find the free-energy cost of
the droplet. Taking the continuum limit used in Sec. II,
we express 0,, and d, as continuous functions of r and
expand the variation of F from its spinodal value to third
order. Using the form of Eq. (20) for F, we have

L
AF =z / dr [3J(V8m)? + AFYF (m(r), q(r))]

L
= —m,6H + %/ dr [%J(Vam)Z _ 6,.0H
0

+5700 + 0(54)] ; (33)

where we have used Eq. (24) to replace d, in Eq. (22) for
AFMF  The Euler-Lagrange equation corresponding to
Eq. (21) is thus

~JIV26 —6H + 3782, + O(6°) =0. (34)
Following Ref. [24], we take the position of the droplet
core to be r=0. The critical droplet is local, so the solu-
tion to Eq. (34) must be asymptotically uniform in the

limit L—oo0, that is, §,,(r)—const as |r|2+00. We thus
have asymptotically

6m — 80 = (20H/v)'/? + O(SH), (35)

where the sign of 4,,, is equal to the sign of . If we define
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u(r) = 6 (r) — 8o, then Eq. (34) becomes
—JV2u + you + 1yu? + 0(8%) = 0. (36)

In the limit |r|—co we may neglect the u? term. We thus
obtain

u(r) ~ exp(-r/§;) , (37)
where
& = (/Y2 |y6H|"* + OGHYY)  (38)

is the relaxation length of the droplet. The free-energy
cost of the critical droplet is given by AF = NL(AF —
AFMF) where AFMF is the result in Eq. (31) for the
metastable state. Changing variables to u in Eq. (33),
we have

L
AF = N/ dr [3J(Vu)? + 160u® + $u® + O(u?)]
o
L
= _ LNy /0 dr[u® + O(u%)] , (39)

where we have integrated (Vu)? by parts and used Egs.
(35) and (36). Taking the limit L—oo, we place the ex-
plicit solution to Eq. (36) [14-16],

u(r) = —38gsech®(r/2¢,) , (40)

into the integral of Eq. (39). Evaluating the integral then
gives

AF = hsséNﬁrl—”_l/zI&HP/Z [1 +O(5H1/2)]
= 8N (V2J)V2|y|"/45H|5/* + O(SHT/*) . (41)

In the Ising limit (D——o00), this result reduces to the
free-energy cost of nucleation for the Q1DI model [24].
The first expression in Eq. (41) illustrates the differ-
ence in the behavior of the analytically continued free
energy between long-range models [15,16,24], for which
the length scale of the critical droplet is the field- and
temperature-dependent characteristic length £,.< L, and
mean-field models [11,44], for which the only length scale
for fluctuations is the length L of the entire system.

IV. CONSTRAINED-TRANSFER-MATRIX
FORMALISM

In the first part of this section, the general method of
the constrained-transfer-matrix formalism is briefly re-
viewed. A more extensive discussion is found in Refs.
[20,21,24,25]. In the second part the formalism is applied
to the long-range Blume-Capel model.

As the transfer-matrix method is usually applied to
equilibrium systems, it provides a way to obtain standard
thermodynamic state functions, such as the internal-
energy density U, the free-energy density f, and correla-
tion functions [45]. Consider a lattice of Lx N sites, with
periodic boundary conditions in the L direction. The lat-
tice is divided into L layers, each containing N sites, and
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the total Hamiltonian is decomposed into a sum of layer
Hamiltonian operators H°P whose form is independent of

the layer index:
L

H=) (Xi|HP|Xisa) (42)

i=1

where (X;| and |X;;,) denote the configuration of lay-
ers i and i+1, respectively. An explicit expression for
(X:|H°P|X;+1) in the long-range Blume-Capel case is
given in Eq. (52) below. The layer Hamiltonian can be
further decomposed into a sum of an interaction part,
containing only spin-spin interactions, and a field part,
containing only terms proportional to the fields. The
transfer matrix T is defined in terms of its matrix ele-
ments in the dual space of configurations of two adjacent
layers as

(X: |T| Xit1) = exp [-B(X:[HP| Xit1)] - (43)

A layer configuration |X;) can be considered as a di-
rect product of single-spin configurations in that layer:
| X:)=|s1,i)|82,:) - - - |sn,i). The transfer matrix for the
Blume-Capel model is thus 3 x3¥. The partition func-
tion for the entire Lx N system is given as Z=Tr(T%),
and the free-energy density for the system is obtained
from Z as f=—(T/NL)InZ. In the limit L—oo, the
free-energy density becomes f=—(T/N)In g, where Ao
is the largest eigenvalue of the transfer matrix. By the
Perron-Frobenius theorem, )¢ is positive and nondegen-
erate, and the corresponding eigenvector |0) can be cho-
sen to have all positive elements [45,46].

In the following discussion we restrict ourselves to
symmetric transfer matrices T and sort the eigen-
values A, in order of decreasing magnitude, so that
Ao>|A1]|>- - ->|A3n_;|. Constrained transfer matrices T,
are constructed from the eigenvalues )\, and the corre-
sponding eigenvectors |a) of the equilibrium transfer ma-
trix T. The idea is to reweight the eigenstates in a simple
way so that states near equilibrium are suppressed. The
matrix T, is taken to commute with T and can be writ-
ten as

Ta= Y |8 fs(x)(8l, (44)

B=>0

where each |B) is an eigenvector of T, and the
“reweighted” eigevalues fg(a) are chosen to satisfy reg-
ularity conditions stated below. As discussed in Refs.
[20,21,24,25], constrained joint and marginal probabil-
ity densities are defined in analogy with the equilibrium
(a=0) case as

Po(iy zitk) = (@lz:) (2| (AT Ta) M |zit k) (zitkla),
(45)
Po(z;) = (alz:)(zi|a) .

It was pointed out in Refs. [9,18,19] that the con-
strained marginal probability densities P,(x) can be in-
terpreted as actual probability densities of single-layer
configurations in a constrained state. In order to en-
sure that the entire system is characterized by P,(z),
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the matrix T, must be chosen so that the constrained
joint probability densities P,(z,z') satisfy the follow-
ing regularity conditions: (i) that P,(z) can be ob-
tained by summing over the configurations of one layer,
P,(z)=3, Palz,z'); (ii) that P,(z,z') is well defined
for k=0, Py (z:, 2})=0z, o\ Pa(i); and (iii) that Py (z,z')
reflects stochastic independence in the limit |k|—oo,
lim|g| 00 Pa(Zis Titk)=Pa (i) Pa(Tisx). For a matrix
T, chosen to commute with T, these requirements are
satisfied if T, has the same rank as T and if its domi-
nant eigenvalue is A,. Obviously these conditions do not
uniquely determine T,. For computational convenience
we choose a simple form for T, that satisfies the above
conditions:

a 2 3V_1
To=Y B30I+ Y BB (46)
B=0 s B=a+1

if Ao7#0 and all terms are zero if A,=0. For a=0 it is
obvious from Eq. (46) that T, reduces to the equilibrium
transfer matrix.

We are now in a position to define constrained, gen-
eralized thermodynamic quantities [20,21]. The internal-
energy density U, is given by

Uei = 5 3 (alX) (XA T XWX [HEPIX)] (X' o)
X, X'

(47)

where Hi® is the interaction part of the layer Hamilto-
nian. In the Blume-Capel model we have two fields H
and D. Consequently we have two field contributions in
addition to the interaction part of the Hamiltonian. The
order parameter M, conjugate to the H field is given by

1 op
Mo =& ;(GIX)(XIM | X)(X]a) (48)

where M°P is the magnetization operator acting on the
layer configuration |X). Similarly, the order parameter
Q. conjugate to the D field is given by

1 op
Q= D (alXNXIQP|X)(X|e) , (49)

X

where Q°P counts the number of nonzero spins in a layer
with configuration | X). The constrained entropy density
S is defined in analogy with that of a stationary ergodic
Markov information source [47] and is given by

Sa = =1 3 (@) [(XIAT Tl XY Ln(XA; T X1
X, X'
x(X'|a) , (50)

where Ln is the principal branch of the complex loga-
rithm. This constrained entropy density may be com-
plex since T, is not a positive matrix in general. To see
this, note that for |@) (a#0) to be orthogonal to |0), the
elements of |a) must be of mixed sign. Since ), is the
largest eigenvalue of T, the largest contribution to T,

is the projection |a)A,(a|, which must contain negative
elements. Therefore, the argument to the principal value
of the logarithm (Ln) may be negative. The branch cut is
taken along the negative real axis, so that the domain of
Ln(z) is |2|>0, —w<arg(z)<w. In analogy with equilib-
rium thermodynamics the free-energy density associated
with the eigenstate |a) is defined by

fa=Uy —HMy+ DQy — TS, . (51)

We will apply the formalism described above to the
long-range Blume-Capel model Hamiltonian of Eq. (4).
From the definition, Eq. (3), it follows that M; =
(Xi|M°P|X;) and Q; = (X;|Q°P|X;). The layer Hamil-
tonian matrix element (X;|#H°P|X;y) is written in the
symmetrized form

J D
(Xi|HP| X i41) = _J—V'MiMi+1 t5 (Qi + Qis1)

H
—-2_ (M‘l + M‘i+1) ) (52)

so that we obtain a symmetric transfer matrix from Eq.
(43). As can be seen from Eq. (52), the layer Hamilto-
nian is invariant under all permutations of the individual
spins since it only depends on the total magnetizations
M; and M;,; and the total numbers of nonzero spins
Q; and Q;4,. This implies that the transfer matrix can
be contracted to a reduced basis set consisting of states
|M;Q;), as described in detail in Appendix A. The di-
mension of the contracted transfer matrix is easily seen
to be

N
dim=Y"(Q+1)=;(N+1)(N+2), (53)
Q=0

and the elements of the contracted transfer matrix are
given by

(MQIT|IM'Q") = v/9(M,Q)9(M", Q")

x exp (—ﬁ [—%MM' +2@+Q)

—g(M + M’)D , (54)

where g(M, Q) is the multiplicity factor given in Eq. (6).
In Appendix A it is shown that Eqgs. (47), (48), and (49)
for U,, My, and Q, remain valid with the following
substitutions: |X)—|MQ) and |X')—|M’'Q’). Similarly,
sums over layer configurations X and X' are contracted
to sums over (M,Q) and (M',Q’). The only equation
that is modified is the expression for the entropy per site
[20]
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Sa=-3 3 3 (alMQ)

MQM'Q

X [(M QIS Ta|M'Q')

. ((MQIAZITaIM’Q’)
VoM, Q)s(M, Q)

In addition to the fact that the transfer matrix T is
invariant under the spin permutations, which led to the
above contraction, other more complex symmetries may
be present. This is the case for the long-range Blume-
Capel model since, as we show in Appendix B, the rank
of the matrix is (2N+1), which is much smaller than the
dimension of the contracted matrix. This means that
most of the eigenvalues are zero and that the matrix can
be reduced further by projecting out the null space. This
further reduction is important since in order to define the
CTM it suffices to diagonalize the reduced matrix. In the
numerical computation the reduction of the matrix size
from (N+1)(N+2)/2 to (2N+1) is obviously a great ad-
vantage because much larger system sizes can be studied.
In Appendix B a general method for the decomposition
of our transfer matrix is discussed.

)] (M'Q'|a) . (55)

V. NUMERICAL TRANSFER-MATRIX RESULTS

In this section we discuss the numerical results ob-
tained by applying the CTM formalism. Equation (54)
is used to set up an (N+1)(/N+2)/2 square symmetric
transfer matrix T. As described in detail in Appendix
B, this matrix is block diagonalized by a unitary trans-
formation STS! that preserves its symmetries. The null
space is then projected out, leaving a (2N+1)x(2N+1)
symmetric matrix which is diagonalized using computer
routines TRED2 and TQLI from Press et al. [48]. The
bulk of the work was performed in 64-bit precision on a
Hewlett-Packard 9000/735 workstation. In certain cases
sufficient accuracy could only be obtained using 128-bit
precision on a Cray Y-MP /432 supercomputer. The nu-
merical data presented here required approximately 700
CPU hours on the workstation and 20 CPU hours on the
Cray supercomputer.

The constrained transfer matrices T, (a=0,...,2N)
are constructed from the eigenvalues A, and eigenvec-
tors |a) using the definition given by Eq. (46). We back-
transform T, from the eigenspace of the reduced transfer
matrix into layer configuration space {|{MQ)} by the in-
verse transformation S*T,S. Using this form for T, we
calculated the constrained free-energy densities f, from
Egs. (47)-(51). The attainable system sizes are limited
both by numerical underflow at low temperatures and
high fields and by the CPU time required, which increases
as O(N?3). We varied the system size from N=6 to N=24.

Figure 4 shows the eigenvalue spectrum of the equilib-
rium transfer matrix T as a function of H for N=24
with D/J=1.1 and T/J=0.25, well below the mean-
field tricritical point. The eigenvalues are displayed
as —(T/JN)In|Aq| (a=0,...,2N), so that the lowest

0.6 :
l ——

=
0.4 Q /f
— — |
(<d ——:”_‘_'_’;’__’_—
2 —
) =
= oo —
0) —
1 \‘
| o —

0.4 H1 H2§ , X Ha‘ )

0.0 0.1 0.2 0.3 0.4 0.5

H/J

FIG. 4. Eigenvalue spectrum for N=24, D/J=1.1, and
T/J=0.25 shown vs H/J for 0<H/J<0.5. The spectrum
is symmetric upon reflection about H=0 and interchange of
(+) and (—). The thick vertical line indicates the mean-field
first-order transition between the (0) and the (+) state at
H,/J=~0.10 whereas the thin vertical lines mark the (—) spin-
odal at H;/J~0.17 and the (0) spinodal at H3/J~0.37. Also
included are bold curves representing the stationary points of
the mean-field free-energy density functional. The virtually
straight lines correspond to the stable and metastable states
(0), (+), and (-), and the upward-concave curves represent
the uniform unstable stationary points. See the text for a
detailed description.

branch is the equilibrium free-energy density. The re-
duced transfer matrix gives a total of 49 branches. These
branches are symmetric with respect to H=0 and oscil-
late as functions of H, exhibiting avoided crossings at
several points. A closer examination of these avoided
crossings in the Ising limit revealed that the gaps go to
zero exponentially with N [23] up to approximately the
spinodal field. Thus the lines denoted as (0), (—), and
(+) (see below) actually consist of several branches. It
was shown by McCraw and Schulman [9] that it is possi-
ble to analytically continue the eigenvalues around these
crossings.

By drawing a line segment in Fig. 3 at D/J=1.1 from
H/J=0 to H/J=0.5 representing the H scan, we can
calculate from the mean-field approximation the intersec-
tion with both the spinodal and equilibrium lines. The
values obtained in this fashion are H;/J=~0.10 for the
first-order equilibrium transition between the (0) state
and the (+) state, H/J=0.17 for the (—) spinodal, and
H3/J=0.37 for the (0) spinodal. These H fields are
shown in Fig. 4 as vertical lines. The different branches
can be identified by their slopes due to the identity [23]

T 9ln|\ql

N em M- (56)

Since the (0) state has roughly zero magnetization, the
slope of the corresponding branch, by Eq. (56), is nearly
zero. Similarly, the (+) and the (—) states have roughly
magnetization m=a=+1, so the slopes of their correspond-
ing branches are near —1 and +1, respectively. In Fig. 4
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the mean-field solutions for the three local minima in the
free-energy functional are shown by bold curves. The (0)
state appears as the horizontal line and extends from
H=—-Hj3; to H=Hj;, the (—) state appears as a diag-
onal line and extends from H/J=—oc0 to H=H;, and
the (+) state appears as a diagonal line and extends
from H=—H, to H/J=oc0. These lines are in such close
agreement with the transfer-matrix branches that the
branches are completely obscured by them. In addition,
the two unstable mean-field solutions are also indicated
by bold curves, easily identified by their upward curva-
ture. The two unstable states terminate at the (—) spin-
odal (H=H;) and at the (0) spinodal (H=H3). At the
termination points the unstable solutions merge with the
metastable states.

The transfer-matrix spectrum in Fig. 4 may be inter-
preted as follows. For —H;<H<H,, (0) is the lowest-
lying branch and thus represents the stable state, while
(+) and (—), which lie above, are metastable. For
H,<H<H, the (0) state has become metastable, while
(+) is the stable state and (—) remains metastable. At
H=H,, the gaps between nearly degenerate eigenvalues
vanish far less rapidly with N than for H<H,, making
the gaps visible in the figure. This corresponds to the
crossing of the (—) spinodal and hence the disappear-
ance of the metastable (—) state. For Ho<H<Hj3 the (+)
state remains stable, while (0) remains metastable until
the (0) spinodal is crossed at H=Hj3. For H>Hj3 the
(4+) state is stable and no metastable states exist. The
transfer-matrix eigenvalues of Fig. 4 thus agree closely
with the mean-field picture of metastability discussed in
Sec. II.

The real parts of the constrained free-energy densi-
ties Refq, as computed from Eq. (51) for all eigenvectors
|a), are shown in Fig. 5. The parameters are the same
as in Fig. 4. Out of a total of 49 branches only the
35 that correspond to the largest eigenvalues are shown.
The remaining branches, which contribute only to the

0.3

S ASREN
‘ﬁ‘:\'\"‘n‘h“:
fﬂ"'l‘i" :»"t
NN

Re(f,)/J

-0.3
0.0 0.1

H/J

FIG. 5. The real parts of the constrained free-energy den-
sities Refo/J shown vs H/J for all eigenvectors |a). The
parameters are the same as in Fig. 4, and the vertical lines
and bold curves have the same meanings. For clarity only 35
of the 49 branches are shown. Note that the vertical scale is
different from Fig. 4. See the text for a detailed description.

band of unstable states with high free-energy densities
and do not extend beyond the range of the branches
shown, were removed for clarity. The vertical lines at
H=H,, H;, and H3 have the same meanings as in Fig.
4. The field dependence of the quantities shown in Figs.
4 and 5 resemble each other closely, and in particular
the stable and metastable branches are nearly left un-
altered by the reweighting of the eigenvalues. However,
the spectrum of the constrained free-energy densities is
somewhat compressed compared to the eigenvalue spec-
trum and contains multilevel crossings. The bold curves
in the figure show the five extrema in the mean-field free-
energy density functional corresponding to the (0), (+),
and (—) states and the two unstable states, as discussed
above. The branches of Ref, representing the stable and
metastable branches are again completely obscured by
the bold curves and are thus in excellent agreement with
the equilibrium and analytically continued metastable
free-energy densities.

The imaginary parts of all the constrained free-energy
densities |Imf,|, as computed from Eq. (51) for all eigen-
vectors |a), are shown on a logarithmic scale versus H in
Fig. 6. The parameters and the vertical lines are the same
as in Fig. 4. The most striking features are the extremely
small values and the lobe structure of the branches that
correspond to the metastable states shown in Figs. 4
and 5. Each lobe corresponds to a different value of a and
the crossings of lobes correspond to the avoided cross-
ings in the eigenvalue spectrum. By comparison with the
real parts of the constrained free-energy densities, differ-
ent “branches” of the lobe structure can be identified.
The set of lobes that decrease in value with increasing H
for 0KXH<H, corresponds to the metastable (+) state,
whereas the set of lobes that increase in value with in-
creasing H for Hy<H<Hj3 corresponds to the metastable
(0) state. Finally, the set of lobes that start at H=0
and terminate at the (—) spinodal (H=H;) correspond

0 . . .
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FIG. 6. The imaginary parts of the constrained free-energy
densities |Imf,/J| shown on a logarithmic scale vs H/J
for all eigenvectors |a). The parameters are the same as
in Fig. 4, and the vertical lines have the same meanings.
The envelopes of the lobe structures correspond to different
metastable states as indicated. See the text for a detailed
description.
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to the metastable (—) state. Since the transfer-matrix
eigenvalue spectrum is symmetric about H=0, the set of
lobes corresponding to the (+) metastable state contin-
ues to H=—H,, and the set of lobes corresponding to the
(=) metastable state starts at H=—H;. The envelopes
of these sets of lobes exhibit qualitative behavior that is
strikingly similar to that predicted for the analytically
continued free-energy densities in that they are exponen-
tially suppressed with increasing N for |H| less than its
appropriate spinodal value. In Sec. VI we will show that
this agreement is also quantitative.

The results presented above show the transfer-matrix
data as functions of the H field. In Figs. 7 and 8,
the real and imaginary parts of the constrained free-
energy densities are shown as functions of the D field
for 0.6<D/J<1.4 for N=18 and H/J=0.1 at T/J=0.25,
giving rise to a total of 37 branches. In analogy with the
H scan we draw a line segment in Fig. 3 representing the
D scan, thereby obtaining values of D corresponding to
the following mean-field transitions: D;/J=~0.82 for the
(0) spinodal, D2/J=0.90 for the exchange of metastable
states, D3/J=~0.99 for the barrier heights being equal,
D,/J=1.10 for the equilibrium transition, D5/J~1.17 for
the (—) spinodal, and Dg/J~1.37 for the (+) spinodal.
These values are indicated as vertical lines. In Fig. 7 we
show Ref,/J together with bold curves indicating the
mean-field results for the stable, metastable, and unsta-
ble states. The states can again be identified from the
slopes of their branches due to the identity

_ T dln|Aq| _ 0
JN 8D =~ 7%
Thus both the (+) and the (—) branches have slopes

near unity, while the (0) state has a slope near zero.
For D<D,, the (+) state is stable, while for D>D,,

(57)

Re(£)\

(+)  D,|Dyi Dy D4|Ds Dg
-0.6 — L
0.6 0.8 1.0 1.2 1.4
DN

FIG. 7. The real parts of the constrained free-energy den-
sities Refa./J for N=18, H/J=0.1, and T/J=0.25, shown
as functions of D/J for 0.6< D/J<1.4. The vertical lines
indicate the (0) spinodal at D,;/J=0.82, the exchange of
metastable states at D;/J~0.90, the point of equal bar-
rier heights at Ds/J~0.99, the equilibrium transition at
D;3/J~1.10, the (—) spinodal at Ds/J~1.17, and the (+)
spinodal at Dg/J=1.37. The bold curves have the same mean-
ing as in Figs. 4 and 5. See the text for a detailed description.
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FIG. 8. The imaginary parts of the free-energy densities
|Imfo/J| shown on a logarithmic scale vs D/J. The param-
eters are the same as in Fig. 7, and the vertical lines have
the same meanings. The envelopes of the lobe structures cor-
respond to different metastable states. Diamonds are data
points obtained using extended numerical precision (128 bit).
See the text for a detailed description.

it remains metastable until the (+) spinodal at D=Ds.
The bold line nearly parallel to the (+) branch is the
(=) branch, which terminates at the (—) spinodal at
D=Ds. The horizontal bold line is the (0) state, which
is metastable for D, <D<D, and stable for D>D,4. An
exchange of (—) and (0) as the lowest-lying metastable
state occurs at D=D5, as seen by the crossing of the two
corresponding bold lines.

The imaginary parts of the constrained free-energy
densities |Imf,| are shown on a logarithmic scale versus
D in Fig. 8. The data shown extend over 55 decades. The
solid lines for In |Imf,/J|>—60 were calculated with 64-
bit precision on a Hewlett-Packard 9000/735 workstation.
Extended precision (128 bits) was used for the remaining
parts. These data points, shown as diamonds, were cal-
culated on a Cray Y-MP /432 supercomputer. The lobe
structure is identified as follows. The lobes that increase
in value with increasing D for D4<D<Dg correspond to
the (+) metastable state, whereas those that decrease in
value for D;<D<D, correspond to the (0) metastable
state. The remaining lobes for D<Dj5 correspond to the
(=) metastable state. Again, the qualitative behavior
is very similar to the analytically continued free-energy
density. Note also that the lobe structures corresponding
to the (—) and (0) metastable states intersect at D~Ds,
which is approximately equidistant in H from the (—)
and (0) spinodals, as can be seen in Fig. 3. By Eq. (41),
the barrier heights AF(_y_, (o) and AFg)_,(4) are there-
fore equal to leading order in the expansion about the
spinodals, just as their mean-field counterparts AFMF,
even though the dependence on §H for the mean-field
barriers are quite different. This result suggests that
|Imf.,| for the metastable state is related to the free-
energy barrier height involved in the transition. Further
evidence is given by the sudden change in behavior for
the (—) metastable branch at D=D,. This change can
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be explained by the fact that the shape of the critical
droplet undergoes a drastic change as the relative sta-
bilities of the two metastable states are exchanged. For
D3<D< Dy, the critical droplet is one through which the
(—) metastable state decays into the (0) metastable state
before it has a chance to decay finally to the (+) stable
state. However, for D; <D<D,, the (0) metastable state
becomes too costly for a system in the (—) metastable
state to decay into it. Instead, the critical droplet is one
in which the core magnetization is close to that in the (+)
equilibrium phase, and the magnetization m(r) passes di-
rectly through zero on its way to the value corresponding
to the metastable (—) state as |r|—o00, without exhibiting
a significant plateau corresponding to the (0) metastable
state. This droplet is somewhat larger than the one cor-
responding to an initial decay into the metastable (0)
state and hence is more costly to form. We will discuss
the implications of this result in Sec. VIII.

Based on the work of Langer [3,5], we then conjecture
that |Imf,| is directly related to the decay rates of the
metastable states. In Sec. VI we will make this connec-
tion more quantitative by showing that the scaling be-
havior of |Imf,| agrees with the scaling behavior of the
analytically continued free-energy density, considered in

Sec. III.

VI. FINITE-RANGE SCALING OF THE
CONSTRAINED FREE ENERGY

In this section we apply finite-range scaling to the
transfer-matrix results of Sec. V and compare these scal-
ing results to the scaling relations for the analytically
continued free energy found in Sec. ITI. The results in this
section were calculated with D/J=1.1 and T/J=0.25,
corresponding to the H scans shown in Figs. 5 and 6.
We are interested in obtaining values from branches rep-
resenting a “pure metastable” phase |a), so for each N we
select values of H for which A\og=(Ag—1Aa+1)*/2, thus en-
suring a “safe” distance from the near degeneracies in the
transfer-matrix spectrum. These points are used to con-
struct envelopes over the lobes of |Imf,| shown in Fig. 6.
Two sets of such envelopes are shown in Fig. 9, one (left)
for the (+) metastable state and one (right) for the (0)
metastable state, for values of NV ranging from N=6 to
N=24. As N increases, these values drop exponentially
to zero between the first-order transition at H; and the
spinodals at —H, and H3, whereas near the spinodals
there appears to be a crossover to a slower scaling. This
crossover can be seen from the curvature of |[Imf, n|.
As N increases, a singularity in the curvature develops,
pushing closer to the spinodal. This singularity was also
observed for the Q1DI model [24]. In the present study
it was found that some of the branches, particularly for
the (+) and (—) metastable states in field regions where
they were not the lowest-lying metastable state, showed
substantial mixing between nearly degenerate eigenvec-
tors. In these regions the branches did not always extend
in such a way as to form envelopes without inflections,
even with the above eigenvalue criterion satisfied. An
example of this behavior in the (—) metastable state is

0
20}
2
=
E
=
- 40t

-60
-0.2
H/J

FIG. 9. Piecewise-linear envelopes for the lobes of

In|Imfcy)/J| (left) and In|Imf)/J| (right) for a system at
D/J=1.1,T/J=0.25, and with N in the range 6<N<24. The
uppermost curves correspond to N=6. The transition lines
mark the (+) spinodal at H=—Hj, the first-order transition
at H=H, and the (0) spinodal at H=H3. See the text for a
detailed description.

shown in Fig. 6 for 0< H<H3. The (4) metastable state
shows the same behavior for —Hy<H <0, which causes
the roughness of the envelopes shown in Fig. 9 for this
region.

To obtain the scaling behavior for fields inside the spin-
odal, we first assume a form for [Imf,|, based on the
results of Egs. (32) and (41), as

In|Imf, ~(D,H,T)| ~ —-BN°A(D,H,T) , (58)

where the exponent o and the function A(D, H,T) are
undetermined. By Eq. (32), we expect NA(D, H,T) to
be the barrier height AF, as given by Eq. (41). Since
A(D,H,T) is expected to be independent of N, we
should find o=1. For a given field H, we interpolate
values of In|Imf, x| from the envelope points using a
piecewise linear form. A finite-range estimate for o was
calculated using methods described in Refs. [24,43],

lnllmfa,24| - lll lImfa‘lzl) (59)
1]1 |Imfa,12| - hl 'Imfa‘(s' ’

o~ (In2)"'ln (

giving ¢ =~ 1.1. Finite-range estimates SApn for
BA(D,H,T)=BAF/N were then calculated for
12<N<24, assuming o=1:

BAN = —%(ln Imfo,n| — In|Imf, n/2]) - (60)

Figure 10 shows the estimates SAN(D,H,T) at
D/J=1.1 and T/J=0.25, as calculated by Eq. (60), for
the (0) and (+) metastable states, respectively, plotted
on a log-log scale as functions of |H — Hj|. The data for
the largest system N=24 are shown as diamonds. These
results are compared with the free-energy cost of nucle-
ation obtained from Eq. (41). As can be seen from the
figure, the agreement between the extrapolated CTM es-
timates and the exact results is quite good, considering
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In(BAy)

In(|H-H,|/J)

FIG. 10. Finite-N estimates for BA(D, H,T) in Eq. (58)
for the (0) and (+) metastable states, shown on a log-log
scale vs |H—H,|/J for 12<N<24. The diamonds show the
estimates for the largest size N=24. The two dashed lines
indicate the corresponding exact ¢ field-theoretical values
for BAF from Eq. (41). For clarity, both the analytical and
numerical results for the (+) state are shifted up by a distance
of unity on this logarithmic scale. See the text for a detailed
description.

that the field corrections to the ¢ field theory are ex-
pected to be substantial, as was demonstrated in Ref.

[24] for the Q1DI model.

VII. MONTE CARLO RESULTS

The Monte Carlo method is a standard method for
studying lattice-gas Hamiltomans, such as the long-range
Blume-Capel model. We used the Metropolis algorithm
[49-51] with nonconserved order parameter, where at
each step in the Markov process individual spins were
proposed to be flipped at random. The system consid-
ered had L=200 layers, each containing N=7 spins, and
periodic boundary conditions were imposed in the L di-
rection. All simulations were performed at T'/J=0.25 and
with a total of 2000 Monte Carlo steps per layer (MCSL).
The values of N, D, and H were chosen in order to make
nucleation reasonably probable in the time allotted.

In Fig. 11 particular realizations of the decay of four
metastable states into their respective equilibrium states
are shown. Three of their corresponding phase points are
shown in Fig. 3 as solid dots. In case (c), the position
is not shown in Fig. 3 since the parameters fall outside
the displayed region. Horizontally, the spatial direction
extends over the L layers, while the vertical axis is the
time axis, in units of 10 MCSL. The bottom row cor-
responds to t=0 MCSL, while the top row corresponds
to t=2000 MCSL. The gray scale in the plots relates
linearly to the average magnetization within the layer.
Black corresponds to m=+1, gray to m=0, and white
to m=-1. In Fig. 11(a), D/J=1.15 and H/J=-0.1.
The system starts in the metastable (+) state. After
approximately 1000 MCSL, a critical droplet of the (0)

1943

(b)

(c) (d)

FIG. 11. Dynamical behavior of metastable states in the

long-range Blume-Capel model. Simulations with L=200
and N=7 are performed at T/J=0.25, using a total of
t=2000 Monte Carlo steps per layer. The spatial direc-
tion is given horizontally and the time axis vertically. The
gray scale is chosen so that m=+1 is black, m=0 gray,
and m=—1 white. The parameters are (a) D/J=1.15 and
H/J=-0.1, (b) D/J=0.983 and H/J=-0.249, (c) D/J=0.8
and H/J=-0.42, and (d) D/J=0.95 and H/J=0.

state forms. The droplet then grows linearly in time by
roughly linear motion of the domain walls, until it spans
the system. Note the periodic boundary conditions. In
Fig. 11(b), D/J=0.983 and H/J=-0.249. The system
starts in the metastable (+) state. After approximately
200 MCSL, a critical droplet forms and the state decays
into the metastable (0) state. The system remains in
the metastable (0) state until a critical droplet of the
(—) state causes the system to decay into the (—) equi-
librium state. In Fig. 11(c), D/J=0.8 and H/J=-0.42.
The free-energy density functional has two minima, cor-
responding to a stable (—) state and a metastable (+)
state. In the Monte Carlo simulation the system again
starts in the metastable (+) state, and we see qualita-
tively the same behavior, except that the decay goes di-
rectly from (+) to (—) since the metastable (0) state
does not exist. Note the formation of two independent
droplets, which coalesce after they have nucleated. Fi-
nally, in Fig. 11(d), D/J=0.95 and H/J=0.0 the system
is started in the (0) metastable state. Critical droplets
of both the (+) and (—) state cause the system to decay.
The purely D-field-driven domain growth at this phase
point, in contrast to the H-field-driven growth shown in
(a)—(c), appears much more diffuse on the time scale con-
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sidered in the calculations. After 1000 MCSL the system
reaches a configuration where only the (+) and the (—)
state are present, reminiscent of late-stage spinodal de-
composition.

VIII. CONCLUSION

In this paper we have applied analytic continuation and
a recently developed constrained-transfer-matrix formal-
ism to study the stationary properties of metastability
in a system with competing metastable states. In addi-
tion we have studied the decay of metastable states by
Monte Carlo simulation. Langer [3,4] related the imag-
inary part of the analytic continuation of the free en-
ergy into the region of metastability ImF to the decay
rate of the metastable states as given by Eq. (1). In a
recent study of an Ising model with weak, long-range
interactions [24], excellent quantitative agreement was
found between the imaginary part of the constrained free-
energy density Imf, and the decay-rate density of the
metastable state as measured from the activation bar-
rier. However, as discussed in the Introduction, for sys-
tems with several metastable states, Gaveau and Schul-
man [17] have argued that ImF is not necessarily a valid
measure of the decay-rate density. Motivated by this, the
purpose of the present work has been to establish to what
extent the imaginary part of the free-energy density from
the CTM formalism can be interpreted as a decay rate in
more complicated systems, containing several metastable
states.

We have studied a variant of the Blume-Capel model
with weak, long-range interactions. One reason for doing
so is that for a certain range of fields this model exhibits
two competing metastable phases, for which questions
can be raised about the interpretation of the analytically
continued free energy. Also, the model is simple enough
to allow extensive symmetry reduction of the transfer ma-
trix, as shown in Appendixes A and B, so that relatively
large system sizes could be considered. We have obtained
an exact analytic expression for the finite-temperature
spinodal and have used this to calculate the various crit-
ical lines in the phase diagram in a very simple manner.
In the region of the spinodal we have mapped the Hamil-
tonian to a ¢ field theory to obtain an expression for
the free-energy cost of nucleation. We were thus able to
calculate the leading term in an expansion around the
spinodal of the “Boltzmann weight” that appears in the
analytic continuation of the free energy across the first-
order phase transition.

We have outlined the CTM formalism, by which a com-
plex constrained free-energy density can be constructed
by reweighting the eigenvalues from the transfer matrix
of the equilibrium system. The results for the real part of
the metastable constrained free-energy density Ref, are
in excellent agreement with those of the mean-field free-
energy density. The associated imaginary part [Imf,| is
extremely small, showing exponential dependence on the
interaction range inside the classical spinodal. In the re-
gion of competing metastability it was found that Imf,
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for a metastable state is closely related to the activation
barrier involved in the transition, which according to the
Van’t Hoff-Arrhenius formula of chemical reaction the-
ory, is related to the decay rate. More quantitative evi-
dence was given in Sec. VI, where we applied finite-range
scaling to |Imf,|. There we found very good agreement
between the finite-range scaling of |Imf,| and the height
of the activation barrier obtained by exact analytic con-
tinuation.

Our numerical results have demonstrated that the
CTM method provides for any pure metastable phase
a value for |Imf,| that agrees with the Arrhenius law for
the decay rate of that particular metastable phase. In the
case where two metastable phases are present, the CTM
method gives a distinct value of |Imf,| for each phase,
which can easily be continued through points where these
phases are degenerate. The usual procedure of analytic
continuation of the free energy, on the other hand, has
no mechanism for distinguishing coexistent metastable
phases and thus gives an imaginary part related only to
the lowest activation barrier which separates any one of
the coexistent phases from the equilibrium phase. An
example of this type of result was given in Ref. [17] as
a “counterexample” to Eq. (1). We, however, interpret
that result as being in agreement with Eq. (1) by not-
ing that the configuration space to which the partition
function is constrained, and from which the analytically
continued free-energy density measures the escape rate,
includes both of the degenerate metastable phases rather
than a single pure metastable phase.

In Sec. VII we studied dynamically the decays of com-
peting metastable states by Monte Carlo simulation. The
results confirm that the decay of a particular metastable
state might happen either directly or via a succession of
separate steps, depending on the availability and rela-
tive stability of a second metastable state intermediate
between the initial one and the equilibrium phase.

The CTM method has proven to be a highly successful
tool in the characterization of metastable phases. It is
a nonperturbative method that treats all possible fluc-
tuations in a single calculation. The fluctuations that
are important to nucleation are automatically identified,
in contrast to the analytical calculations, where the rel-
evant fluctuations must be introduced by hand. This
method might therefore be used to study metastability
in disordered systems, such as spin glasses, which are
known to possess a large number of metastable states so
that the critical fluctuations are difficult to characterize.
However, the computational requirements of applying the
CTM method to such a problem would be enormous.
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APPENDIX A: CONTRACTION
OF THE TRANSFER MATRIX

This appendix provides a mapping of the transfer
matrix from layer configuration space onto a reduced
space. Denote the layer configuration vector space by
X. Since the configuration vectors |X)€X can be ex-
pressed as direct products of single-spin configurations
| X:)=|81,i)|82,s) - - |sn,i), dim(X)=3¥ for the long-range
Blume-Capel model, and the set {|X)} constitutes a 3V-
dimensional orthonormal basis for X. The transfer ma-
trix T is an operator T:X—X. Assume that we have a
symmetry group Gy and operators U:X—X that repre-
sent elements of Gy and also commute with T. Symme-
try transformation operators must be unitary, so U must
be a cyclic transformation with finite period. This means
that the configuration space X can be divided into equiv-
alence classes, each invariant under Gy. We denote the
equivalence classes by C, (k=1,..., K) and we relabel the
configuration vectors as | X} ;), where the index k refers
to class Cr. Thus |Xj ;)€Ck and the index j=1,...,gs
runs through all g; configurations in the class.

Let O be an arbitrary operator that is invariant under
Gy (for the more general case, in which O has a definite
symmetry under Gy, see Ref. [52]). We then have the
following fundamental identity:

3N 1 K g
> 0IX:) =" 0[Xy;) - (A1)
i=0 k=1j=1

A reduced vector space V is spanned by the orthonormal
basis {|Vi)}4,, where

1 gk

Vi) = —= D | Xk.5)- (A2)
Thus dim(V)=K.

If the layer Hamiltonian for a system is invariant under
Gy, then the transfer matrix T is also invariant under
Gy. Written as an operator, T is thus easily transformed
into the reduced basis by Eqgs. (A1) and (A2), giving

T=3 3 > X)Xy
k,k' X€Ck X'€C},

=" Vi) vargrme PV (p, |

k,k!

(A3)

If we consider the Blume-Capel case, the reduced basis
set is |Ri) = |MrQr), k=1,...,(N+1)(N +2)/2 and the
multiplicity factor gr=g(Ms, Q) is given by Eq. (6). By
substituting appropriately, Eq. (54) is recovered.

Now consider the transformation of Eqs. (47)—(50). Let
|[V)EV be an eigenvector in the reduced space and let
|a)€X be the corresponding eigenvector in configuration
space. It follows from Eq. (A2) that

(Ve|v)
9k

(Xk,jla) = (V) - (A4)

Expressing M, in the reduced basis is now simple:

K g
1 o
Ma=5 é;(ale,j)(Xk,le P| Xk, )(Xk,5] )
1 K
=% kZ(u|Vk)Mk(Vk|u) , (A5)
=1

where Egs. (A1), (A2), and (A4) are used, and the mul-
tiplicity factors introduced by Eq. (A4) are canceled in
the sum. The transformation of Egs. (47)—(50) are all
obtained in the same manner.

APPENDIX B: DECOMPOSITION
OF THE TRANSFER MATRIX

In this appendix the transfer matrix T is decomposed
by applying a unitary transformation S so that STS? is
block diagonal, which allows the separation of all the zero
eigenvalues of T. The dimension of the original transfer
matrix from Appendix A is dim(T') = (N +1)(N +2)/2,
while the reduced transfer matrix has the dimension of
rank(T) = 2N + 1.

The transfer matrix can be written as T=DAD, where
D is a diagonal matrix that contains interactions within
a layer and A contains interactions between layers [53].
In the Blume-Capel case the matrix elements of A are
given by

(MQIAIM'Q') = exp[BJMM'/N] (B1)

and the matrix elements of D are given by

(MQD|M'Q’) = v/9(M, Q) exp[-B(DQ — HM)/2]
X(SM,MMSQ,Q: . (B2)

The matrix A is independent of Q and Q’, which
means that the rank of A is just the number of dis-
tinct values of the magnetization, since D is of full rank;
rank(T) = rank(A) = 2N + 1. We organize the basis
vectors |[MQ) in groups according to the magnetization
M (M=-N,—-N +1,...,N). As an example, the ba-
sis vectors for N=2 are organized in the following way:
{l-22),|-11), |00), [02), |11), |22)}. It can be shown
in general for the long-range Blume-Capel model that the
number of basis vectors n(M) with magnetization M is
n(M) = |1+ (N —|M]|)/2], where | | denotes the integer
value.

We start by constructing a matrix B that block diag-
onalizes A. Let B be a block diagonal matrix, where
the n(M)xn(M) square block corresponding to magne-
tization M is denoted Bjs, and define an n(M)xn(M)
square matrix Jps with all its elements equal to unity.
We define Bps as a unitary matrix that diagonalizes J ;.
This will be satisfied if we choose the column vectors of
Br to be an orthonormal basis of eigenvectors for Jps.
However, Bz is not uniquely defined in this fashion since
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rank(Jpr)=1. To make a specific choice for Bys, we se-
lect the eigenvector corresponding to the single nonzero
eigenvalue of Jps as the last column.

We define a matrix C by C=BAB?®. Due to the par-
ticular choice for all Bjys, it can be shown with a little
effort that the C matrix has a special matrix form, which
we will call a C form:

~— A
(Cu "/

////// / // // /|

//022 ///

/// /." 7/// L (B3)

C= B3
i
/] ’ /| Cii
7

L )

As indicated by the curly brackets in Eq. (B3) the ba-
sis vectors are grouped together according to magneti-
zation M=—N,—N + 1,...,N. All elements within the
hashed regions are zero and the only nonzero elements
occupy the last row and column within each magnetiza-
tion group. From Eq. (B3) it is clear that there exists a
permutation matrix P such that PCP? reduces to a block
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matrix of size (2IN+1)x(2N+1), and all elements outside
this block are zero. For each diagonal block Cjs [outlined
by thick lines in Eq. (B3)], with dim(Cas)=n(M), there
is only one nonzero element, which is located at the bot-
tom row diagonal position.

The unitary transformation matrix S that block diago-
nalizes T can now be determined based on the properties
of the C form. The transformation of T can be expanded
as

STS' = (SDB') (BAB?) (SDB?)" . (B4)

Hence from Eq. (B4) it follows that the transformed
transfer matrix STS* will have the C form if the matrix
product between SDB* and C preserves the C form. It
is sufficient to restrict the unitary transformation S so
that it can be decomposed into a block diagonal matrix.
The blocks are denoted Spr (M=—N,—N +1,...,N).

Therefore SDB? also decomposes into a block diag-
onal matrix, and it suffices to show that for all M,
Sy (DumB,)Chr has the same form as Cp. This is
equivalent to requiring that all rows of Sys, except for
the last row, are orthogonal to the last column in the ma-
trix product DpB%,. Since all columns in D MBfw are
linearly independent, Sys can be constructed by using a
Gram-Schmidt orthogonalization process on the column
vectors in Dp/BY%,. Since S is unitary, the transformed
transfer matrix STS? is symmetric and can be reduced
by the permutation matrix P into a (2N+1)x(2N+1)
reduced transfer matrix. This concludes the proof of the
decomposition.

(1] J. D. Gunton, M. San Miguel, and P. S. Sahni, in Phase
Transitions and Critical Phenomena, Vol. 8, edited by
C. Domb and J. L. Lebowitz (Academic, London, 1983).
[2] K. Binder, Rep. Prog. Phys. 50, 783 (1987).
[3] J. S. Langer, Ann. Phys. (N.Y.) 41, 108 (1967).
(4] J. S. Langer, Phys. Rev. Lett. 21, 973 (1968).
[5] J. S. Langer, Ann. Phys. (N.Y.) 54, 258 (1969).
[6] K. Binder and E. Stoll, Phys. Rev. Lett. 31, 47 (1973).
[7] K. Binder, Phys. Rev. B 8, 3423 (1973).
(8] K. Binder and H. Miiller-Krumbhaar, Phys. Rev. B 9,
2328 (1974).
[9] R. J. McCraw and L. S. Schulman, J. Stat. Phys. 18, 293
(1978).
[10] R. J. McCraw, Phys. Lett. 75A, 379 (1980).
[11] C. M. Newman and L. S. Schulman, J. Stat. Phys. 23,
131 (1980).
[12] G. Roepstorff and L. S. Schulman, J. Stat. Phys. 34, 35
(1984).
[13] M. Biittiker and R. Landauer, Phys. Rev. Lett. 43, 1453
(1979).
[14] M. Biittiker and R. Landauer, Phys. Rev. A 23, 1397
(1981).
[15] W. Klein and C. Unger, Phys. Rev. B 28, 445 (1983).
[16] C. Unger and W. Klein, Phys. Rev. B 29, 2698 (1984).
[17] B. Gaveau and L. S. Schulman, Lett. Math. Phys. 18,
201 (1989).
[18] V. Privman and L. S. Schulman, J. Phys. A 15, L231

(1982).

(19] V. Privman and L. S. Schulman, J. Stat. Phys. 31, 205
(1982).

[20] P. A. Rikvold, Prog. Theor. Phys. Suppl. 99, 95 (1989).

[21] P. A. Rikvold, Phys. Scr. T38, 36 (1991).

[22] P. A. Rikvold, B. M. Gorman, and M. A. Novotny,
in Proceedings of the First Tohwa University Interna-
tional Symposium on Slow Dynamics in Condensed Mat-
ter, 1991, edited by K. Kawasaki, T. Kawakatsu, and M.
Tokuyama, AIP Conf. Proc. No. 256 (AIP, New York,
1992), p. 549.

[23] M. A. Novotny, W. Klein, and P. A. Rikvold, Phys. Rev.
B 33, 7729 (1986).

[24] B. M. Gorman, P. A. Rikvold, and M. A. Novotny, Phys.
Rev. E 49, 2711 (1994).

[25] C. C. A. Giinther, P. A. Rikvold, and M. A. Novotny,
Phys. Rev. Lett. 71, 3898 (1993).

[26] C. C. A. Giinther, P. A. Rikvold, and M. A. Novotny,
Florida State University Report No. FSU-SCRI-94-58,
1994 (unpublished).

[27] P. A. Rikvold, H. Tomita, S. Miyashita, and S. W. Sides,
Phys. Rev. E 49, 5080 (1994).

[28] M. E. Fisher, Physics 3, 255 (1967).

[29] O. Penrose (unpublished).

[30] P. Hinggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys.
62, 251 (1990).

[31] M. Blume, Phys. Rev. 141, 517 (1966).



50 NUMERICAL TRANSFER-MATRIX STUDY OF A MODEL WITH . .. 1947

[32] H. W. Capel, Physica 32, 966 (1966).

[33] M. Blume, V. J. Emery, and R. B. Griffiths, Phys. Rev.
A 4, 1071 (1971).

[34] P. A. Rikvold, Electrochim. Acta 38, 1689 (1991), and
references cited therein.

[35] A. N. Berker and M. Wortis, Phys. Rev. B 14, 4946
(1976).

[36] J. D. Kimel, P. A. Rikvold, and Y.-L. Wang, Phys. Rev.
B 45, 7237 (1992).

[37] D. P. Landau, Phys. Rev. B 38, 7700 (1986).

[38] R. J. Speedy and C. A. Angell, J. Chem. Phys. 85, 851
(1976).

[39] A. J. Leggett, Rev. Mod. Phys. 47, 331 (1975).

(40] J. R. Schrieffer, Theory of Superconductivity (Addison-
Wesley, New York, 1983).

[41] K. Binder, Phys. Rev. A 29, 341 (1984).

[42] R. B. Griffiths, Phys. Rev. Lett. 138, 715 (1970).

[43] P. A. Rikvold, B. M. Gorman, and M. A. Novotny, Phys.
Rev. E 47, 1474 (1993).

[44] W. Paul, D. W. Heermann, and K. Binder, J. Phys. A

22, 3325 (1989).

[45] C. Domb, Adv. Phys. 9, 149 (1960).

[46] M. Marcus and H. Minc, A Survey of Matriz Theory and
Matriz Inequalities (Dover, New York, 1964).

[47] R. E. Blahut, Principles and Practice of Information
Theory (Addison-Wesley, Reading, MA, 1987), pp. 61—
64.

[48] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes in C (Cambridge University
Press, Cambridge, 1992).

[49] D. W. Heermann and A. N. Burkitt, Parallel Algorithms
in Computational Science (Springer, Berlin, 1991).

[50] K. Binder, in Monte Carlo Methods in Statistical Physics,
edited by K. Binder (Springer, Berlin, 1979).

[51] K. Binder and D. W. Heermann, Monte Carlo Simulation
in Statistical Physics (Springer, Berlin, 1988).

[52] P. A. Rikvold, K. Kaski, J. D. Gunton, and M. C. Yal-
abik, Phys. Rev. B 29, 6285 (1984).

[53] M. A. Novotny, J. Math. Phys. 20, 1146 (1979).



(c) (d)

FIG. 11. Dynamical behavior of metastable states in the
long-range Blume-Capel model. Simulations with L=200
and N=7 are performed at T/J=0.25, using a total of
t=2000 Monte Carlo steps per layer. The spatial direc-
tion is given horizontally and the time axis vertically. The
gray scale is chosen so that m=+1 is black, m=0 gray,
and m=—1 white. The parameters are (a) D/J=1.15 and
H/J=-0.1, (b) D/J=0.983 and H/J=-0.249, (c) D/J=0.8
and H/J=-0.42, and (d) D/J=0.95 and H/J=0.
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FIG. 2. The spinodal surface, shown in (D, H,T) space.
The whole surface is symmetric under reflection in the plane
H=0. Only the portion for T/J>1/12 is shown, floating
above the grid at T=0. The two sheets that merge along
the line I, are the (+) spinodal in front and the (—) spinodal
in back. This line of critical points terminates at the tricriti-
cal point (D, /J, H/J, T /J)=(5 In 2,0, 2/3), which is marked
with a circle. The sheets that merge along the line l; are the
(0) spinodal in front and the (—) spinodal in back. For the
sheets merging along the line I3 we have the (0) spinodal in
back and the (+) spinodal in front. The two (0)-spinodal
sheets intersect, cross the (+)- and (—)-spinodal surfaces,
and merge along the line l4. This line connects the point
(D,H,T) = (0,0,0) with the tricritical point.



