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Synchronization of spatiotemporal chaotic systems by feedback control
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We demonstrate that two identical spatiotemporal chaotic systems can be synchronized by (1) linking

one or a few of their dynamical variables, and (2) applying a small feedback control to one of the sys-

tems. Numerical examples using the diffusively coupled logistic map lattice are given. The effect of
noise and the limitation of the technique are discussed.

PACS number(s): 05.45.+b

I. INTRODUCTION

Recently, there has been a growing interest in the
synchronization of chaotic dynamical systems [1—4] due
to its potential application in secure communications
[1,2]. Theoretically, the problem of synchronizing chaos
itself is interesting because chaos, meaning sensitive
dependence of a system's dynamical variables on initial
conditions, seems to defeat synchronization of dynamical
trajectories. The pioneering theoretical and experimental
work by Pecora and Carroll [1] demonstrated that two
chaotic systems can be synchronized if (i) some dynami-
cal variables (the driving variables) are used to link the
two systems and (ii) the subsystems excluding the driving
variables possess only negative Lyapunov exponents (non-
chaotic subsystems). Given a chaotic system, whether or
not this type of synchronism can occur depends on the
choice of the driving variables or, equivalently, the choice
of the subsystem. For cases where nonchaotic subsys-
tems cannot be found, an alternative approach [3] based
on the idea of controlling chaos [5] has been suggested.
In this method, small temporary parameter perturbations
computed based on the difference of the two trajectories
and the geometrical structure (stable and unstable direc-
tions) of the chaotic trajectory are applied to one of the
two systems to synchronize them. This approach has
also been implemented in experiments to synchronize two
chaotic laser diodes [6]. This control approach [3], how-
ever, was applied only to systems described by two-
dimensional maps or three-dimensional autonomous Bow
that can be reduced to two-dimensional maps on a Poin-
care surface of section.

Spatiotemporal chaotic systems are high dimensional
dynamical systems. Consider such a system that consists
of a spatial network of chaotic elements. For the
Pecora-Carroll type of synchronism to occur, it may be
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necessary to use a large number of driving variables spa-
tially distributed among chaotic elements, and, as a
matter of fact, that could be done [7]. Nonetheless, it is
often the case that the subsystem obtained by excluding
only a few driving variables will still be chaotic to a simi-
lar degree to the original system. That is, the subsystem
has a number of positive Lyapunov exponents compara-
ble to that of the original system. To illustrate this, con-
sider the coupled logistic map lattice [g] (to be described
in Sec. III) with 20 spatial sites (a 20-dimensional system).
In certain parameter regimes, there are eight positive
Lyapunov exponents. Linking an arbitrary dynamical
variable yields a 19-dimensional subsystem which still has
seven positive Lyapunov exponents. On the other hand,
while synchronizable nonchaotic subsystems can be ob-
tained by linking a sufficient number of dynamical vari-
ables, they are difficult to identify due to the high dimen-
sionality of the system. The control strategy proposed in
Ref. [3] is difficult to extend to high-dimensional systems
because its success depends on the existence of unique
stable and unstable directions at each trajectory point.
Spatiotemporal chaotic systems usually have many unsta-
ble and stable directions at each trajectory point in the
phase space.

In this paper, we demonstrate that by combining the
Pecora-Carroll idea [1] and the control method in Ref.
[3], it is possible to synchronize two nearly identical spa-
tiotemporal systems. Specifically, by using a certain
number of driving variables and by applying appropriate-
ly designed feedback controls, synchronization can be
achieved for the two systems. The driving variables can
be arbitrarily chosen and their number can be as few as
only 1. The feedback control is applied to one of the two
systems to be synchronized. The magnitude of the feed-
back control required can, in general, be very small. It
should be mentioned that a similar method for synchron-
izing chaotic systems has been proposed by Pyragas [9].
In this method, the feedback control is directly propor-
tional to the difference of a dynamical variable from two
chaotic systems, and is applied to one of the systems.

The organization of the paper is as follows. In Sec. II,
we describe the method of synchronization and design of
the feedback control. In Sec. III, we apply the algorithm
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to the diffusively coupled logistic map lattice [8]. The
effect of noise is also briefly discussed. In Sec. IV, we dis-
cuss the issue of long transient time preceding turn-on of
the feedback control.

II. CON'IROL METHOD

Our design of the feedback control is based on the
principle of the Kalman filter [10],which tracks the sys-
tem state by measuring a single scalar function of the sys-
tem state. The Kalman filter is optimal for linear sys-
tems. For nonlinear or chaotic systems, a modified tech-
nique was developed by So, Ott, and Dayawansa [11] to
deduce and track the state of the system from limited ob-
servation. Our design of the synchronization scheme is a
direct application of this modified technique. Consider
two identical spatiotemporal systems described by the
following maps:

ing, " z and z are equivalent and, hence, we denote z=z.
The equations for y, y, and z are as follows:

yn+I y(ynlzg )

y +i=F (y

+,=F,(y„,z„),
(2)

where F= [F~,P, ]. In the case where the full system F is
chaotic, Pecora and Carroll showed that when the sub-
system F„has all negative Lyapunov exponents, y„and
y„can be synchronized [1]. Subsystems having only neg-
ative Lyapunov exponents are hard to identify when Eq.
(1) is spatiotemporally chaotic and has many positive
Lyapunov exponents and, hence, it is assumed that we do
not know them. To achieve synchronization of y„and
y„, we apply the following feedback control to one of the
subsystems y„:

x„+&
=F(x„), x„+&

=F(x„),
y,+,=F (y„,z„)—C„[F,(y„,z„)—F,(y„,z„)], (3)

where x and x are N-dimensional state vectors. Follow-
ing Pecora and Carroll [1], we decompose the system
state into two parts: one is the N&-dimensional driving
system, which we denote z and z, and the other is the
No-dimensional subsystems to be synchronized, denoted
by y and y, where Nd (&Np. In general, we allow the
subsystems y and y to be chaotic. By definition of "driv-

I

where C„ is an Np XNd control matrix to be calculated at
each time step. The synchronization scheme is schemati-
cally shown in Fig. 1. The feedback control
—C„[F,(y„,z„)—P, (y„,z„)] is applied only when y„
and y„are close [5,3]. The linearized dynamics in the
neighborhood of y„can therefore be written as

5y„+~ =y„+&—y„+,=F~(y„,z„)—F~(y„,z„)—C„[F,(y„,z„)—F,(y„,z„)]
= [DF~(y„,z„)—C„DF,(y„,z„)]5y„—= A„5y„, (4)

where DF~ and DF, are the Np XNp and N& XNp Jaco-
bian matrices of F and F„respectively, evaluated at y„
and z„. Since F is chaotic, y„+&

will diverge from y„+&

exponentially without control. Our goal is to design the
control matrix C„so that 5y„~0 as n -+ oo. To achieve
this we assume that the subsystem F~ has N„positive and

N, negative Lyapunov exponents, where N„+N, =Np.
Furthermore, we assume hyperbolicity for the subsystems

y and y, i.e., every point on the asymptotic attractor of
F~ has N„unstable and N, stable directions, the stable
and unstable subspaces span the whole phase space, and
the angles between stable and unstable subspaces are
bounded away from zero [12,13]. However, the feedback
control so designed applies to nonhyperbolic dynamical

y' =F (y,z )

Control

& P' (y,~ ) - & (y .~ )l

FIG. 1. The scheme of synchronizing two spatiotemporal
chaotic systems by driving and feedback control.

I

systems as well [11]. Let e'„(i =1, . . . , N„) be the set of
base column vectors in the unstable space at y„. If we re-
strict the control matrix C„ to the unstable space of F at
yn+i &es

N„ N„

Xb X[CIe +1 vl+ +CN e +1 vN j
i=1 i=1

(5)
where [vj I (j = 1, . . . , Nd ) are a complete set of row vec-
tors that span the driving system F, and C&, C2, . . . , C&

d

(i =1, . . . , N„) are the set of N„XNz control
coefficients, then it can be shown [11]that the matrix A„
[=DF„(y„,z„)—C„DF,(y„,z„)] reduces to the follow-
ing upper triangular form:

U„wn
An p S (6)

n

where U„(S„) is an N„XN„(N, XN, ) matrix that
causes a vector in the unstable (stable) space at y„ to
evolve into a vector in the unstable (stable) space at y„+„
and W„ is an N„XN, matrix that takes a vector in the
stable space at y„ into a vector in the unstable space at
y„+,. In order to have ~5y„~~0 as n ~ oo, it is required
that aH eigenvalues of the product matrix
A„A„, A, vanish as n~~. Since,
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u„u„, u, y g u, w, gs„
i =1 j=i+1

A„A„1 . . A1= 0 S„S„, S,

i.e., the product matrix A„A„1 . - A1 is upper triangular, and since the matrices S„are already in the stable space
along the trajectory (eigenvalues of the matrix product S„S„ i Si~0 as n~ao), the stability of the product

A„A„, . A1 depends solely on the stability of U„U„1. U, . One way to make the product U„U 1
. . U,

stable is to let U; be lo~er triangular and stable, i.e., all diagonal elements of U; are eigenvalues of U; and are less than
l. In this way, the product U,u, i U, is still lower triangular and has vanishing diagonal elements (eigenvalues)

Now we define a set of contravariant row vectors f'„+, (i= 1, . . . , N„} in the unstable space at y„+, such that
f'„+, el +,=51, where 5; =0 ifi' and 5;;=1. The matrix elements of U„are given by U, = f'„+, A„ej [11]. In or-
der to make the matrices U; lower triangular, we look at elements UJ of the matrix U„, which can be expressed as fol-

lows:

U,"=f'„+,.A„e„'=f'„+, [DF (y„,z„)—C„DF,(y„,z„)] e„'

= f'„+, DP (y„,z„) e„' —f'„+,.b'„DF,(y„,z„) e„',

where f'„+,.bj =0 for i' has been used [cf. Eq. (5)]. In
order to have U;. =0 for j &i, So, Ott, and Dayawansa
[11] suggested the following procedure for choosing the
unstable base vectors:

A,„'e„'+,= [DP (y„,z„}]e„',

A,„e„+,= [DF„(y„,z„)—b„' DF, (y„,z„)] e„,
(9)

N„ N„
e„+1=

N —1
Q

DF„(y„,z„)—g b'„DF,(y„,z„) e„",

where A, '„(i = 1, . . . , N„) are a set of numbers that can be
related to the stretching rate of infinitesimal vectors
along the unstable direction e'„. It can then be shown
that elements of the matrix U„are given by

UJ=0, j &i

(9). After a period of transience, the set of vectors so ob-
tained converges to the real unstable directions. To as-
sure that only small perturbations are applied, it is neces-
sary to monitor the magnitude of the term in the denomi-
nator of Eq. (11). When ~v, Dh'„~ is below some small

threshold, we set C„=O. This will not result in a loss of
control provided that it is done only occasionally [11].
We stress that the feedback control is derived under the
applicability of linearized dynamics and, hence, the con-
trol is applied only when trajectories y and y are
sufficiently close. No control is applied when they are
not close. This is the same idea used in controlling low-
dimensional chaos [5]. Also note that the control law Eq.
(11) has been derived under the condition of hyperbolici-
ty, while there is no guarantee that spatiotemporal chaot-
ic systems are hyperbolic. Nonetheless, as we will illus-
trate below, the control works for spatiotemporal systems
modeled by coupled map lattices.

U; = —f'„ii b'„Dhj,

(10) III. NUMERICAL EXAMPLES
%AH THE DIk'~ LJSIVELY COUPLED

LOGISTIC MAP LATTICE

where Dhj =—DP, (y„,z„).e„'. To make the eigenvalues of
the matrix U„ less than 1, we can adjust the N„XNd free
control parameters C~ (i =1, . . . , N„, j=I, . . . , N&)
such that all diagonal elements of U„are less than 1. But
this only provides N„conditions, and there are still

N„(Nd —1) free control parameters that we must set.
The simplest choice is to set C'-=0 for j & 1. Then set-
ting the diagonal elements in Eq. (10) to zero gives
C'i =A, '„l[vi.Dh'„] (i =1, . . . , N„) and, consequently,
the control matrix is given by

N„gi
(11}

1 V1.Dh'„

In practice, the set of numbers A, '„and the set of unstable
base vectors e„can be computed by randomly initializing
a set of base vectors e'„and evolving them in terms of Eq.

To illustrate the applicability of our control method,
we consider the following system of difFusively coupled
logistic maps that was first proposed by Kaneko [8] as a
phenomenological model for spatiotemporal chaotic sys-
tems,

f[x„+i(i)]=(1—E)f[x„(i)]

+—[f[x„(i+1)]+f[x„(i—1)]],

i =1, . . . , N, (12)

where i and n denote discrete spatial sites and time, re-
spectively, N is the total number of maps coupled in the
lattice, e denotes the coupling strength, and f(x) is the
one-dimensional logistic map f(x)=ax(1 —x). We as-
sume periodic boundary condition: x„(N+1)=x„(1).
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Equation (12}exhibits extremely rich dynamical phenom-
ena seen in real spatiotemporal systems and it is perhaps
the most extensively studied model spatiotemporal sys-
tem so far. In our examples we choose a =4, the parame-
ter value for which the logistic map has a chaotic attrac-
tor.

Our first example is for N =10 and @=0.7. At this e
value, there are three positive Lyapunov exponents for
Eq. (12). Figure 2(a) shows the corresponding Lyapunov
spectrum for the full system Eq. (12), which plots A, k
versus the index k (k=1, . . . , E, A, , ~A,2~ &A,Jv).
To synchronize two such systems, we choose one of x(i)
(i = 1, . . . , 10) as the driving variable. Choosing a
different x (i) does not change the result due to symmetry
of Eq. (12) with respect to site index i The.subsystems to
be synchronized are therefore nine dimensional and still
possess three positive Lyapunov exponents, as shown by
the corresponding Lyapunov spectrum in Fig. 2(b). Thus
the Pecora-Carroll-type synchronism will not occur for
the subsystem. The control neighborhood is set to be
Iy

—y! (re=0.015. The control Eq. (11) is applied only
when Ivt Dhg &10 (j=1,2, 3}. With these control pa-
rameter settings, most randomly chosen initial conditions
can be controlled. In general, the smaller the control
neighborhood, the larger the probability that trajectories
resulting from two randomly chosen initial conditions
can be synchronized. In the case where one set of initial

and the control magnitude, defined as

IC„ I
= IC„[F,(y„,z„)—F,(y„,z„)]I, (14)

versus the time step n after the control is turned on.
Clearly, two trajectories rapidly approach each other to
within computer roundoff error (-10 ' } after the con-
trol is applied, and the required feedback control de-
creases correspondingly to extremely small values.

Under the influence of small random noise, the degree
to which two subsystems can be synchronized, or the
value of !5y„!,is proportional to the amplitude of the
noise. Figures 4(a) and 4(b) show h„and IC„I versus
time step n for the parameter setting of Fig. 3 when a
noise term modeled by htr'„ is added to each site of the
lattice, where h =10 7 is the noise amplitude and cr'„ is a
Gaussian random variable with zero mean and unit vari-
ance. In general, minimum values of b,„and IC„I have
the same order of magnitude as h. Occasionally, both LL„

conditions fails to be synchronized, we disregard it and
choose another set of initial conditions. Figures 3(a) and
3(b} show, when trajectories of the two subsystems result-
ing from a pair of randomly chosen initial conditions are
within ro, the error 6,„,defined as

(13}
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FIG. 2. The Lyapunov spectrum for N =10and a=0.7 (a) of
the full system and (b) of the reduced system by using one site as
the driving signal.

FIG. 3. Synchronization of two logistic map lattices (N=10,
a=0.7). (a) The synchronization error loglo L„versus n and (b)
the required feedback control magnitude log»( I C„ I ) versus n.
The control neighborhood is set to be 0.015.
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FIG. 4. (a) The synchronization error logloh„and (b) the re-
quired feedback control magnitude log, o(~C„~) versus n when a
noise term 10 'o'„ is added to each site of the 1attice, where o'„
is a Gaussian random variable with zero mean and unit vari-
ance.

FIG. 6. (a) The synchronization error 1ogloh„and (b) the re-
quired feedback control magnitude log, o(~C„~) versus n for
N =20 and a=0.5. The control neighborhood needs to be re-
duced to 5 X 10 ' in order to achieve the control.

and ICI„can have values larger than 10, indicating
that the degree of synchronization decreases significantly
at these time steps. In the worst situation, two subsys-
tems can even be completely desynchronized. When this
occurs, we turn off the control and let the systems evolve
by themselves. Due to the ergodicity of the chaotic at-
tractor, at some later time the two trajectories will come

0---

close to each other and can be controlled again. This
behavior of the control algorithm under the in6uence of
noise is completely analogous to that of controlling low-
dimensional chaos [5] and the synchronization of low-
dimensional systems by control [3].

To demonstrate the applicability of our control algo-
rithm in higher dimensions, we have performed control
using N =20. In this case, we found that for a=0.5 there
is a unique chaotic attractor with eight positive
Lyapunov exponents. The subsystem obtained by using a
driving signal x„(i},where i can be any number between
1 and 20, has seven positive Lyapunov exponents as
shown in Fig. 5. In this case, the control neighborhood
needs to be smaller for synchronization to occur. Be-
sides, the quantity N„used in the control algorithm needs
to be slightly larger than the actual number of unstable
directions [11]. We found that using N„=10 suKces.
Figures 6(a} and 6(b} show h„and IC„I versus n, where
the control is applied only when I5y„ I

~ 5 X 10

10 15 20 IV. DISCUSSIONS

FIG. 5. The reduced Lyapunov spectrum for %=20 and
a=0.5, where one site of the lattice is used as the driving signal.

In this paper, we have applied the principle of the ex-
tended Kalman filter to synchronize spatiotemporal
chaotic systems by linking as few as one dynamical vari-
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able as the driving signal and using feedback control.
The control algorithm works for the diffusively coupled
logistic map lattice. The major advantage of this method
is that only small amplitude control is required. While
there is still one potential problem with our method, the
work presented here represents an alternative approach
in the general area of controlling and synchronizing spa-
tiotemporal chaotic systems [7,14].

The difhculty concerns the transient time before con-
trol can be achieved. As we have demonstrated with Eq.
(12), the control neighborhood needs to be reduced as
the number of unstable directions increases. Going from
three (Fig. 4, the N =10case) to seven unstable directions
(Fig. 6, the N =20 case) requires almost three orders of
magnitude decrease in the size of the control neighbor-
hood. As the size of the control neighborhood is de-
creased, the average transient time for two trajectories to
get close increases algebraically with a scaling exponent

determined by the Lyapunov spectrum of the chaotic at-
tractor [5,3]. Thus, even for spatiotemporal systems with
moderate sizes, the transient time required may be very
long. The reason why an extremely small control neigh-
borhood is needed is not clear but may be related to the
noninvertibility and nonhyperbolicity of the coupled
logistic map lattice. For instance, for noninvertible
dynamical systems there may not be unique stable and
unstable spaces at trajectory points [15], whereas our
control algorithm is designed under the assumption that
the dynamical systems possess unique and distinct stable
and unstable spaces (invertibility and hyperbolicity).
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