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We study a set of nonlinear stochastic equations that describe a large class of nonlinear multidimen-
sional non-Markovian dynamical systems driven by Drnstein-Uhlenbeck (OU) noises, and a class of non-
linear multidimensional differential stochastic equations driven by dichotomous noises. By use of the
stochastic generalization of the usual adiabatic approximation, the equations for the order parameters
are obtained. The statistical properties of the new stochastic variables are studied. In the circumstances
of OU noises or dichotomous noises, we derive the approximate Fokker-Planck equations (AFPE s) cor-
responding to the equations for the order parameters and calculate the stationary solutions of AFPE's.

PACS number(s): 05.40.+j, 02.50.—r, 02.60.—x

I. INTRODUCTION

The application of the slaving principle in stochastic
systems is a method developed in recent years [1-10].By
using this method, we can deal with the stochastic sys-
tems not handled before, such as the semiclassical single-
mode laser model [11], the system which contains
quenching of fluctuations [12], and so on. This method
was first advanced by Haken in the 1970s [1]. However,
owing to some diSculties in practical calculation, it could
not be used in stochastic systems. In 1981, Kaneko pro-
posed a method of adiabatic elimination [2] by the eigen-
function expansion for two-dimensional systems driven
by additive Gaussian white noises. Soon afterwards, Gar-
diner also developed a method [3]. In the process of us-
ing Gardiner's method, the Fokker-Planck equation
(FPE}of the stochastic differential equations must be de-
rived first. Then, by eliminating the slaved parameter, we
can get approximate Fokker-Planck equations (AFPE's)
of the order parameters. The defect of Gardiner's
method is that its approximate degree is low. In 1986
and 1987, Schoner and Haken proposed a nice systematic
approximation and systematic adiabatic approximation
(Haken-Wunderlin-Schoner methods, or HWS methods)
on the basis of Haken and Wunderlin's early work [4—6].
In their work, the slaving principle was generalized to the
nonlinear systems driven by Gaussian white noises. But a
set of new stochastic processes Z,'"' (v) 2) were intro-
duced in the equations for the order parameters. It made
the calculation and determination of the statistical prop-
erties of Z,'"' (v)2) very complicated. Recently, Cao
and Wu have developed a stochastic adiabatic approxi-
mation (CW method) in the stochastic systems [7—11].
By use of this method, some stochastic processes Z, , and

Z,'2 (i =1,2, 3, . . . , m) were introduced. It was easier to

determine the statistical properties of Z, &
and Z,'2 than

to do those of Z,' '.
Only the systems driven by Gaussian white noises can

be treated with the methods mentioned above. The sys-
tems driven by Ornstein-Uhlenbeck (OU) noises, dichoto-
mous noises, cannot be handled by them. The stochastic
forces acting on the systems may be approximated to the
white noises under some circumstances. But under the
other circumstances, they may not be. They may prob-
ably be approximated to OU noises, dichotomous noises,
etc. For example, owing to the impact of the quantum
noise and the pump noise, a laser system must be a non-
linear non-Markovian one, the pump fluctuations in the
system may be approximated to OU noises (colored
noises} [12,13]. In a dye laser system, the quenching of
fluctuations is the role of noise color [14]. How to use the
slaving principle to solve the quenching of fluctuations in
a laser system is a question which we must settle [15].
The task of this paper is to generalize the stochastic adia-
batic approximation to stochastic systems driven by
colored noises, such as OU noises or dichotomous noises.
The paper is arranged as follows. In Sec. II we popular-
ize the stochastic adiabatic approximation to the systems
driven by OU noises. The equation for the order parame-
ter and the statistical properties of the new stochastic
variables are derived for a large class of nonlinear
differential stochastic equations driven by OU noises.
The AFPE of the systems and the AFPE stationary solu-
tion are calculated. Then the single-mode laser model
driven by OU noises is studied by this method. In Sec.
III the stochastic adiabatic approximation is generalized
to the systems driven by dichotomous noises. We derive
the equation for the order parameter, the statistical prop-
erties of the new stochastic variables for a set of non-
linear differential equations driven by dichotomous
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noises, the AFPE of the stochastic systems, and the
AFPE stationary solution. Then a Brownian harmonic
oscillator driven simultaneously by Gaussian white noise
and dichotomous noise is solved by this method. Finally,
the conclusions and discussions are presented in Sec. IV.

II. GENERALI&ATION OF THE STOCHASTIC
ADIABATIC APPROXIMATION IN A LARGE CLASS

OF NONLINEAR NON-MARKOVIAN SYSTEMS
DRIVEN BY OU NOISES

g'(t) (i =1,2, 3, . . . , m). g;(t) and g(t) are OU noises.
Their statistical properties are

(g(t) & =0, (g(t)g(t') &
=—e

(g;(t)) =0, (g;(t)g';(t')) =
i

For the sake of convenience, Eqs. (1}and (2} are simply
written as

The nonlinear stochastic differential equations
(NSDE's) of multidimensional non-Markovian processes
driven by OU noises are

du, =a(u, }dt+Qo(u, )S,dt+[F„(u, )+Fg'(t)dt,

dS, = —P(u, )S,dt+P, (u, )dt

(3)

du, =A,„u,dt+Qo(u, }S,dt+Q, (u, )dt

+ [F„(u,)+F]g(t)dt,

dS, = AsS, d—t+Po(u, )S,dt+P, (u, )dt

+ g [Fs;(u, }S,+F;(u, })g;(t)dt,

(1)
where a(u, ) =A„u, ,+Q, (u, ),P{u, ) =A z

—Po(u, ).

+ g [F, , (u, )S,+F,(u, )]g;{t)dt, (2) A. The equation for the order parameter

where A,„+0, A,s)0, and @=A,„/A,s«1. The functions

Qo, Q&, Po, and P, contain nonlinear deterministic terms,
while [Fs;(u, )S,+F (u, )] and [F„(u,)+F] are the
coefficients of the independent stochastic forces g;(t) and

The central idea of the stochastic adiabatic approxima-
tion is that for small e, the slow variable u, in Eq. (4) can
be treated as a time- and chance-independent parameter.
Hence Eq. (4) is just the linear stochastic difFerential
equation for S. Its solution is

I

m

S,d =S(to, u )exp —f P(u) —g Fs;(u)g;(t')
0 i=1

I

+ P1 Q + E& Q i
t' exp — u — Es i Q i s s

0 —1
t' i=1

where the subscript "ad" means that we have to take the
stochastic adiabatic approximation, and regard u, in Eq.
(4) as an order parameter. Letting to~ ~, M~(t}
=fg(t')dt' [make dM, (t)=g, (t)dt], Eq. (5}can be writ-

ten as

dK, , = P(u)K—, ,dt+ g Fs;(u}K, ,g;(t)dt+dt .
i=1

From Eq. (9), we have

(9)

Now, we derive the statistical properties of K, 1 and

K,'z. It is easy to find that K, 1 is the solution of SDE

S,d=P)(u)K, )+ g F((u)K,'2,

where

E 1= exp — u t —t'

+ g F ( s)[Mu, (t)—M, (t')] dt',

K,'z =f exp —p(u}{t t')—

(6)

(7)

d m

(K, ) ) = —P(u)(K, ) )+g Fs ((u)(K, )g;(t) )+1 .
(10)

Making the approximation of the small r, , and using Eqs.
(2. 18)—(2.23) of Ref. [16] and the Novikovian theorem

[17],we can get

(K, ,g,.(t)) =D,Fz, (u)(K, &) r;D, Fs, (u} . — .

In Eq. (11), we only take account of the first order in r;
Substituting Eq. (11)into Eq. (10), we obtain

(Kg, ) =—P{u}(K,))+g D;[Fs,(u)] (K, , )
i=1

m

+ g Fs,.(u)[M, (t)—M, (t')] dM,(t').
i=1

(i=1,2, 3, . . . , m) .

+1—g r,D;[Fs;(u)]

(8) The solution of Eq. (12) is

(12)
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&K„&=I'
'I

m m

1 —g r,.D;[Es;(u}]~ exp —P(u) —g D;[Es;(u)] (t —t')
i=1 i=1

1 —g r, D, [Fs,(u)]

Ij)(u) —g D;[Fs;(u)]
(13)

To derive the correlation function, we write from (9)

(K, )K,. )&=—P(u)(K, )K,. )&+ g Fs;(u)(K, )K; )g;(t}&+(K;(& .
i=1

By using Eqs. (2.26)—(2.30) of Ref. [16],we can find (we only take account of the first order in ~;)

(K, ,K,. ,g,.(t) &=D,Fsi(u}(K~ iK, , & ~;D,Fs, t(u}&K~', i &

+D;Fs, (u)(K, .,K, , &exp[ (t —t')/r; —] ~,D,—Fs;(u)(K;, &exp[ (t t')/——r; ] .

Substituting Eq. (15) into Eq. (14), we obtain

d m

(K, )Kg ) &= —P(u)(K, )K;,&+ g D;[Fs;(u}] {1+exp[ (t t—')/r;—]) (K, ~K;, &

i=1

—g D;r;[Fs;(u)] {1+exp[ (t t')/r, ]——](K, , &+(K, , & .
i=1

—
(,t —t') I7,

Neglecting the terms proportional to e ', Eq. (16) becomes

(14)

(15)

(16)

(K, ,K; )&=—P(u)(K, )K,. )&+ g D;[Fs;(u)] (K, )K; )&+ 1 —g r;D;[Es;(u)] (K, )& .
t, l t, l

i=1 i=1

The solution of Eq. (17) is

(17)

(K, ,K, , &
=

1 —g ~;D;[Es;(u)]

m

P(u }—g D; [Es;(u) ]
&K„&+

m

1 —2 g r, D;[Fs;(u)]
i=1

m

P(u) —2 g D;[Es;(u)]~

1 —g r;D;[E, ;(u)]

m

P(u) —g D;[E, ;(u)]'
i=1

Xexp —P(u) —g D, [Fs,(u)] ~t t'~—
i=1

Similarly, by means of the Novikovian theorem [17,18] and Ref. [16],the mean value and correlation function of K,'z
are

D;Es;(u)[1—r;P(u)]
K,'x

P(u) —g Dg[Fs, j'(u})
j=l

D;F, ;(u)[l —r;P(u)](K,'2 &

K~,xKr', z
=

P(u) —g D,.[F,J(u)]'

(19)

D; {1—i,P(u)+D;Es;(u)[3 —2r;P(u))) (K,', &

m

P(u) —2g D [Es (u)]2

D;Es, (u)[1—~,P(u)](K,'z &

m

P(u) —g D;[Es,(u))'

m

Xexp —P(u) —g D, [Fs,(u)]' ~t t'~ . . —
j=l
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The formulas (13) and (18)-(20) will return to corre-
sponding formulas of Ref. [7] in the limit of »; ~0.

Substituting Eq. (6) into Eq. (3), we can obtain the
equation for the order parameter

multiplicative noise case. When Fz;(u) =0, i.e., the addi-
tive OU noise case, we need not make small v;. Right
now, Eq. (4) reduces to

d m

u, =a(u)+Qo(u) P, (u)K, &+ g F;(u)K,'z
dt i=1

+[F„(u)+F]g(t) . (21)

=—P(u)S, +P, (u)+ g F,(up';(t) . (23)

The stochastic adiabatic solution of S can be obtained
from Eq. (23}{u is regarded as a time-independent param-
eter):

By introducing the stochastic processes»}, (t) and»1'2(t)
defined by

rt, (t)=Kt, —(K, , ), »}2{t)=K,'~ —(K,'2 ),
1 Nl

S,d= P, (u)+ g F,.(u)K,'2,
u i=1

with
we have from Eq. {21)

m
E]2= exp Q f 7 T 7 (24)

u, =f(u)+P, (u)»1,(t)+ g F( u)»}z(t)
dt '

i=1 The statistical properties of K,'2 are

where

+[F„(u)+F]g(t), (22)
(K,', ) =0,

f(u}=a(u)+P, {u)(K,, )+ g F;(u)(K,' ), (K,'~K/, ) =5,, . F', exp—

P, (u}=QO(u)P, (u}, F, (u)=QO(u)F, (u) .
From»I&(t)=K, , —(K, , ) and»tz(t)=K, 'z —(K,'2), we
can get

where

+F2 exp[ —P(u) ~
t —t'~ ] ',

J

(24'}

(&,(t)) =0,
(»},(t)»I, (t') ) =N, (u}exp[ —G(u) ~t t'~ ], —

(q,'(t) ) =0,
(»}2(t)»lz(t'})=Nz(u)5;I exp[ —G(u)~t t'~], —

(»},(t)»b'(t') ) =0,
m

wherei =1,2, 3, . . . , m, G(u) P(u) —g DJ[Fqj(u)],
j=1

Di&i D;Fi Fi
1 —+P'(u) [1—HP'(u)]P(u)

[We give the derivation of Eq. (24') in Appendix A.] The
formulas (24') can return to the corresponding ones of
Ref. [7] in the limit of »; ~0. In this moment, the equa-
tion of order parameter is

du =g(u)dt+ g Fg(u)K,'2dt+[F„(u)+F]g(t)dt, (24")

N&(u)=

1 —2 g», D;[Fz;(u)]

P(u) —2 g D,.[ zF, ( )u]

where

P&(u)g(u)=a(u)+Qo(u), F,.(u)=QO(u)F;(u) .
u

1 —g D »;[Fs,(u)). B. The approx~mate Fokker-Planck equation
and its stationary solution

and

N2(u) = D; [1—~;P{u) ]+D(Fg;{u) [3—2r;P(u) ](K,'2 )

P(u}—2 g DJ[Fsj(u)]
j=1

D;Fz;(u)[1 ».;P(u)](K,'~ )—
G(u)

In Ref. [19] the authors introduce the interaction rep-
resentation, and then make

V(t) = —exp[8» A (q)t]

XB»[F(a+/(t))g(q) —(F(a+)(t))g(q)) ]

Xexp[ —
8» A (q)t]

Equation (22) is the equation of order parameter for Eqs.
(1) and (2).

The formulas (13}and (18)—(20} are suitable for the
[Eq. (6) of Ref. [19]]. We think that this formula is
wrong. It should be
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V(t) =—exp[ —
a» A(q}t]

Xa»[F(a+/(t))g(q) —(F(a+/(t))g(q) ) ]

Eq. (22) (N„Nz, 6 ', D, and r are smaO values) as fol-

lows:

Xexp[a» A (q)t ] .

Imitating the method proposed by the authors [19]we get
the equation for the approximate probability density of

B,P(u, t)= —a„f(u)P(u, t)+LP(u, t),

where

(25)

L =B„P,(u)f dt'(»},(t)»I, (t —t') }jexp[t'a„f (u)] ]B„P,(u)
0

m

+ g B„F,{u)f dt'(»Iz(t)»h(t t')—)exp[t'a„ f(u}]B„F,{u).
i=1 0

+a„F„{u)f "dt

&pter(t

t —) & jexp[t a„f(u)]]B„E„(u}+B„Ef "dt
& ptg(t —t }&jexp[t a„f(u)]]B„E

0 0

N, (u} 1=a„P,(u) a„P,(u)+ y B„E,.(u) B„F,(u)
1 —[6(u)] 'a„f(u) ";=& ' 6 u 1 —[G(u)] 'a„f(u)

+B„E„(u)D,
' a„F„(u)+F'a'„D, (26)

If the intensities of the noises»1, (t), »}2(t), and g(t) are small enough, in the case of small 6 and». , we can use us,
which satisSes f(us)=0 to replace variable u in j 1 —[6(u}] 'a„f(u)] ' and [1—ra„f(u)] ' of Eq. (26) (and in the
following we shall calculate the stationary solution of the approximate probability density, which is also a reason for us-

ing us to replace u). We refer to this ansatz as the "Hanggi-like ansatz. " The "Hanggi-like ansatz" is not the "Hanggi
ansatz. " We imply that this "ansatz" and the "Hanggi ansatz" are somewhat alike. See P. Hanggi et al. , Physics 22A,
695 (1985). In this moment, we can get the approximate Fokker-Planck equation

B„f(u)
B,P(u, t)= —a„f(u)P(u, t)+agP((u)N)(u) 1+ B„P((u)P(u, t)6 u ll=Qg

a„f(u)+ g B„F;(u)Nz(u) 1+ B„E;(u)P(u,t)

+DB„F„(u)[1+»a„f(u)]„„B„F„(u)P(u,t)+DF2[1+~a„f(u)]„„B2P(u,t), (27)

where N, (u)=N, (u)/6(u) and N2(u)=N2(u)/6(u). In Eq. (27), we have fetched 1/j 1 —[6(u)] 'a„f(u)]
= j 1+[6(u)) 'a„f(u)] and 1/[1 —»a„f(u)]=[1+~a„f(u)] so that we can easily compare Eq. (27) with the result
obtained by the method of Refs. [2,22].

The stationary solution of Eq. (27) under the natural boundary condition is [20,21]

Ps(u) =N du
AA'+BD Fu ~ +F

where

Ps(u)= lim P(u, t),
f~ oo

(28)

b, =f(u) —P, (u)N, (u}AB„P,(u) —g F (u)N'(u)AB„F~(u) —DE„(u)BB„E„(u),
i=1

a„f(u)
A = 1+ ",8 = [1+».B„f(u )]„6( )

M Q=Qg

A'=[P&(u)] N, (u)+ g [E&(u}]N2(u) .

When the stochastic system is driven by one OU noise, under the circumstances of "Hanggi-like ansatz, "after using us
satisfying f(us)=0 to replace in j 1 —[6(u)] 'a„f(u)j ' and [1—~a„f(u}] ' of Eq. (26}, the result obtained by this
method accords with that obtained by the method of Refs. [2,22].
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Similarly, we can, respectively, calculate the AGAPE of Eq .(24") and the AFPE stationary solution {in the cir-
cumstances of small ~, ~;, 1/P( u), D,F& „F2):

B,P(u, t)= —B„g(u)P(u, t)+ g B„F,(u)( F—', )r;[1+x;B„g(u)]„„B„F,(u)P(u, t)
i=1

+ y a„F,(u)F,' ' [1+a„g(u)/P(u)]„„a„F,(u)P(u, t)
i=1 u

+DB„F„{u)[1+vB„g(u}]„„B„F„(u)P( ut)+DF [1+rB„g(u)]„„B„P(u,t),

and

Ps(u) =N exp du C+EE'+B'D [[F„(u)]2+F2I

where

C= —g [F,.(u)] F' r, [1+v,B g(u)]
i=1 S

mE= g [F,(u)] F2, E'= [1+/„g(u)/p(u)]
i=1 u " " "s'

B'=[1+mB„g(u)]„

g(u}—g F;(u)[ —F', r, [1+v;B„g{u)]„„
i=1 S

+ E'JB„F{ u)

u)

-DF„(u)Ba„F„(u} .

C. The single-mode laser model with mnltiplicative OU noise

The stochastic differential equations for the single-
mode laser model are

In Eqs. (29) and (30), u, corresponds to Seld amplitude
and S, to inversion. The purpose of the example is to il-
lustrate the application of the stochastic adiabatic ap-
proximation in laser systems. In fact, the laser Selds have
the complex parameters. But we only emphasize the
basic structure of Eqs. (29) and (30), and keep away the
complicated details of physics. Thus u, will be con-
sidered as the parameter of real number. Comparing
Eqs. (29) and (30) with Eqs. (3) and (4), we have
a(u)=au, Qo(u)=au, F„(u)=0, F=F„,P(u)=13+bu,
P, (u)= cu ,— Fs,(u)=Fs » Fs;(u)=0 (i & 2),
F, ( u }=Fs, F, (u )=0 (i & 2). Substituting these equations
into Eq. {22},we can obtain

u, =f(u) —acu t},(t)+Fsauq2(t)+F„g', (t), (31)
dt '

where

1 —v2D~I's 1f(u) =ecru —acu
P+ bu D2Fs2, —

DtFs, [l—~~(P+bu )]
+aFs

P+ bu D2Fs, —

du, =(au, +au, S,}dt+F„g,(t)dt, {29) It is easy to 6nd

(g)(t) }=0, (g)(t)g')(t')) = exp[- It -t'I/r~] .

{g,(t)) =0, (g,(tg,(t')}= exp[ —It —t'I/r2] .

dS, = PS,dt (bu,—S, +cu, —)dt+ [Fs &S, +Fs]$2(t)dt,

(30)

where a, p, a, b, c, F„,Fs» and Fs are constants. g', (t)
and gt(t) are two independent OU noises satisfying

(~,(t) &=0,

(g, (t)t},(t')) =N, (u}exp{—[(P+bux) —D2Fs2, ]It —t'I],

(q,(t) & =o,

(q2(t)g2(t') }=N2(u)exp[ —[(P+bu ) D2Fs, ]It t—'I ], —

in which

D2Fs, 1[1—~2(p+bu )]
13+bu D2Fs, —N2(u) =

Il+bu 2 —2D~F~

(1 2r2D2Fs, i )(1 r2DzFs, i
—

) 1 r—tD2Fs, i—N)(u)=
(P+» —2D2Fs ) ){P+bu D2Fs, ) P+ bu —D2Fs2, —

Dt[1 r2(P+bu )]+D2Fs—)[3—2'(P+bu2)]
DtFs i[1—rq(P+bu t)]

P+ bu D2Fs2, —
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Equation (31) is the equation of order parameter for Eqs. (29) and (30). The AFPE of Eq. (31) can be obtained from
(27),

d, P(u, t)= —B„f(u)P(u, t)+B„(acu )N, (u)AB„(acu )P(u, t}

where

+B„(aFsu)Nz(u ) A B„(aFsu )P(u, t)+Dd„F„Bd„F„P(u,t}, (32)

N, (u) Nz(u)
Ni(u) =

z z, Nz(u) =
P+ bu DzF—s, i P+ bu D2F—S, I

a„ (u)
1+

P+ bu DzF—s,
B= [1+r,B„f(u }]„

"="s

The stationary solution of Eq. (32) is

Ps(u) =N exp . du
A [(acu )iN, (u)+(aFsu ) Nz(u)]+BDF„

with

h=f(u) —3(ac) u~N&(u)A —(aFs) uNz(u)A .

III. GENERALIZATION OF THE STOCHASTIC
ADIABATIC APPROXIMATION IN A CLASS

OF NONLINEAR NON-MARKOVIAN SYSTEMS
DRIVEN BY DICHOTOMOUS NOISES

NSDE's of non-Markovian processes discussed by us
are

du, =a(u, )dt+Qo(u, )S,dt+[F„(u, )+F]g(t)dt, (33)

dS, = p(u, )S,d—t+P, (u, )dt

+ [Fs,(u, )S,+F,(u, )]f(t)dt, (34)

where a(u, )=A„u, +Q, &(u, }, P(u, )=As —Po(u, ), A,„)0,
A,s )0, and A.„/A, s « l. g( t) and g'(t) are independent di-
chotomous noises. The statistical properties of g(t) and
P(t) are

From Eq. (38) we have

d(, K, , ) = —p(u)(K, , )dt+Fs, (u)(g'(t)K, , )dt+dt .

(39)

By using the difFerential formula in Ref. [23] [i.e., Eq. (2)
in it], we can get

g, (g'(t)K, , ) =(g'(t)a, K, , ) —Az(g'(t)K, $) (40)

substituting Eq. (38) into Eq. (40) and noting
[g'(t)]z=Ez, we obtain

I

E2= M t' exp — u t —t'

+Fs &(u)[M(t) —M(t')]] . (37)

We now calculate the statistical properties of K, &
and

K, z. From Eq. (36), we find K, |is the solution of SDE

cf
K, )= P(u—)K, )+Fs |(u}f(t}K,)+1 .

(g(t)) =0, (g(t)g(t')) =Ez, exp[ —
A, , ~t

—t'~],

(g'(t})=0, (g'(t)g'(t')) =E', exp[ —
A,, ~

t t'~]—. —

Here the values of g(t) and g'(t) are, respectively, kE,
and +Ez. The transition rate of g(t) from E, to E, —
and these from E& to E, ar—e denoted by A, &/2. The
homologue of g(t) is A,z/2.

A. The equation for the order yarameter

Let M(t) =Ig'(t')dt' Using the .similar method
which has been utilized in Sec. II A, we can get

B,(g'(t)K, , ) = —[p(u)+&z](g'(t)K, , $ }

+F„(u)Z', & k„) .

The solution of Eq. (41) is

EF u

Substituting (42) into Eq. (39), we get the solution

p(u)+Az

[P(u)] +AzP(u) —Ez[Fs,(u)]

Similarly, we can derive

(41)

(43)

S,q =P, (u)K, , +F|(u)K,z,
where

K, ,=I dt'exp[ —P(u)(t t')—
+Fs,(u)[M(t) —M(t')]],

(35)

(36)

2Ez[Es, i(u)l
2P(u }+A,z+

2[P(u)] +AzP(u) —2[Fs,(u)]zEz
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From Eq. (38), the equation of the correlation function of
Kj 1 1s

„(K„K,, &
= —P(u)&K„K,, , &

+Fs i(u)(g'(t)K, iK;, &+(K; i & . (45)

By using the differential formula in Ref. [23] [i.e., Eq. (2}
in it], we obtain

d
(K, ,K;, )= P—(u}K),K;,

+Fs )(u)K( )K,. (f(t)+K,, )

into Eq. (46) and noting [f(t) ]~=E2z, we find

B, (g'(t)k, , K, , &= —[P(u)+A, ](f(t)K, ,K, , &

B,(f(t)K, ,K;,&=(P(t)B,(k, ,K, , } &

—Az( f(t)K, ,K, , & .

Substituting

(46}

+E2Fs, i(u)(k, , K, , &+(f'(r)K, , & .

(47)

From Bqs. (45) and (47), we can get

2

2 (K, )K,. )&+[2P(u)+Az] (k, (K,. (&+[[P(u)] +A2P(u} —Eq[Fs )(u)] ] (K, )K, )&

In the process of deriving Eq. (48), we utilized

(g'(r)K, . , & =(g'(r)K„&e
2E2FS, 1{u } A2 ~

t t ')— —

p{u}+A,2

[The proof of Eq. (49) is given in Appendix B.] The solution of Eq. (48} is

(K, &K,. && =C&e ' +Cue ' +((K, &&) + Ae

where

r, =
—,
' [2P(u)+ A~+a)], r2 =

—,
' [2P(u }+A2—co],

(49)

(50}

2P(u)+iLz —co 2P(u)+A, 2
—3a)

C, = ' ~+ ' ((K, , &' —«,', &).

C2=
2P(u)+A. z 2P(u)+Az+co

(&K, , &'-«,', , &),

~—Ig2+4E2[F (u)]2]1/2

E2 [Fs, i {u}]'&K~, i &

[[P(u)]z—A2P(u) —E2[Fs i(u)] j [P(u)+&2]

Similarly, we can derive the mean value, square mean value, and correlation function of K, z from (37). They «e

Fs,(u )E2
K, z [P(u)]z+A2P(u) —Ez[Fs i(u)]

(5l)

A.z+2P{u}, A,~+2P{u)
EzFs i u 2+ (K, z&+E2

2[P(u)] +AzP(u) —2E2[Fs &(u)]
(52)
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and
—

r& [t—t'f, —r2)t —t'f
(K, 2K; 2) =C)e ' +C2e

+(K ) +A'e

C2=

2P(u)+A, 2 2P(u)+A, 2+a)'

2P(u)+A, —ip'

26)

2p(u)+A, 2
—3''

where

r', =
—,'[2P(u)+A2+a)'], r2 =

—,'[2P(u)+A, —co'],

(53)

E2
E2~+ ~, A2 —++ ooi =D2 =const ( =2) .

2

du, =a(u)dt+P, (u)K, ,dt +F,(u)K, 2dt

+ [F„(u)+F]g(t)dt,
where

(54)

P](u)=gp(u)P](u) F$(u)=gp(u)F$(u)

Substituting Eq. (35}into Eq. (33), we can get the equa-
tion for the order parameter of Eqs. (33) and (34) as fol-
lows:

[g2+E2 [F (u ) ]2 I
1/2

E P( )[F,{ )(K, )+1]
[ [p(u }]2—Ag(u )—E2 [Fz,(u) ]2][A2+p(u) ]

The formulas (43), (50) (51), and (53) will return to the
corresponding results in Ref. [7] at the limit of white
noises [24]:

We Snd that the methods of Ref. [19]can be applied to
the stochastic systems driven by dichotomous noises
whose correlation times and intensity are small. Let
g, (t)=K, , —(K, , ), 2}2(t)=K,2

—(K,2). Then 21&(t) and
g2(t) become dichotomouslike noises. Using the methods
used in Ref. [19]which are similar to those in Sec. II 8,
we can Snally get the AFPE of Eq. (54) as follows (in the
circumstance of small 1/1,„1/A,2, 1/r „1/r2, C„C2, A,
C'„C2, and A'):

B,P(u, t) = —B„g'(u)P(u, t)+B„P,(u) ApB„P, (u)P(u, t)+B„F,(u)BpB„F,(u )P (u, t)

+E,B„[F„(u) +F] CB„[F„(u}+F]P(u,t},
where

g'(u}=a(u}+P,(u)(K, , )+F,(u)(K, ,),
1 1 2 1 1

r (u) 1 —[r, (u}] 'B„g'(u) „=„, r2(u} 1 —[r,(u}] 'a„g (u) „=„, ~, 1 —Z a„g'(u)

(55)

and

1 1 2 1

rI(u) 1 —[r&(u)] B„g'(u) „=„r2(u) 1 —[r2(u)] B„g'(u)

1

X, -a„g'(u)

+A' 1

1 —
A,2 'B„g'(u}

And u =uz means that we must take the value of u by uz, the steady value of equation

u =g'(u)+P, (u)21,(t)+F, (u)212(t)+[F„(u)+F]g(t) .
dt

The stationary solution of Eq. (55) under the natural boundary condition is

Pz{u }=N exp, fdu
A p A p+BpBp+ CEf [ [F„(u}] +F ]

(55')

(56)

where

~=g(u) —P, (u)A B„P,(u) —F (u)B Q„F ( )

—E )CF„(u}B„F„(u),
A;= [P,(u)]', B;=[F,{u}]2.

B. The Sccmccc Cccccccic ccillcicc
with dichotomous noise

The stochastic dyne~ical equations of the Brownian
harmonic oscillator driven by dichotomous noise and
Gaussian white noise are



50 APPLICATION OF THE SLAVING PRINCIPLE TO. . . 1871

u {t)=S(t),

d
dt

S(t)= —2aS(t }—[Qz+ g(t) ]u(t)+ g(t),

(57)

(58)

where a, 0 are real, and a)0. u(t) and S(t) are, re-
spectively, the generalized displacement and the general-
ized momentum. Qo is the mean value of the frequency,
and pt) the fiuctuating part of Qzo. g(t) is a Gaussian
white noise satisfying

(r}(t)) =0, (q(t)rt(t') )=4aks T5(t —t'),
(rl(t)g'(t') ) =0,

where ka is Boltzmann's constant and T is temperature.
Equations (57) and (58) are a typical stochastic model.
Some physical phenomena conform to it. It has been
studied by West et al. when f(t) is Gaussian white noise
[25]. Hernandez-Machado and San Maguel have studied
it when g(t) is OU noise [16]. In this paper, we fetch g(t)'
for dichotomous noise whose statistical properties are

&g(t)&=0, &g(t)g(t')&=E'e '~' '~,

K, z= Jt g(t')dt'exp[ 2—a(t —t')],

Z, z= I g(t')dt'exp[ —2a(t —t')] .
(60)

&K„&=0,

(K, zK; z & =C& exp[ (2a+A) ~t
—t'~1

+Cz' exp[ —2alt —t'I]

+ A'exp[ —A)t —t'[],
where

For the statistical properties of Z, z, according to Ref. [7],
we have

(Z, z)=0, (Z, zZ, .z)=ksTexp[ 2a~—t t—'~] .

The statistical properties of K, 2 can be calculated by for-
mulas (51)-(53). Comparing (60) with (37), we find

Es,(u) =0, P(u) =2a, Az=A, , Ez =E .

Substituting these equations into formulas (51)-(53),we
get

where the values of g(t} are kE. The transition rates of
g(t) from +E to Eand th—ose from E to E a—re denot-
ed by A, /2.

The purpose of this example is to illustrate how to use
the stochastic adiabatic approximation to deal with the
systems driven by dichotomous noises. Treating u as a
time-independent parameter, the solution of SDE (58) can
be written as

E, 2aE
4az —A,

z
A,(4a —

A, )

(4a+A, )E 2a+A, (Kz )
A,(4a' —A,')

K
E2

2a(A, +2a)

2a A (Kz )

S~= —Qo+ t' u+g t'

Xexp —f 2ads dt',

namely,

00S~=— -u —uE, 2+Z, ~,

where

(59)

Substituting Eq. (59) into SDE (57), we can finally obtain
the equation for the order parameter

00
u (t)—u (t)K, z+Z, z .d u(t)=-

dt
(61)

Under the conditions that 1/(2a+A, ), 1/2a, 1/A, , C'„
Cz, E, and A ' are small values, using the methods used in
Ref. [19]which are similar to those in Secs. II B and III,
the AFPE of SDE (61}is

a,P(u, t)= —a„—002 00
u P(u, t)+8„(—u) J dt'(K, zK;z)exp t'8„ Qo

u 8„{—u)P(u, t)
2cx

OO Qo
2

+B„J dt'(Z, zZ, .z)exp t'Q„— u Q„P(u, t)

Qo
B„uP(u, t)+B„u c', 1

+C2
Qo

2a+A, +
', +A

Qo
2(x+

B„uP(u, t)+ ks TBz

A, + Qo

1
z P(u, t)

002a+
2A

=I.a„uP(u, t)+a„usa„uP(u, t}+Ha'„P(u, t) . (62)
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Under the natural boundary condition, its solution is
—( 1 /»)(I. /B + 1)

& (u)=N —+uH
B

where

2ak~ TH=
4a'+o

2ac& 2a&» 2aB= »+» +
(2a+A, )2a+QD 4a +Q0 2aA, +Q0

I.= Qo

2a

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we have generalized the CW stochastic
adiabatic approximation to the stochastic systems driven
by OU noises or dichotomous noises. %e Snd that the
procedure of the stochastic adiabatic approximation of
the stochastic systems driven by OU noises or dichoto-
mous noises, in Stratonovich s case [20], is basically simi-
lar to eliminating one of the stochastic adiabatic approxi-
mations of stochastic systems driven by Gaussian white
noises. The dilerences between Z, „Z,'z in Ref. [7] and

K, &, K,'z (or K, 2} are that Z, &
and Z,'2 are the solutions

of equations driven by Gaussian white noises, while K, ,
and K,'2 (or K, z) are the solutions of equations driven by
OU noises (or dichotomous noises). Thus the statistical
properties of K, &

and K,'2 (or K, 2) are difFerent from
those of Z, , and Z,'2. After we made r),(t)=K, , —(K, , }
and g2(t)=Keg —(K)2) [«rip(t)=K)2 —(K)2)], rij(t)
and g2(t) [or viz(t)] are OU-like noises (or dichotomous-
like noises). The correlation functions of these noises
have probably two correlation times.

The central idea of the paper is that for small e, the
slow variable u, in SDE's (4) and (34) can be treated as a
time- and chance-independent parameter. The above ap-
proximation is the stochastic generabzation of the usual
adiabatic approximation [I]. To see this, we write S, for-
mally as a function of u„ t, and K,', that is,

S, =S,(u„t,K,') . (63}

APPENDIX A: PROOF OF (24')

From (24), we can get

(K,'2KJ.
2 }=f dr f d~'(g, (r)gj(~') }

Xexp I
—P(u)(t' —r')

—P(u)(t —~) ] (Al)

(obviously, t & r, t' & ~'). Equation (Al) can be written

Thus, by use of the usual chain rule, we can write from
Eq. (63)

dS,d= dt+g . dK,' .Bt; BK'

Obviously, Eq. (64) is a generalization of the usual (deter-
ministic and autonomous) adiabatic approximation

dS,d =0.
t

In this paper, we studied a class of two-dimensional
non-Markovian systems driven by OU noises or dichoto-
mous noises. When the stochastic systems are three- or
multi-three-dimensional ones, the method (the stochastic
adiabatic approximation} generali*ed in this paper is
wholly applicable. When the stochastic systems are
driven by OU noises, in the multiplicative noise case we
must make the approximation of the small r; for g;(t).
Formulas (11), (15), etc. can be expanded to diirerent or-
der in ~; according to our demands. But in this paper, we
only expand them to first order in ~;. When the stochas-
tic systems are driven by dichotomous noises or additive
OU noises, in the process of calculating the statistical
properties for the new stochastic variables, we need not
make approximation of small r, In the .limits of white
noises, this method will return to that of CW.
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(K,',K', , & =5,,f d~f dr' exp —P(u)[(t ~)+(t' r')—]——
l t

(A2)

First, we let t' & t. For the sake of removing the signs of absolute values, we divide the integral range —~ & r' ~ t' into
&r'~~and ~&~'~t'. Thus

(K,',K&, )=6,,f' dr f' + f' dr' exp —P(u)[(t ~)+(t' r')]———

I

=5," '
exp[ —p(u){t+t'}] . f exp[p(u}r]dr f exp p(u)r'—J

l oo oo 'r.

l
+f exp[p(u)r]dr f exp p(u)e'—

l

dy.

D;v~ D;
exp( —

~t t'~j/~, )+ — '2 exp[ —P(u))t —t'I]
1 —P (uH; P{u)[1—P (u)H]

(A3)
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As t' & t, using a similar method we can Snd that the re-
sults of (A2) are also (A3).

Obviously, from Eq. (24) we can obtain (K,'z & =0.

APPENDIX B: PROOF OF (49)

Using the differential formula in Ref. [23] [i.e., Eq. (2)
in it], we can get

The solution of (Bl) is

(g'(t)K;, &
= (P(t)K, , &exp[ —

A, It —t'I)

&K, , &exp[ J—zlt t—'I ] .Ebs, t(tt )

p(u }+A,2

(B1)

(B2)
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