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Synchronous chaos in coupled oscillator systems
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We investigate the synchronization of chaotic oscillations in coupled oscillator systems, both theoreti-
cally and in analog electronic circuits. Particular attention is paid to deriving and testing general condi-
tions for the stability of synchronous chaotic behavior in cases where the coupled oscillator array
possesses a shift-invariant symmetry. These cases include the well studied cases of nearest-neighbor
difusive coupling and all-to-all or global coupling. An approximate criterion is developed to predict the
stability of synchronous chaotic oscillations in the strong coupling limit, when the oscillators are cou-
pled through a single coordinate (scalar coupling). This stability criterion is illustrated numerically in a
set of coupled Rossler-like oscillators. Synchronization experiments with coupled Rossler-like oscillator
circuits are also carried out to demonstrate the applicability of the theory to real systems.

PACS number(s): 05.45.+b, 84.30.Wp

I. I¹RODUCI'ION

Coupled dynamical systems are typically synthesized
from simpler, low-dimensional systems to form new and
more complex systems. This is often done with the intent
of realistically modeling spatially extended systems, with
the belief that dominant features of the underlying con-
stituents will be retained. From an applications point of
view this building up approach can also be used to create
a novel system whose behavior is more flexible or richer
than that of the constituents, but whose analysis and/or
control remains tractable. These and other motivations
have led to numerous studies of coupled systems in a
wide range of disciplines. Even an abbreviated list of
coupled oscillator references is prohibitively lang;
representative works are in optical [1-4],chemical [5—7],
condensed matter [8,9], biological [10-14], neural net-
work [15-18],and other [19-22]systems.

Synchronization has lang been of interest in systems of
identical or nearly identical coupled subsystems. The
phenomenon of synchronization of coupled chaotic sys-
tems has recently become a topic of great interest, and is
the focus of the present work. Systems that display this
behavior are temporally chaotic, but spatially ordered or
coherent. Here the coherence is of a particular type —the
dynamics is the same or nearly so for long periods of time
for all coupled subsystems or large regions of them.

Standard approaches to the study of coherent chaotic
oscillations fall into a few broad categories. First is the
analysis of small numbers of coupled systems, typically
two to four [23—25], where analytic methods can be ap-
plied. For large systems, where analytic methods are
lacking, intensive numerical studies are often the only
recourse. Coupled map lattice models [26-30] have re-
ceived considerable attention and oler a third, middle
ground between these extremes. One drawback of cou-
pled map lattice models, however, is the general inability
to relate their quantitative features to the measurable
properties of real physical systems. There is a need for
unifying existing work and extending analytic methods to

large assemblies of interacting nonlinear oscillators.
There are a few exceptions to these approaches. One

noteworthy early work on synchronized chaotic oscilla-
tions is the paper by Fujisaka and Yamada [31]. They
consider a spatially one-dimensional, diffusively coupled
system composed of identical, possibly chaotic oscilla-
tors. The boundary conditions are either periodic or
open ended. Fujisaka and Yamada derive general condi-
tions for the stability of the synchronized state using pre-
vious results for determinants of matrices with structure
arising from nearest-neighbor coupling [32-34]. Their
conditions are based on solutions of a set of low-
dimensional variational equations, typically the dimen-
sion of an individual oscillator, rather than on solutions
of the full variational equations in the synchronized state.

Another work relevant to the present study is the pa-
per by Shnol [35]. The focus of this paper is on the sta-
bility of synchronous periodic oscillations, however the
results also apply to synchronous chaotic oscillations.
Shnol studied the situation where all oscillators are cou-
pled equally through a medium which has its own dy-
namics. This is a form of all-to-all or global coupling.
Shnol showed that the stability of the synchronized state
can be determined by solving a set of low-dimensional
variational equations.

The basic synchronization problem can be framed with
the questions, "will my system ever synchronize and, if
so, under what conditions?" In this work we provide
partial answers to these questions for a restricted, but
representative class of coupled dynamical systems—
those that exhibit shift invariant sym-metry. Shift-
invariant symmetry is a property shared by many com-
monly studied coupled oscillator systems, notably those
with nearest-neighbor difusive coupling and global cou-
pling.

In general, the synchronization problem can be broken
down into two distinct subproblems. The first (macro)
problem is to reduce a high-dimensional set of variational
equations, governing the stability of the synchronous
state, to a more manageable, low-dimensional set. Cen-
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tral to this reduction is the idea of synchronization mani
fold, on which synchronized dynamics is constrained.
The stability of the synchronized state is insured if varia-
tions transverse to this manifold decay with time (varia-
tions within the synchronization manifold do not afFect
the stability of the synchronized state). For systems with
shift-invariant symmetry the variational equations can al-
ways be transformed to a new representation where the
transverse and nontransverse variations decompose natu-
rally; a convenient transformation is the (spatial} discrete
Fourier transform. Only the transverse variational equa-
tions need to be considered to address stability questions,
and these equations typically come in independent, low-
dimensional sets (usually the dimension of a single oscilla-
tor). Often the reduced sets have similar or identical
structure and stability can be ascertained by studying a
single set. A general procedure for carrying out this
decomposition for shift-invariant symmetry is developed
in Sec. II. This procedure allows one to directly and easi-
ly derive the reduced variational equations for many spe-
cial cases. In particular, the results of Fujisaka and Ya-
mada and of Shnol are immediately obtained, as shown in
Sec. III. Moreover, the procedure provides a general
framework for analyzing a large class of coupled oscilla-
tor systems. In the Appendix we outline an extension of
the procedure to handle a particular case with free end-
boundary conditions.

The second (micro} problem is to compute the
Lyapunov exponents of the transverse variational equa-
tions to determine their stability. For certain special
cases, notably when the coupling between oscillators is
through all coordinates (vector coupling), the Lyapunov
exponents of the transverse variational equations can be
easily related to the Lyapunov exponents of a single, iso-
lated oscillator. Typically this is not the case and there is
no general procedure (known to us) for predicting the
Lyapunov exponents, or even the largest Lyapunov ex-
ponent, of the transverse variational equations. A case
that is expected to arise frequently in practice is that of
scalar coupling, where the oscillators are coupled via a
single coordinate. This case cannot be treated exactly,
however, in the limit of large coupling an approximate
analysis can be carried out via perturbation theory. This
analysis, which is developed in Sec. III, yields a straight-
forward and easily implemented stability criterion for
synchronous chaotic oscillations. This stability condition
is similar to the condition for chaotic synchronization in
"one-way" driving cases developed in [36,37].

In Sec. IV we explore the stability of synchronous
chaotic oscillations numerically and experimentally in
coupled chaotic electronic circuits. Each circuit is a sim-
ple, but robust Rossler-like [38] oscillator that can be du-
plicated fairly accurately. These circuits serve well as in-
dividual chaotic subsystems and can be easily coupled to
other Rossler-like circuits to produce synchronous chaos.
Numerical simulations of the coupled Rossler-like circuit
configurations are also carried out and compared to the
experimental results. The large scalar coupling predic-
tions of Sec. III are tested and verified numerically for all
possible scalar coupling choices.

In Sec. V we summarize our main results.

II. SYSTEMS UNDER STUDY

We are interested in studying systems of nonlinear os-
cillators that are coupled together in some regular
fashion. In this study we shall deal mainly with N identi-
cal coupled oscillators that can be represented by a
dynamical system of the form

dx'
dt

dx'
dt

=F(x )+cG (x,x', . . . , x '),

=F(x'}+cG'(x x' xN ')

dx F(x )+cGN 1(x0 x1 xN 1)—

for i,j =0, 1, . . . , N —1, where all indices are understood
to be taken modN (extensions to two and higher-
di~ensional lattices are possible, but will not be con-
sidered explicitly here). A common example of shift-
invariant coupling is nearest-neighbor ddFusive coupling,
for which 6'=x' ' —2x'+x'+'. Another common ex-
ample of shift-invariant coupling is so-called all-to-all or
global coupling, which typically has the form

1 N —1

G'= —g g(x —x') . (3)N k=o

Here g is a vector function satisfying g(0)=0. Each of
these coupling cases will be considered in more detail
below.

Common examples of non-shift-invariant coupling are
nearest-neighbor coupling cases with fixed- or free-end
conditions; these cases do not satisfy condition (2). We
mainly consider shift-invariant coupling in this paper, al-
though our results can be extended to a nearest-neighbor
case with free-end boundary conditions (see Appendix}.

A central goal of this study is the ability to predict

Here the x ' are individual oscillator coordinates,
x'=(xI, xz, . . . ,x„')ER",and F: R"~R" is the (non-
linear) vector Seld controlling the dynamics of a single
oscillator. The functions 6'. I ~R", where m =nN,
describe the coupling of the ith oscillator to all other os-
cillators and c is a scalar coupling constant. We restrict
the coupling functions 6' so that they vanish when the
oscillators are synchronized; G'(x(t), x(t), . . . , x(t))=—0,
i =0, . . . , N —l. This ensures that any solution x (t) for
a single oscillator is also a solution of the coupled system
(I).

The coupling functions come in two general varieties,
shift-invariant and non-shift-invariant. For shift-
invariant cases the coupling configuration does not vary
from one oscillator to the next; the oscillators can be con-
sidered to occupy points on a one-dimensional lattice
with periodic boundary conditions, or equivalently on a
ring with N sites. The shift-invariance of the coupling is
expressed algebraically as

Gl( J j+1 j+N —1}

Gi+1(xj—1 xj xj +N 2) (2)—
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when the synchronized state defined by
s(t)=x =x'= . =x ' is stable. In what follows we
present the stability analysis for shift-invariant coupling.
The starting point in this analysis is the linearization of
system (1}about the synchronized state s(t). This leads
to a set of linear variational equations given by

d~' N —1

=DF(sg'+c y D, G'(x', x', . . . , N-')~, P,
j=0

i =0, 1, . . . , N —1 (4)

where g'=x' —s(t), DF(s) is the Jacobian of the vector
field F evaluated on s (t), and D, is the differential opera-

tor acting on coordinates of the jth oscillator. Since the
coupling is shift-invariant relation (2) can be used to ex-

press all of the derivatives D G'(x, x', . . . , x ')~, in

terms of derivatives of G (x,x', . . . , x '). The result
is

d)&' N —1

=DF(s)g'+c g D;6 (x,x', . . . , x ')i, P .
j=0

These equations can be placed in the form of a discrete
circular convolution by defining the "backward" se-
quence

[H']";=o'=[DF( }+ DoG'I„D (6)

The variational equations then become

dpi
N —1 I' jP, i =01, . . . , N —1.

dt
(7)

By introducing discrete Fourier transforms of the se-
quence (6}and the sequence I g, g', . . . , g

N —1

&N, ,
N —1

k y gj 2nijk IN

&N j. o
(8b)

the convolution (7) is block-diagonalized by virtue of the
convolution theorem for discrete Fourier transforms [39].
The transformed variational equations are given by

k
=eN Yknk k 0, 1, . . . , N 1. —(9)

Note that the Fourier transform diagonalization
method can be applied to any set of coupled systems
represented by equations of the form

dX i 0 1=f'(x', x ', . . . , x"-'), i =0, 1, . . . , N —1 (10)

it is not necessary for the ith equation to be decompos-
able into oscillator plus coupling. The coupled van der
Pol oscillator problem considered in [40] is one example.

Before proceeding, it is useful to discuss the geometry
of the variations rj". The dynamical system (1) evolves in
R, where m =nN. The synchronization manifold,
A, CR, is defined by the conditions x =x'=. . .
=x '. Synchronous solutions of all types (not just
chaotic solutions} are constrained to this manifold (hy-
per plane). The synchronization conditions represent
n (N-1) constraint equations. Therefore the dimension of

that satisfy the shift-invariance conditions

fi( j j+1 j+N —1)

f1+1( j—1 x j x j+N —2)

(13)

We must show that the sum in (13) vanishes as a result of
the constraint (12). To do this first difFerentiate (12) with
respect to the zeroth oscillator coordinates and evaluate
the result on s. One obtains

N —1

y D,Gj(xo,x', . . . , x N-')
~, =0 .

j=0

Applying the shift-invariance relation (2) yields

N —1

g D .6 (x,x', . . . , x ')i, =0.
j=0

(14)

(15)

This sum is over all oscillators and is therefore equivalent
to the sum in (13). This proves the relation and the varia-
tional equation for g becomes

I

At is nN n(—N —1)=n, which is the phase space dimen-
sion of a single oscillator. The Fourier transform basis g
provides a convenient decomposition of the variations
into variations within Al, and variations transverse to JN, .
Note that the vector e =giN:o'x' is within the synchroni-
zation manifold. It follows from (8b) that the variation
rj is parallel to e and is therefore within AfTh, e. remain-
ing variations rl, k = 1,2, . . . , N —1, are transverse to Af,k

and control the stability of the synchronized state [41].
Stability of the synchronized state is insured if arbitrary
small transverse variations decay to zero.

In some cases the variation q obeys the variational
equation for a single, isolated oscillator. This occurs
whenever the coupling functions satisfy the constraint

N —1

g G'(x', x', . . . , xN ')=const, (12)
j=0

as shown below. This is a common constraint and holds
for nearest-neighbor diffusive coupling and global cou-
pling of the form (3) whenever the function g is odd.
Typically the constant in (12) is zero. From (6), (8a), and
(9) rP satisfies

dgO N —1

DF(s)+c g D 6 (x,x', . . . , x ')~, rjo .
dt j=0
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d 0

dt
=DF(s)vP, (16)

which is recognized as the variational equation used to
compute the Lyapunov exponents of a single oscillator
exhibiting the solution s (t).

The Lyapunov exponents are computed from the time
evolution operator for the variation g, defined by

~'(t) =AD(t)~0(0},

A (0)=1 .

(17a)

(17b)

1
A,;=Re lim in'—i,o(t), i =1, . . . , n .

g~oo t
(19)

These Lyapunov exponents determine the nature of the
synchronized state in the usual way. In particular, a pos-
itive Lyapunov exponent implies chaotic behavior.

As mentioned earlier, the transverse variations g",
k =1,2, . . . , N —1 control the stability of the synchron-
ized state. Any deviation from the synchronization mani-
fold will be refiected in the growth of one or more of
these variations. Combining (8a} and (9} the transverse
variations satisfy

k N —1
yrfje2+ijklN ~k k 1 + 1 {20)

dt ~ 0

A (t) satis6es (16) with rj (t) replaced by A (t), and has
the solution

A'(t) =T exp f J(t')dt'
0

where J(t)=DF(s (t)) and T is the time ordering opera-
tor. Let p, ;(t), i =1, . . . , n be the eigenvalues of A (t).
The Lyapunov exponents of (16) are then given by

where r is a spatial coordinate (cf., [45]). Here we consid-
er a slight generalization of difFusive coupling where each
component of x' ' —2x'+x'+' is multiplied by an arbi-
trary coeScient

O'= I (x' ' —2x'+x'+')

I'=diag(y„y2, . . . , y„).
(22a)

(22b)

DF(s) 4c sin— I'nk
N

k =1,2, . . . , N —1, (23)

where the last relation follows from a trigonometric half-
angle relation. This result has also been obtained by Fuji-
saka and Yamada [31]. In the special case for which all
of the y; are equal we can absorb y; into the coupling
constant c and set I'=1. Since DF(s(t))=J(t) com-
mutes with the identity matrix for all times t, the time
evolution operator A (t) factors according to

A (t)=A (t)exp —4c sin t
nk
N

(24)

It follows that the transverse Lyapunov exponents are
given by

A, =iP—4c sin, k =1,2, . . . , Q —1
~k

(25)

For now we assume y,- &0, i =1, . . . , n. Below we take
up the case where one or more coeScients y; is zero.
From (6) and (20) the transverse variational equations for
diffusive coupling are given by

d =[DF(s) 2c—f'+cl e ~' +cI'e ~'i "" ]ri"
t

Let A (t) be the time evolution operator of the kth trans-
verse variation and let pk(t), i =1, . . . , n, be the eigenval-
ues of A"(t) The .transverse Lyapunov exponents are
dined by

A, ,"=Re lim —in@,"(t), i =1, . . . , n, k =1, . . . , N —1
1

g~ ao

(21)

(transverse Lyapunov exponents have also been utilized
in other works [42-44]). Let A, be the largest trans-
verse Lyapunov exponent. The synchronized state s is
stable {unstable) for A, (0 (A, )0). Unfortunately,
not much more can be said about the transverse varia-
tional equations {20}for arbitrary coupling choices. For
this reason we turn our attention to specific cases.

HI. SPECIFIC COUPLING CASES

A. DifFusive coupling: vector case

A common form of shift-invariant coupling is nearest-
neighbor diffusive coupling, given by 6'=x' ' —2x'
+x'+'. This coupling derives its name from its close
connection to the Xaplacian operator V; 6' is the
discrete (centered-difference} representation of V x{r),

from which A, =A,o —4c sin (nlN). It is therefore
possible to have stable synchronized chaotic solutions,
provided the coupling constant c is large enough. As c is
reduced the mode with the longest "spatial wavelength, "
g', is the first to lose stability.

B. Diffusive coupling: scalar case

m.kT=4c S1n
N

(26)

The transverse variational equations then become

Scalar difFusive coupling, for which there is a single
nonzero entry in the diagonal matrix I, is perhaps the
simplest form of coupling and the easiest to implement
experimentally (see Sec. IV below). Nevertheless, the sta-
bility analysis for this case cannot be carried out exactly.
Without loss of generality we can choose the nonzero en-
try of I to be y& =1. Again we are interested in deter-
mining conditions under which the synchronized state s
is stable. Here we present an approximate theory whose
aim is to find these conditions in the»mit of large cou-
pling. We first redefine the time in the variational equa-
tions (23):
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dq="=[—r+eDF(s)]q,
d7

Operating on the left of (36) with P gives
(27)

P[W(v) .
cr(r)]y=0 . (38)

with e=[4c sin (hark/X)] (the explicit k dependence of
the variations is suppressed in the following develop-
ment). In this representation, for large c the Jacobian
DF(s) is a perturbation to the matrix I . Let A be the
evolution operator of the variation q; A satisfies (27) with

g replaced by A. We seek A to leading order in c. This is
facilitated by factoring A as follows:

Since Pg =y this equation can be written as

k(r)y=o (r)y,
where 1k(r) is the restriction of W(r) to 6':

k(r) =PW(r)P .

(39)

(40)

A= UQ, (28)

U=exp( —I r)=diag[exp( —r), 1, 1, . . . , 1] . (29)

Substituting (28) into (27) yields an equation for the
operator Q:

where U is the time evolution operator of (27) for a=0
(infinite coupling limit):

Equation (39) is an eigenvalue equation acting entirely
within the subspace 8. A straightforward calculation
shows that the matrix @'(r) is given by

k(r)=P f DF(s(r'))dr'P

=rP (DF(s) )P

dO =eU 'DF(s}UQ .
d7.

(30)

This is equivalent to the integral equation

Q(r)=1+e f '
U 'DF(s)UQ dr',

0
(31)

which can be formally solved by iteration. To order c the
solution is

(
hF„

(
BF„

(41)

Q(r)=I+E f U 'DF(s)Udr',

and therefore from (28) the evolution operator is

A(r)=U(r) I+e f U 'DF(s)Udr'
0

(32)

(33)

&(r)f(r) =p(r)P(r),
[U(r)+e W(r)][y+eP(r)] [1+=so(r)][g+eP(r)],

where

W(r)= U(r) f U 'DF(s)Udr',

(34}

(35)

and y is a vector in the subspace @. The order e term in
(34) yields the equation

[U(r) —1]P(~)+[W(r) —o(r)]y=0 .

Define the projection operator onto the subspace 8:
(36)

P=gu;u, .
I =2

(37)

The stability of the synchronized state is determined by
the eigenvalue of A having the largest real part. For
small e (large coupling) we expect the eigenvector corre-
sponding to this eigenvalue to lie near the eigenvector of
U having the largest eigenvalue. The eigenvalues of U
are simply [exp( r), 1, 1, . .—. , 1 } and the corresponding
eigenvectors form the standard basis in 1R", denoted by
[u, }, i =1,2, . . . , n. Thus the largest eigenvalue 1 is
n —1 fold degenerate and belongs to the subspace
spanned by the orthogonal complement of u&. Let this
subspace be denoted by 6. We seek the largest eigenval-
ue of A via (degenerate) first order perturbation theory
[46]:

=Re(ep,„}. (42}

Therefore the stability of synchronized oscillations for
large scalar diffusive coupling is governed by the condi-
tion Re(p,„)(0 (assuming positive coupling constant).
This result should be considered as more of a guide to
answering the question, "Will the system synchronize for
large coupling?", than as an accurate estimate of the larg-
est Lyaunpov exponent of the transverse variations.
Nonetheless, as shown in Sec. IV below, this criterion is
capable of providing good qualitative and reasonable
quantitative predictions of the largest transverse
Lyapunov exponent in numerical experiments.

It has been pointed out by Rabinovich [47] that earlier
work on two coupled, synchronized chaotic systems
[24,48,49] and driven, synchronized chaotic systems
[36,37,50—58] should be related, for example, when one
system's coupling parameter is pushed to an infinite
value. This relation suggests that synchronization condi-
tions similar to those on the conditional Lyapunov ex-
ponents of chaotically driven subsystems should be avail-
able for the general case of coupled systems. In fact, the
stability criterion derived above is quite similar to the
condition for chaotic synchronization for "one-way driv-

where ( ) denotes time average. The matrix in (41) is
simply the average sub-Jacobian of F corresponding to
the coordinates x2,x3 x„.

Let p,„bethe eigenvalue of the average sub-Jacobian
having the largest real part. From (39) and (41) it follows
that O. ,„=p,„~.Then the largest Lyapunov exponent
of A is given approximately by

1 . 1
A, ,„=Relim —Inp(r)=Re lim —ln(1+ep, „r)

7MOO 7 7~ 00
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ing" discussed in [36,37]. The reason is that for large c
the diffusively coupled system is effectively being driven

by the coupling variable x &.

C. Global coupling

Global coupling occurs frequently in studies of Joseph-
son junction arrays [59—63], coupled solid-state lasers

I

[2—4], and neural network models [18,64]. Here we dis-
cuss two types of global coupling. First we consider glo-
bal coupling of the form (3)

N —1

G'(x, x', . . . , x ')=—g g(x —x') . (43)
N k=0

In this case the matrix sequence [H'];:0' in (6) is given

by

[H'];:O'= DF(s) — Dg (0),—Dg(0), —Dg(0), . . . , —Dg(0)

and from (20) the transverse variational equations are
given by

k N —1

dt
DF(s) cDg(—0}+ Dg(0—) g e

N

(45)

I

Linearizing (48) about At one gets

=D„hg'+D hh,
t

N —1

D.gi & 0'+(Dygo+rDygi)~
dt N

(50a)

(50b)

This equation has the same form as Eq. (23) above. If
Dg (0) is a multiple of the identity, Dg (0)=r 1, the trans-
verse Lyapunov exponents are given by

A, ; =A,; —cr, k=1,2, . . . , N —1 . (47)

For scalar global coupling, for which Dg (0) has a single
nonzero component, and for large coupling constant c,
the results of Sec. III B can be applied to determine the
stability of the synchronized state. Note that, regardless
of the choice of g, all af the modes rl lose stability sirnul
taneously far global coupling.

Shnol [35] has cansidered an alternate type of global
coupling where all oscillators are identically coupled to a
medium, which in turn has its own dynamics. Shnol
studied the system

=h(y, x'),
dt

N —1

dt N,=go(y)+ ~ g g&(y, x') .

(48a)

(48b)

Here the x', i =0, 1, . . . , N —1, are the oscillator coordi-
nates and y describes the medium. In general
dim(x')%dim(y). It is clear that these equations are in-
variant under arbitrary permutations of the x' and there-
fore shift invariance is guaranteed. The synchronization
manifold JK is defined by x =x'= . . =x '=s(t) and
y(t)=y, (t), where s(t) andy, (t) are determined from the
equations

For k+0 (the transverse modes) the sum in (45) vanishes,
leaving simply

k

=[DF(s) cDg(0)]—rlk, k =1,2, . . . , N —1 . (46)

where h, =y —y, and g'=x' —s, and where all Jacobians
are evaluated on A, . This set af variational equations can
be block diagonalized by Fourier transforming the se-
quence [g,g', . . . , g '], as in Sec. II:

N —1
k y gj 2nijk/N (51)

N

(for convenience we have chosen the normalization factor
I /N in the Fourier transform). A straightforward calcu-
lation yields the transformed variational equations

0
=D hrt +D hat,

dt 3'

dh prD gl ) +(D„go+rD,gi )~,
dt

k

=D„hg, k =1,2, . . . , N —1 .

(52a)

(52b)

Shnol arrives at these equations via a different route; the
advantage of employing the Fourier transform technique
is that the variations g have a direct interpretation in
terms of spatial modes. The first two equations, (52a),
govern variations within the synchronization manifold;
these equations can also be derived directly from (49).
Equation (52b) gaverns variations transverse to A, . Sta-
bility of the synchronized state is guaranteed provided
the Lyapunov exponents of (52b} are all negative. A con-
nection between this synchronization condition and the
chaotic synchronization condition discussed in [36,37]
can be immediately drawn; the synchronization condition
is equivalent to the requirement that the conditional
Lyapunov exponents of the subsystem (49a} are all nega-
tive. Finally, we note that, as in the first global coupling
example above, all of the transverse modes lose stability
simultaneously.

ds =h(y„s),
dt

dJTs
d' =go(y, )+rgb(y, s}.
dt

(49a)

(49b)

IV. EXPERIMEKXS AND SIMULATIGNS

It is important to test the synchronization results dis-
cussed above on real physical systems, particularly those
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dx = —a(I'x+Py+Az), (53a)

with noise and intrinsic ~i~match between the osciHa-
tors. This is carried out here for an assembly of coupled
chaotic electronic circuits. To facilitate experiments with
coupled chaotic oscillators, it was necessary to build a
circuit with several desirable properties. First, the circuit
was required to exhibit chaos over a large range of pa-
rameters, so that weak coupling to other circuits would
not immediately destroy the chaotic behavior. Second,
the circuit was required to have a single attractor for the
parameter region in which it was to be used. Third, the
circuit needed to be simple enough that several "identi-
cal" oscillators could be easily constructed.

The circuit that was built simulates a modified version
of the Rossler equations [38], where the quadratic non-
linearity is replaced by a piecewise linear element and
where the "x" equation contains an additional damping
term. The basic oscillator is described by the equations

JVhr-

R4 R6

R5

Rlo

hl

R9$

Rll

R7
W

IE

C2

R l
". Jw

R3

R2

dp a(x +yy),
dt

dz =a[g(x) —z],

where the function g (x) is piecewise linear, given by

0, x&3
px, x)3.

(53b)

(53c)

(54)

'C7
-1 SV

FIG. 1. Schematic of the circuit described by Eqs. (53), the
piecewise linear Rossler circuit. The resistor values are
R 1

= 100 kQ R2 =200 kQ R3 =2 MQ R4 =75 kQ Rg = 10 kQ
R6 = 10 kQ R7 = 100 kQ Rs = 10 kQ R9 =68 kQ R ]0= 150
kQ R ]]= 100 kQ R ]2 = 100 kQq Cl =C2 =C3 =0.001 pF& and
the diode is a type MV2101. The operational ampliSers are all

type 741.

These equations are similar to another set of equations
studied independently by Rossler, Hudson, and Rossler
[65]. The time factor a is 10 s ' and the other circuit
parameters were set to the values F=0.05, P=0.5,
A, = 1.0, y =0.133, and p = 15.0. Figure 1 shows a
schematic of this circuit. Figure 2(a) shows an x-y projec-
tion of a chaotic attractor of the circuit for the above pa-
rameters. For comparison, Fig. 2(b) shows the same pro-
jection generated numerically from Eqs. (53), with the
time scaled so that a= 1 [66]. The slight disparity be-
tween the circuit and the model equations is not bad, con-
sidering the large number of resistors with l%%uo tolerances
and the three capacitors with 5% tolerances.

The experimental coupled oscillator configuration con-
sisted of four circuits arranged in a ring, coupled
diifusively to nearest neighbors. Three separate experi-
ments were carried out: scalar coupling through the x, y,
and z coordinates. %'e considered y coupling first.

The coupling function c(y;+I+y; I
—2y, ) was pro-

duced by first adding the y signals with operational
amplifier adders, then multiplying the resulting sum by
the coupling constant c using an analog multiplier chip.
The coupling function was then added back into the y
equation of the ith oscillator using another operational
amplifier adder. With y coupling synchronization was
observed for coupling constants c ~0.06 in time units
where a=1. Synchromxation was detected in two ways,
one qualitative and the other quantitative. The first
(qIIabtative) method was simple visual inspection of oscil-
loscope traces of the x voltage of one oscillator vs the x
voltage of another oscillator for the three pairs (xo,x1),

6 P I I I I I I I I
i

I I I I I I I I I
)

I I I I I I 1 I I
i

I I I
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0
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FIG. 2. (a) x-y projection of attractor generated by the piece-
wise linear Rossler circuit. {b) Same projection for attractor
generated from Eqs. (52).
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(x„x2),and (x2,x3). Quantitatively, the threshold for
synchronization was found by measuring the average
difference between x voltages of two oscillators before
and after a rapid switch in the coupling constant from a
large value, such as c =1.0, where the oscillators were
well synchronized, to a smaller value. Synchronization
was considered to be lost when the magnitude of the
average difference changed from a small (synchronized}
value to a larger offset value. The rate of approach to the
offset was observed to be approximately exponential.
Faster approach rates were observed as the oscillators
were farther from the synchronization threshold. At the
synchronization threshold, the average difference be-
tween oscillators did not change, and the approach rate
to the offset value went to zero.

In the second experiment the four oscillators were cou-
pled in a similar manner through the x variable. In this
case synchronization was found for c =0.05. Finally, for
the z-coupling experiment the oscillators did not syn-
chronize over the entire range of accessible coupling con-
stants.

Figure 3 is a plot of the numerically determined value
of the largest transverse I.yapunov exponent for the first
(k =1) mode, A,', versus the coupling constant c, for x,
y, and z coupling. In each coupling case A, ',„wasfound
by integrating the k =1 variational equations simultane-
ously with equations (53) and computing the growth rate
of a randomly chosen variation. Integration times were
-20000 cycles around the attractor and error bars in the
exponents were within the size of the plot symbols. For
comparison the numerical value of A, ',

„

for Uector cou-
pling is also shown in the plot, along with the corre-
sponding theoretical value computed from Eq. (25). This
served as a check of our numerical integration algorithm.
The numerical y-coupling threshold c =0.052 compares
well with the experimental value of c =0.06. The numer-
ical x-coupling threshold c=0.063 also compares well
with the theoretical value of c =0.05. Finally, the lack of
synchronization in the numerical z-coupling case is con-
sistent with the z-coupling experiment.
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Because of experimental limitations on the size of the
coupling constant, we were unable to test the large cou-
pling limit theory with the experimental oscillator array.
Therefore numerical studies with large coupling con-
stants were carried out. Figures 4(a), 4(b}, and 4(c) show

~ versus c for a wider range of coupling constants for
the x, y, and z coupling cases, respectively. Also shown
in each plot is the theoretical large coupling limit predic-
tion for A, ',„obtained from expression (42). In the y-
coupling case the agreement between the numerical and
theoretical exponents is quite good, even for relatively
small coupling constants. Qualitative agreement is seen
in the x and z coupling cases. In all cases the large cou-
pling limit theory correctly predicts synchronization or
lack thereof as the coupling constant becomes large.
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FIG. 3. Largest transverse Lyapunov exponent for x,y, z, and
vector coupling for the k =1 mode versus coupling constant.
Solid line is theoretical vector coupling prediction based on Eq.
(25).

FIG. 4. (a) Largest transverse Lyapunov exponent for the
k = 1 mode and large coupling limit prediction for x coupling as
functions of coupling constant. (b) Same for y coupling. (c)
Same for z coupling.
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Somewhat contrary to expectation is the x-coupling case,
which fails to synchronize for large coupling, yet does
synchronize for smaller coupling constants. A similar
phenomenon has been observed in a proportional feed-
back control technique discussed in a recent paper by Py-
ragas [67]. This peculiar phenomenon is the topic of
ongoing investigations.

V. CONCLUSIONS

A general framework for determining the stability of
synchronous chaotic oscillations in coupled oscillator sys-
tems with shift-invariant symmetry has been discussed.
This framework allows one to systematically reduce a
large set of variational equations, governing the stability
of the synchronous state, to several independent low-
dimensional sets of variational equations. The reduced
sets govern the stability of synchronous chaotic (and non-
chaotic) behavior and they generally have the same or
similar structure. Typically their dimension is that of a
single oscillator. The vehicle for carrying out the reduc-
tion is the spatial Fourier transform. While this ap-
proach is not new, it applies to a large class of coupled
oscillator configurations, and thereby groups many previ-
ous investigations under one umbrella. The well known
cases of nearest-neighbor diffusive coupling and global
coupling fall under this umbrella. For cases with scalar
diffusive coupling and in the limit of large coupling, an
approximate stability criterion for synchronous chaotic
behavior has been derived. This criterion is easy to im-

plement (requiring only the average value of the Jacobian
on the attractor} and gives useful information without the
need for large scale simulations. It is expected to be par-
ticularly useful for very large arrays.

Experimental studies of synchronous chaos have been
conducted with a set of four diffusively coupled Rossler-
like oscillator circuits. Experimental synchronization
thresholds for x, y, and z coupling are in good agreement
with those found from computed maximal Lyapunov ex-
ponents. We conclude that the theoretical synchroniza-
tion conditions are able to stand up in the presence of
realistic noise and in cases where the oscillators are not
exactly identical. Finally, maximal Lyapunov exponents
for large coupling constants are in good qualitative and
reasonable quantitative agreement with theoretical large
limit predictions for all scalar coupling configurations.
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APPENDIX: FREE-END ARRAY
AS A SHIFT.INVARIANT CASE

Certain coupled oscillators systems that are not in
shift-invariant form can be put into that form so the
analysis presented in this paper can be apphed. Here we
carry this out for nearest-neighbor diffusive coupling with
free end boundary cond-itions. The approach is similar to

=F(x" ')+c(x" ' x" '—
)

The Jacobian on the synchronization manifold is given by

DF —c c
DF —2c

0 0 0
0 0 s ~ ~

DF —2c c 0

00 c DF —c

which does not have a circulant structure. The lack of
periodic boundary conditions has changed the first and
last equations in Eq. (1) and, as a result, the (0,0),
(O, N —1), (N —1,0), and (N —1,N —1) components of
the Jacobian have been changed.

We can create the system (Al) and Jacobian (A2) from
a shift-invariant system by doubling the size of the system
and restricting our interest to a subspace of the doubled
system. This is done as follows. The equations of motion
for an array of 2N diffusively coupled oscillators with
periodic boundary conditions are

dx'
dt

dx'
dt

=F(x ')+ c(x +x —2x '),

=F(x')+c(x' —x')+c(x'" ' —x'),

(A3}

dx F( N 1)+ (xN xN 1)+ (xN 2 N —1)
dt

dx F(x2N —1)+e(xo+x2N 2 2x2N —1)
dt

where we have purposely split oF the couyhni term~ ia
the zeroth and N —1st equations. The correspond'eg
Jacobian on the synchronization manifold is

that used to derive equations of motion and stability for
coupled systems undergoing Hopf bifurcations [68,69]
and for certain cases of motion of vibrations in atomic
lattices (cf., [32] and references therein). We see below
that the results for chaotic synchronization are the same,
and that a more geometric approach can be used to sim-
plify the derivation.

The equations of motion for an array of N dimusively
coupled oscillators, x'E-I", with free-end boundary con-
ditions are

dx'
dt

=F(x )+c(x' —x ),
dx'
dt

=F(x')+c(x +x —2x'),
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DF —2c 0 p p ~ ~ ~

c
0

DF —2c c 0 0 0 0 0

DF —2c c 0
0
0 (A4)

0 0 c DF —2c

which has a circulant structure. Note that if we could force x '=x and x '=x, we would recover Eqs. (Al) in
the Srst N equations of (A3). The way to do this is shown schematically in Fig. 5; one simply identifies opposite oscilla-
tors in the Sgure. Geometrically, this means we restrict the oscillators to the submanifold defined by x '=x,
x =x', etc. This can be carried out by applying a series of 45' rotations to the oscillator coordinates which are to
be equated. The result is an overall 2N X2N transformation matrix of the form

1 0 ~ ~ ~ 0 1

0 1 1 0

T= 1 1 1
—1 1

(A5)

~ ~ ~ 1 0
—1 0 ~ ~ ~ 0 1

applied to the coordinates in (A3), where all off-diagonal and off-counter-diagonal terms are zero (here 1 denotes the
n Xn unit matrix). The matrix in (A5) is orthogonal, hence T '= T'. Under T the first N coordinates of the new sys-
tem will satisfy the desired constraints. A straightforward calculation shows that the transformed Jacobian takes the
form

DF —2c
p Q 0 0 ~

Q ~ ~ ~

0
0

0 0

0 0 0 c DF —c
0 0

0

0
DF —3c

0
0 0 ~ 0 0

c 0 0 ~ ~

0
0

(A6)

0 0 ~ ~ ~ Q c DF —3c

Therefore T block-diagonalizes E and the upper block is
exactly the Jacobian J of the free-end problem given in
(A2).

J itself can be diagonalized by using the fact that the
Fourier transform matrix P diagonalizes K, as discussed
in Sec. II,

Kq;,s=PKP (A7)

where 9' is the Hermitian conjugate of X The "eigen-
values" of K are given by Eq. (23) with N ~2N,

qk =DF—4csin, k =0, 1, . . . , 2N —1 .
m.k

(AS)

Let Pk, k =0, 1, . . . , 2N —1, be the corresponding eigen-
vectors. Then

FIG. 5. Diagram of doubled oscillator array. Solid lines
represent coupling between the oscillators, while dashed lines
represent oscillators that are to be identified through the trans-
formation T.
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&4k =qk4k

(A9)

which shows that qk is also an eigenvalue of J with
eigenvector Tgk. Only the first N eigenvalues are associ-
ated with the upper block J. Therefore the eigenvalues of
J are those in (AS), with k =0, 1, . . . , N —1, in agree-
ment with Dean's results for matrices occurring in atom-
ic vibration problems [32].
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