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%e consider the locah~ation transition of a heteropolymer chain without volume interactions
consisting of two types of links —"hydrophobic" (A) and "hydrophilic" (B) at a selective oil-water
interface: the A links are repelled &om the water into the oil whereas B h~&~ prefer to be located in
the water. We study the behavior of the &ee energy near the point of transition &om a delocalired
(Gaussian) to a locaLbetl (adsorbed) regime for two basic models: chains with periodic (A B A--
B )and-"annealed random" sequences of hnks. We show that the transition is sensitive to the
type of direct repulsive interaction of the links with the interface, and can be of "fourth" order in
particular cases.

PACS number(s): 64.60.Cn

I. INTRQDUCTION

Heteropolymers are one of the most important sub-
jects in the physics of disordered systems mainly due to
obvious biological applications. In the present paper we
consider a very simple schematic model that exhibits the
phenomenon of a heterogeneity-induced coil-to-globule
trnnaition. Our model is a two-letter A Bheteropo-ly-
mer embtMIded in such a surrounding that say, A, parti-
cles prefer to stay in the left b~&f-space while B particles
prefer the right half-space. Obviously there is a sort of
frustration in this system, because the complete separa-
tion of A particles to the left and B particles to the right
is forbidden by the polymer bonds which, therefore, play
the role of the disorder. Being adsorbed at the surface
between left and right half spaces, polymer chain tends
to be localized in the following sense. The excursions of
the chain are determined by the competition between the
energy gain of dissolution of monomers in the preferable
half space and the entropy loss due to the localization of
the chain at the interhce. Such a confined state is, there-
fore, the typical globular phase of a polymer chain and
the transition from the delocalized state to the localized
one is the typical coil-to-globule phase transition [1]. To
our knowledge such a model was proposed first by Garel
et al. in Ref. [2].

There was remarkable progress in the Geld of het-
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eropolymer theory in the last few years [3—10]. In partic-
ular, it is connected with the successful theoretical inves-
tigation of the phenomenon of spin-glass-like phase tran-
sitions for heteropolymer globules, solutions, and melts
[7—9]. Our model is, however, the opposite limiting case
to that considered in these works. To explain this point,
let us stress that in the approach of the investigations
cited above the basic assumption is that the formation of
a dense structure of the chain is caused by "homopoly-
mer" efFects, for example by averaged poor-solvent ef-
fects, while the "heteropolymer" efFects are responsible
for important features of the chain behavior just in the
globular phase.

Our goal here is completely dItferent namely we inves-
tigate in detail the coil-to-globule transition induced by
the presence of a heterogeneous sequence of links. This is
why we restrict ourselves to the following simplifications:

(i) The polymer chain is ideal (i.e., without any voln~e
interactions or excluded vob~me efFects);

(ii) The sequence of &inks is (a) periodic or (b) "an-
nealed" rather than the more difficult case of quenched
randomness [2].
It turns out that even with these simplifications there are
some delicate and unexpected efFects, including:

(1) The system is very sensitive to the potential acting
at the interface;

(2) There is a special point in the phase space of ex-
ternal parameters at vrhich the phase tr~~&ition belongs
to another»~iversality class than the usual pb~ tran-
sitions for adsorbing polymers.

The model considered here is closely related. to the
widely investigated phenomenon of polymer ch~&~ ad-
sorption [3—6,11—14]. It is weQ understood at present
both for homopolymer [3,12—14] and heteropolymer cases
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[4—6]. The simple difFusive approach [13]provides a com-
plete understanding of an adsorption of the homopoly-
mer chains as well as of a block copolyxners in difFerent
complicated geometries. These results can be beautifully
explained also by scaling estimates [15]. More advanced
renormalization group methods [4] and power series anal-
ysis [6] applied to random chains with a disordered se-
quence of li~ks are also widely used and give an ex-
haustive information on the thermodynaxnic properties
of ideal polymer chains near the point of phase transi-
tion from delocalized (Gaussian) to localized (adsorbed)
regimes. Recently, we noticed that the same mathexnat-
ical formalism has been applied to a description of the
phase transition in restricted solid-on-solid models with
quenched impurities [16]. Many conclusions obtained by
renormalization group (RG) analysis in Ref. [4] correlate
with the results in Ref. [16].

In our model we investigate the localization transition
by the transfer matrix methods. To have explicit results,
it turns out to be convenient to "lift" the transfer ma-
trix defined on a one-dimensional (1D) space to a three-
dimensional space. This will be explained in Sec. III,
where also the dependence on the potential at the inter-
face has been studied. In Sec. IV we consider a polymer
with annealed disorder in the links sequence. An alterna-
tive approach would be to use first returns of the polymer
to the interface as in the necklace model [17]. Along this
route the existence of a localized phase for quenched dis-
order has been proved [18,19].

with

(p(~, , x, ). = ua; 8(x, )

Here o~ is an indicator of the link type

(2.3)

+1 if the jth link is "A"
—1 if the jth link is "8", (2.3a)

and 8(x~) is the symmetric Heaviside function

+1 if+,. & 0
8(xi) = sgn(xi) =

1 f . p
(2.3b)

Let us choose for the single segment distribution the
Gaussian function

G~~q(z) = e w( ' ) f deg(z —a )G~(z ). (2.5)

3(r' —r~-~)'
g(r, —r, g)=~ ~

exp(2za2) 2a
(2.4)

In all further calculations we absorb the temperature in
the potential by setting T = 1 and normalize distances
such that for the average segment length we have a = 1.
Since the potential depends only on the xz, we can inte-
grate over the coordinates parallel to the interface. Then
in (2.4) g(r~ —r'. ~) is replaced by the one-dimensional
Gaussian kernel, still denoted by g(x —x') and the Green
function satisfies the recursion relation

II. DESCRIPTION' OF THE MODEL

Let us consider 3D "beads-on-the-string" model of
polymer chain without vob~me interactions consisting of
two types of beads (chain links), namely "hydrophobic"
(A) and "hydrophi&ic" (B). The polymer chain is im-
mersed in a solvent that consists of water and oil sepa-
rated by the planar interface. Thus the potentials for the
two types of chain links are (Fig. 1)

The potential takes difFerent constant values on each
half line, which makes it difEcult to work directly with

„(p(A,x)

u if+ &0
y(A, r) =

—u if'&0p(Br)= g p (2.1)

where x denotes the coordinate orthogonal to the planar
interface. In addition there is a potential at the interface
that is crucial for the structure of the phase diagram and
which we will retain below. Still we suppose y(A, r) =
rp(B, r) = 0 if x = 0.

Let us characterize the sequence of links by o.~
(A, B}with j labeling the links along the chain. Then
the potential per a whole chain, O((a~},r)/T, is given
by

„y(B,x)

1 1
y@'((~.}.r) =

~ ).V (~' *.)
j=1

(2.2) FIQ. &. The potential y(n, x) acting on: (a) "hydrophobic"

(A) links; (b) "hydrophilic" (B) links.
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r„+~i(x) = e-" ""/d'x'g(x —x')r„'(x')

+pg(x) / d'x'g(x —x')

x r+(x')+r-(x'), (2.6a)

(2.5). Our main idea is to regard the random walk on
the 1D half line (or, the 1D "first return" problem) as
the radial part of the random wa&& in a free 3D space

[20,21]. There are then two 3D spaces, one for the right
and one for the left half lines. Once the w'alk arrives at
the origin, it can pass to the other SD space. %e have

to add a repulsive b-function potential at the origin in

order to compensate the entropy advantage: just at this

point the chain can stay in the same 3D space or transfer
to another one. The strength of the h-function potential
has to be adjusted such that the right behavior of the 1D
random walk is reproduced.

We index the 3D spaces by (+,—j and denote the cor-

responding Green functions by I'+~, I'&. They satisfy the
recursion relations

(3.1)

=e2 for all ~, . (3.2)

This definition generalizes Eq (2. .5) where u() ——0 was
assumed.

(b) The direct interaction of link~ with the interface de-

pends on the link type. This means that the interface can
be regarded as a semipenetrable membrane with some
kind of selective interaction with chain links. In this case
the Boltzmann weight of a link at the interface reads

As mentioned already the adsorption depends sensi-

tively on the direct interaction of the chain li~&~ with
the interface. We study the following two situations:

(a) The direct interaction of the chain with the inter-

face does not depend. on the link type. In this case the
statistical weight of a link at the interface takes the value

~ „(*)= """/d'*' (*—*')~ (*')

+p6(x) /dgx'g(x —x')

x I'~(x') + I'+~{x'),

which in matrix form are rewritten as

~N+1(x) = MN+1gI N(x )

(2.6b)

(2.7)

~(i ~.) e "' iform=1
1 if 0~ = —1. (3.3)

We will show that (a) and (b) lead to rather different
phase diagrams for the polymer chain.

Performing the Fourier transform in (2.7) {compare
with the Appendix) and taking into account that the sta-
tistical weight of the Nth link at the interface is A~, we
obtain a matrix equation valid for an arbitrary sequence
of links,

where

( r+(x) )(")=
I I'-( ) )

I N+ (k) = A~+].g(k)&N (k) +
2z s

x d k'g k' Fpg k' , (3 4)

MN = / e-" ~+qh(z) qh(z)
pb(z) e" "+ pb(z)

(2 7')
where g(k) = exp (—k2/6) and the matrices AN, B are

defined by
Here g is the integral operator with the Gaussian kernel

g(z —z'). We used the fact that the potential is constant
on each half line. As shown in the Appendix [Eqs. (A.S)
and (A.12)] the strength of the h function has to be fixed
at

( -".~ o
0 egggggg )I ~

1 (3i "'
& '(3/2)

2 E&~)
(2.8)

where g is Riemann ( function. With this adjustment

For the periodic sequence (3.1) of links the matrix

A~ takes only two AHerent expressions depending on
whether the loop between the neighboring passages of the
interface consists of even or odd n»aber of 1i~&&, namely

a~(+(z() = I'+„(x), (2.9)
(e" o

A2~+& I 0 e

(e-" 0 &

(3.6)
III. ADSORPTION OF A PERIODIC CHAIN

We consider a polymer chain arith a periodic sequence
of links,

In the components I'~ of the spinor FN the recursion
relations written only at even link numbers read
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C~+*(k) =a*(k)~.' +a(k) ".s "~"'J ~'k'u(k') ~N(k')+~*~(k')

(2 )'
A('") d )k' (k') "r+ (k') + "r (k')2N 2N

2 2
d'k'g(k') r+ (k')+r- (k')

(2z.)s 2N 2N . 7 (3.7a)

~~arss(k) =& (k)~~tv+&(k)
" s""' J~ k'&(k') (vasss(k'. )+~~tv(k')

d'a'g(k') r+ (k')+r- (k') .2 2

(2z)s 2N 2N (3.7b)

Here A&'"~ and A~ ~ denote the statistical weights at
the interface of even and odd links correspondingly and
A is the constant

5 3)'"
A=

(2~)'
d kg(k) =

~

—
~

Zg(s) =—Zx+(s)+ Z, (s) =

where Dq is some analytic function depending on

{Ly,2,s(s), &, A('"), A( )}. The function G2~(x = 0)
may be extracted from the integral

Equations (3.7a) and (3.7b) can be solved by the
Laplace transform. Let us introduce the generating func-

tions

1
G2N(z = 0) = dsZg(s)s

27ri
(3.10)

Z+( k) = ) '( +')I'+ (k)
N=O

(3.8a)

Z,+(s) = ) ss~ +'~ Jdskg(k)Fs~(k), (3.8k)
N=O

Z,'(.) = ) .*'""i ', J ~'kg'( )r,'„(k). (3.8.)
N=o

The functions S~+(s) and Z2+(s) satisfy a system of lin-
ear algebraic equations with corresponding determinant
det(s). The coefficients in this system depend on func-
tions

by integrating along a contour that encircles the origin
s = 0 and does not surround any singularity of the func-
tion Zq(s) (cf. Appendix and Fig. 5 for further details).

It is well known [1,3] that the existence of a separated
pole of the function Sq (s) corresponds to a localized state
of the chain. Thus we should analyze equation det(s
0. The relation between the values u, A&'"~, and A

corresponding to the localization transition point can be
extracted from the condition det(s) = 0 at the point
s=1,

det(s)~, —z = det [Lz(s), L2(s), L3(s)]~ ~
= 0. (3.11)

The behavior of the free energy per monomer near the
transition point in the localized phase up to constants is
given by

y( P(e ) P( )) —hm ~(u P( ) P( ))
N~~ N

(3.9a) = const x ln(so), (3.12)

1 s sgz(k)
(2i)s 1 —ag2(k)

' (3.9b)
det(so) = det [L&(s),L2(s), L3(s)]~. , = 0. (3.i3)

where so is the pole closest to the origin which is deter-
mined by

L.(.) =
(2z)s 1 —sg2(k)

(3.9c)

When calculating the corresponding determinant, we

get the following expression

They are well defined on the interval [Q,l] and may be
extended analytically on the whole complex plane except
the cut ]1,oo[. The solution for Z~+(s), S2+(s) can be
found in the standard way

det(s) =
~

1 —2L2(s)p„A( ) cosh(u)
~i

x
~

1 —2L2(s)p„A('") cosh(u)
~)

—4Li(s)p„A('")A( ) [Ls(s) + A]. (3.14)
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The functions LI, (s), Ls(s), and Ls(s) have simple
asymptotics near the point s = 1 (with an accuracy up
to the leading ter~s of order gl —s)

Up

33/2
L (s) (1 —2 /2)l'0(1) — gl —s,

4m
(3.15a)

33/2
L2(s) = 2 / I' (1) — Ql —s,4' (3.15b)

f 3 ) s/2 33/2
L3(s) —(1 2 )I (1)

~ ~
v 1g2) 4

0- /
/

/
/

/
/

/
/

/
/

/

/

with
(3.15c) -3 -2

~ E

0 1 2 3
I

4 u

1 (31s
I'(1) = =

I

—
~

g(3/2)
2&cr (27I )

FIG. 2. The phase diagram for the link-type independent
interaction of the periodic chain with the interface.

[cf. Eq. (A.5)]. Collecting Eqs. (3.13)—(3.15) and sub-
stituting them into (3.12) we get the expression for the
free energy near the transition point

f(u, A'", A ) = const x q
' ' . (3.1,6)

det(s)

( ~, det(s) )
One can check that the denominator is finite near the
point s = 1 for all values of u A&'"& A&

ing fact. We expand (3.17) for large values of ue and u.
When uo -+ oo and u ~ oo we get

uo ——u —ssin(2). (3.20)

B. Link-type dependent interaction ~ith the
interface

This means that for each value of u we can 6nd a com-
pensating value of us such that the chain is critical.

A. Link-type independent interaction w'ith the
interface

Equation (3.11) at the transition point for A~'"~

A~o & = e"' [cf. (3.2)] takes the form

e"' = 2 / cosh(u)+ (1 —2 / ). (3.17)

f(u —uq, ) = const x u (3.18)

a very unconventional dependence for ordinary
second-order adsorption tr~editions in polymer chains.
The direct physical ar~ments for this behavior will be
given in the Conclusion.

For all other values u0 ——const & 0 the &ee energy
scales like in an ordinary second-order phase transition,

f(u —u„) = const x (u —u„), (3.19)

We do not have to consider the second pole of Zq (s), since
its contribution to the integral (3.10) may be neglected
when N is large.

The phase diagram in the coordinates (u, uo) is pre-
sented in Fig. 2. As can be seen from (3.17), for us ——0
the adsorption point is at u = ~, = 0. The order of the
phase transition is obtained using Eq. (3.16) which near
the critical point yields the following asymptotics

(1 —2 /2) + 2 s/ cosh(u) 1 —2 / cosh(u)

1 —2—s/2 cosh(u)
(3.21)

(we consider only one solution as explained before). In
contrast to Eq. (3.20) for uo m oo Eq. (3.21) has the
limiting point, uI;m, which is determined by the relation
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For A~ obeying Eq. (3.3) we have A~ ~ = 1,
e "'. In this case the equation for the tra~~ition point
reads

where u„ is the solution of (3.17) for fixed value of uo.
We also would like to draw the attention to the follow-

FIG. 3. The phase diagram for the &i~&-type depeadeut
interaction of the periodic chain with the interface.
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cosh(ubm) = 2 (3.22) &( .+i .) =({(,*.)--,v( + + )
1 . 2

This means that there exist such values of u & ui; cor-
responding to the localized phase of polymer chain which
cannot be forced into the delocalized phase by increas-
ing us. The phase diagram in coordinates (u, us) for
this case is presented in Fig. 3. Other aspects of the
tr~~~ition resembles the one considered in the preceding
section. In particular, it is of "fourth order" for up ——0
and of second order for all other values up = const Q 0
and 0&u&ug;

= (p(cR& g z&) —po'& 0'&+i + cons't. (4.1)

The parameter p can be considered as the chemical po-
tential of the (A B) -contacts on the chain (—oo & p &
oo). Note that in the limit p, -+ —oo only the periodic
link type sequence (—,+, —,+, .. .) survives and we are
back to the case studied in Sec. III.

The corresponding expression for the Green function
Z~(xN, o~) has the form

IV. LOCALIZATION TRANSITION IN
HETEROPOLYMER

WITH ANNEALED DISORDER IN LINKS TYPES
A(*N, {re) = ). OO ~ N —1

) —OO —OO '
p

We now turn to the possible case of a localization tran-
sition in a heteropolymer chain where the function of
links types a(j) is a random function of the segment
number j.

There exist two principal difFerent models of a random
heteropolymer.

(i) A heteropolymer with "quenched" disorder in link
types along the chain. In this model it is supposed that
the sequence of link types in a given polymer chain cannot
be changed through thermal Huctuations, but can be dif-
ferent only for difFerent chains. The main difFiculty in the
investigation of the thermodynamic behavior of this sys-
tem is connected with the problem which is well known
in spin glasses —one should average the kee energy over
possible realizations of sequences a(j) rather than the
partition function. Some aspects of this problem in the
context of our model were considered in Refs. [2,18]. In
the present paper we do not tackle this set of problems.

(ii) A heteropolymer with "annealed" disorder in link
types along the chain. In this model it is allowed for the
link types to change the places in a given polymer, which
means that the polymer chain is considered in complete
equilibri»m state and one should average the partition
function over possible realizations of the sequences o.(j).
Despite the fact that this type of model is much eas-
ier to handle as compared to the case of polymers with
quenched disorder, it is also of great interest. As an il-
lustration of such systems we mention the homopolymer
chain in the region of coil-to-helix transition [22]. An-
other even more interesting example of the system with
annealed disorder in the sequence of links is given in
Ref. [23]. In this work the aqueous solution of polyethy-
lene oxide is considered. Each monomer is supposed to
have two possible states, one with and the other with-
out hydrogen bond to the water molecule. The sequence
of states along the chain is, of course, not &ozen, but
allowed to change (see also Ref. [24]).

We turn to the problem of adsorption of an annealed
heteropolymer at a selective interface.

We ass»me that there is a correlation between the
nearest-neighbor link types. This means that we re-
place the potential per monomer, y(az, xz), [cf. (2.3)]
by Q(a~, a~+i, x~) of the form

h ~ ~

j=1
g(x, —2:, i)

N

x exp t —) @(a,, a,+i, *,) & (4.2)

x dzg x —z Z~ z, cT (4 3)

The solution of Eq. (4.3) is obtained by generaliz-
ing the approach described in Secs. II and III. First we
introduce the Green functions on the half lines x & 0
and z & 0 and the Green functions in corresponding SD
spaces

Z)v(g & 0, cr = +1)
ZN(z & 0, 0 = —1)
ZN(z & 0, 0 =+1)
Z)v(z & 0, 0 = —1)

PN+(x),
-+ M~+(x),

P~ (x),
w M~(x).

The functions PN (x) and M~(x) satisfy the recursion
generalizing Eqs. (2.6). It is more convenient to present
the corresponding equation in the matrix form. Let us
define the four-component spinor

Pz(x) )
)

M~ (x)
M~ (x)

( P (x) )
After Fourier transform this spinor satis6es the following
equation [compare to (3.4)]

V~+i(k) = Ag(k)VN (k)

+ "
AC fd*g'g{k')Vg{t'), (4.4)

where A = e "' and the matrices A and C are as follows:

with the statistical weight A of the link at the interface
de6ned as in (3.2). We deduce the recursion relation for
the Green function in the usual way,

Z g i —ggo 8(e) ) p(o o'+1)~+&S~, 0&
——e

a'=+1



1918 A. GROSRRRG. S. IXRAN Jtg, AND L NRCHARV

Upon introducing

e—%L

tl+2gk

1 1
]

0 0
0 0

e—tl+2IJ) —t4e
~tl+2p

(4.5)

Integration gives us the following equation:

det(s) = 1 —(1+ e ")A
b(u, y, )

—(1 —e ")cosh(u)A
b(u V)

x g('I'] ~-g'I'~
~

=O, (4.is)0& s & 2 o& s ')

(g(~) ) (g(2) )

I' q„'"(k) & ( ~+(k) + I„-(k) i
q(') (k) P (k) + M+(k)

equation (4.4) takes the form

QN+x(k) = Dg(k)QN(k)+ " (1+e ")AT
(2z)s

d3k'g X' (4.7)

vrhere

h(e, ts) = )) 1+ esssitth (e),

(,) b(u, y) —e2" cosh(u)
1 —e4~

(2) b(u, p) + e2d' cosh(u)
1 —e4~

(4.14)

vrhere

(e—"+2& e" ) - )'1 1)
+ )

The generating function

(4.8)

e(k, s) = ) s"+'q (k)
N=O

(4.9)

det(s) = det R — " (1+ e ")AJ d h sg(h)
(2n)s

trsh»Rforms the functional Eq. (4.7) to the algebraic one
which allows us to obtain the condition on the relation
between (u, uo, p, s = s()) at which there appears a gap
in the trsh»stfer matrix spectr»m. As it was mentioned
above, this corresponds to the localization transition in
the system. The location of the highest eigenvalue is
determined by the equation

+e " 1 —2 ) coshu+ C (4.15)

The function I'o(s) is defined in the Appendix [Eqs.
(A.5)].

The point s = g(~) is the closest to the origin branching
point of the function det(s) so it determines the critical
point (u, uo, y) (compare to s = 1 for periodic chain).

The phase diagrams calculated f'rom (4 13) are pre-
sented in Fig. 4. As before, the chain is localized in
the region under the curve and delocalized in the region
above the curve.

Let us consider the Bs»it p (( —l. Expanding (4.13)
and (4.14) up to the first leading terms of order exp(2p)
we obtain the following algebraic equation on the trgh»Ri-

tion point:

e"' = 1 + (cssh ts —1) (S

x (E —Dsg(k) i
T =0,

)
(4.io)

Up

1.5-

where E is the identity matrix.
Equation (4.10) for D and T given by (4.8) reads

det(. ) = i —(i+ "~)~ ~" d'a 'g( )
(2s)s b.(s, k)

—(1 —e ")cosh(u)A " d k ' ' =0,
(2~)s b, (s, k)

(4.ii)

1.0-

-0.5-

-1.0-

where
-4 -3 -2 -1 0 1 2 4 u

6(s, k) = —(1 —e ")s g (k) —2 cosh(u)e "sg(k) + 1

= —(1 —e ") [g( ) —sg(k)][g( ) —sg(k)]. (4.12)
FIG. 4. Phase diagrams for the ch~~n arith ~n~eahed disor-

der in link sequence.
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where C is the m~merical constant

2 ~ yl/2e —2&
C= 2 '+ ~ ( / )

dy( ), --0.414895.

The region of applicability of Eq. (4.15) is restricted by
the inequality

e "cosh(u) « 1. (4.16)

Equation (4.15) turns to (3.17) in the limit p ~ —oo,
when the annealed sequence is the most likely in ideal
periodic (antiferromegnetic) order.

In the opposite limit ~p~ && 1 we get &om (4.13) and
(4.14)

e = (1+p [2 —1/g(3/2)] tanh (u)) . (4.17)
cosh(u)

It can be seen &om Eqs. (4.13) and (4.17) and Fig. 4
that the phase transition in the annealed heteropolymer
with the nearest-neighbor correlations has some interest-
ing features:

(a) For us ) 0 the localization occurs only when p is
less than some limiting value p,~; & 0.

(b) When uo & 0 there is always a region where the
chain is localized (u & u„) and a region (u ) u„) where
it is not localized.

(c) When us ——0 or when us has the maximum value
for the localization transition to appear, p & p~; being
fixed, the transition is of the "fourth" order. In all other
cases when a transition exists it is of the second order.

F Nu,
which is consistent with our exact result of Sec. III.

We brieBy summarize our main findings.
The problem of heteropolymer chain statistics at a se-

lective interface can be "lifted" to a problem of a random
walk in two communicating 3D spaces. This approach en-
ables us to solve exactly the problem of localization of a
periodic heteropolymer chain at the interface and to show
that this phase transition has the following unexpected
features:

(a) For the pure step potential defined by Eq. (2.1)
the phase transition is of "fourth" order.

(b) The transition is very sensitive to the direct
repulsive-type interaction of the links with the interface,
which is re6ected in the phase diagrams shown in Figs.
2 and 3. We believe that this fact could play an im-
portant role in chemistry as a possible method to change
the interface tension between two liquids by means of ad-
sorbing polymers of different chemical structures at that
interface.

This approach also enables us to consider the problem
of phase transition in an annealed heteropolymer at the
interface and to show that the absence or the presence of
the localization point depends strongly on the value of the
interaction constant of the nearest-neighbor correlations
in the link sequence.
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Let us first discuss some qualitative mean-field type
considerations for the localization transition in the pe-
riodic heteropolymer. We can write the &ee energy F
of the chain as a s)~m of two parts: F,~ and F;„t, where
F,~ is the "elastic" (or, entropic) contribution to the &ee
energy and F; t is the potential energy of the chain links.
Let us ass~~~e that the chain is localized near the inter-
face over some length / (we will minimize afterwards the
&ee energy with respect to I). We estimate F,) and F; t,

using the de Gennes' arguments for adsorption [25] as
follows:
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APPENDIX

N
e )g )

NFi, —(u)
The function I'~(x, p) satisfies the following recursion

relation in 3D space:

where (u) is the mean value of the energy of links near
the interface averaged over translations of the chain over
one period and (u) is determined only by small scale fluc-
tuations and can be estimated as

F«(«7): [1 + 2+b («)]f 1)'*'g]« —«')) ]«', ~),

(A1)
or, in terms of transfer operator

(u) = ue" —ue "~„s-2u2.
Minimizing the &ee energy F(l) = F,~+F; q with respect
to / we get

Thus the &ee energy of the chain near the transition point
equals

I'~+g(x, 7) = ql'~(x, p),

[compare to (2.7)], where q is an integral operator defined
as

0@]«)= 8+ ~~~(«)I f~'«'g]« —«')0(«').

The point p = p„corresponds to the point of phase
transition from a delocalized (for p & p„) to a localized
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(for 7 ) p„) regimes. In addition the asymptotics of
3D Green function FN(x = 0) jest at the critical point
p„coincides with the asymptotics of Gaussian random
waL& on a line. let us give now a brief derivation of
the asymptotic behavior of the Green function r~(x)
at the tr~~~ition point p„. T~king Fourier and Laplace
travvsforms we obtain

„Im(s)

1
[r(s, I ) —s] = g(I )r(s, I )

+ ash'g{ ')r(., I '),
(27r)a

(A3)

Now by (Al) the function r(s, k) satisfies the following
equation: FIG. 5. The integration contour for the functio n r(a) [Eq

(A10)] on the complex plane (Im(a), Re(a)).

sition appears at p = p„, vrhere

where g(k) = exp( —ks/6). We assuage the initial condi-
tions to be ro(k) = 1. Equation (AS) has the solution at
x=0

I |'3&
2ro(sp ——1) 2 i 2z J

g-'(3/2). (AS)

I {., = 0)=, Phg(I )r{
(A4)

where Fo(s) is defined as

We obtain the solution of Eq. (A7) up to the first leading
term expanding the function I' (s) in a power series of
gl —s near the branching point s = 1 (cf. Fig. 5). This
yields

Fo( ) 2
—1j2ro( 2) ro( ) (AS' )

sg(I) t'3~"' "."
(2z)s 1 —sg(k) ),27r)

(A5)
One can easily obtain an expression for negative argu-
ment of I'o(s)

and

33/2
ro(s) = F (1) — v'I —s,

22z' (p —p.,)
so = I—

27 ( 2gp., y
(Alo)

The Green function I'N (x = 0) can be restored by means
of the Mellin transform

Thus the transition is of the second order because

1I'N (x = 0) = dsr(s, x = 0)s
2%i

(A6) iim I'{p —p.,) -—in(ao) - (p —p")
1 2

m~~ N
(All)

On the complex plane the function I'(s) has a square
root branching point at s = 1 and a cut along ]1,+oo[.
F(s) has a simple pole at the point s = so provided the
following equation holds [3]:

To calculate the asymptotics of r~(x = 0) at the tran-
sition point we substitute (AQ) into (A6) and integrate
along the cut edges. Then

1 —2qr'(s, ) = O

(cf. Fig. 5). If there exists a pole at sp, it gives the main
contribution to the integral (A6) and we have

Fpp(x = 0) = sp ResI'(s, x = 0)

v'2z
FN (x —o, p„))~

(2~-)

When p & p„@re have

(A12)

This situation is called the ground state dominance [1].
The largest eigenvalue of transfer operator q equals 1/sp.
The chain is in the localized state and the free energy of
the chai~ is give~ by Q = ~ in(sp).

From (AT) we can conclude that the localization tran-

—&(&) = 0.
N~~ N

Then the spectrum of the transfer operator g is continu-
ous and the chain is delocalixed.
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