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Estimation of the dimension of a noisy attractor
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A simple method is proposed to estimate the correlation dimension of a noisy chaotic attractor. The
method is based on the observation that the noise induces a bias in the observed distances of trajectories,
which tend to appear farther apart than they are. Under the assumption of noise being strictly bounded
in amplitude, this leads to a rescaling of interpoint distances on the attractor. A correlation integral
function is obtained that accounts for this effect of noise. The applicability of the method is illustrated
with two examples, viz. , the Lorenz attractor with additive noise and experimental time series of pres-
sure Suctuation data measured in gas-solid fluidized beds.
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IH rRODUc:nON

One of the main problems in dimension estimation
from chaotic time series has to do with the fact that time
signals from natural phenomena are corrupted by noise.
Although one can do one's best to limit the amount of
noise in the time signal as much as possible by carrying
out a very-well-controlled measurement, a complete sepa-
ration between the deterministic component in the signal,
if present, and the noise is practically impossible. Thus,
the measured time signal will always contain some noise
due to random in8uences and inaccuracies that can never
by ruled out completely. These inaccuracies may be
caused by, for example, the measuring device (relative
and absolute accuracies) and analog-to-digital conversion
(discretization errors). These possible sources of inaccu-
racies are generally referred to as measurement noise or
additive noise. Principally, this type of noise is con-
sidered to be independent with no or only very short term
correlations. In most practical cases, measurement noise
is considered to be Gaussian, especially when it is due to
a combination of various sources of independent random
fiuctuations. However, this does not necessarily have to
be the case in every situation: experimental signals may
also be corrupted by measurement noise that is strictly
bounded in magnitude.

Furthermore, minor random Quctuations in settings of
main system parameters (e.g., flow, pressure, or tempera-
ture in physical experiments) may propagate in the dy-
namic system causing randomlike Suctuations that are
not specific to the system. It might also be the case that
dynamic phenomena or systems are (partly) influenced by
intrinsic events taking place at random. These types of
noise are generally defined as dynamic noise; they directly
in8uence the evolution of the dynamic system in time. A
practical example of the latter is that of gas-solid Sow

phenomena in some apparatus or chemical reactor where
local solid-solid or solid-gas interactions might be of a
more random nature, while global phenomena like the
solid and gas circulation patterns are determined by
deterministic laws. This means that "observed" invari-
ants that characterize the dynamics, like dimension and
entropy, may depend on the specifi scale of observation.
For example, pressure Suctuation measurements in gas-
solid flow systems may reveal rando~»ke behavior at
small scales, while at larger scales, deterministic chaotic
characteristics can be found. A complicating feature is
that scale dependence of observed invariants may also
occur in noise-free systems; however, speciflcally at small
length scales, it is expected that this is of a different na-
ture.

NOISE REDUCmrON

It does not seem to be an easy task to separate dynamic
noise from the rest of a (chaotic) time signal. Especially
when the source of the dynamic noise is an intrinsic
feature of the system, one can even raise the question
whether such a separation would be of great use in trying
to understand the system. The point then is, of course,
whether the dynamic noise has completely destroyed the
deterministic chaos or whether the chaotic dynamics are
still present in some neighborhood of the noisy time sig-
nal (shadowing property). This latter case is exactly the
basis of recently proposed noise reduction schemes [I].
Shadowing properties, if they are present, can be inter-
preted as a kind of rough equivalence between dynamical
and additive (measurement) noise in the case of times that
are not too long.

Dealing with the problem of measurement noise seems,
therefore, to be a little bit easier. In fact, one can consid-
er one or more of the following approaches: first of all,
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before the experiment is performed, one may decide to
try to measure the time series as accurately as possible.
This means that one is required to use an accurate
measuring device (e.g. inaccuracy typically less than 1%
or even less than 0.1% of the full scale}. In addition, it is
advisable to optimize the measurement resolution by
adapting the full scale of the measuring device as close as
possible to the maximum difference between expected
data points. Furthermore, analog-to-digital conversion
should be done with a reasonably high resolution to limit
discretization errors [typically at least 12-bit precision
(1:4096) or even 16-bit precision (1:65536}may be re-
quired].

During the acquiring of the data with a data-
acquisition system, one should of course avoid aliasing.
Moreover, it might be useful to remove high frequency
noisy components in the signal using a low-pass analog
filter. In doing so, one should be sure that no relevant
and characteristic time scales in the signal are removed as
well. In general, it will be possible to recognize these
time scales from the power spectrum. A problem may
arise when the characteristic time scales of the noise and
of the data are similar.

After the experiment has been carried out, it may be
useful to try to clean the measured data set by application
of a noise reduction method [1] and then to pass the
cleaned time signal through a dimension estimation rou-
tine. However, after such a suppression of dynamic or
measurement noise, a certain (generally unknown) level of
noise may still be present. This remaining noise will inev-
itably influence the dimension estimation. Furthermore,
the specific choices of the parameters in these noise
reduction algorithms may not always be straightforward
and unambiguous as these are dependent on the noise lev-
el, the sampling rate, and the length of the time series [1].
Moreover, it is not always clear in what way nonlinear
filtering changes the characteristics of the underlying
chaotic time signal. It may be possible that after filtering
the remaining "skeleton" contains properties that were
not present in the original data. For these reasons, in the
case of dimension estimation, it might be very useful to
evaluate first in what way the noise in the (unfiltered)
time series influences the correlation integral from which
the dimension is computed.

In this paper we will specifically focus upon this latter
issue. We will derive a simple analytical expression for
the rescaled correlation integral that is a function of the
noise strength as well as of the dimension of the underly-
ing (uncorrupted) chaotic attractor. This correlation in-
tegral function differs from that given recently by
Schreiber [2] which is derived under the assumption that
the noise is Gaussian. Our method is derived under the
assumption that the data are samples from a low dimen-
sional attractor contaminated by noise which is strictly
bounded in amplitude.

We have also tried an approach similar to that of
Schreiber [2] in which we have determined the influence
of Gaussian noise on the correlation integral in a some-
what diFerent way (see Ref. [3]). Assuming that the noise
added to each data point is independent and normally
distributed, we have been able to derive an exact descrip-

tion of the correlation integral function of the perturbed
distances. However, for our data it did not lead to
significantly better results in comparison to the (much
simpler) method presented in this paper.

CORRELATION INTEGRAL

Our method is based on the correlation integral that is
defined as [4,5]

where 8 is the Heaviside function. The correlation in-
tegral counts the number of pairs of points (X;,X.) on the
attractor whose distance is smaller than l. It scales ac-
cording to a power law with C(l)=l in the limit as
l ~0 and the number of points X~~. 3 is defined as
the correlation dimension of the attractor.

To be able to compute the correlation integral, first we
have to reconstruct the attractor in the state space.
Hereto we consider a scalar time series of a single vari-
able of the dynamic system

X(t)=(x(ti),x(tp), . . . , x(t/))=(xi, xp, . . . , x/) .

An m-dimensional state space is reconstructed using the
delay time method [6] by defining reconstructed vectors
as

~xl yxl+r~xl+2r& xl+(m-1)r I 7

where y is the delay in the number of sample time steps
~, between successive vector elements.

It is advantageous to relate the length of the recon-
structed vector to a specific time scale T in the time series
[7]. This time scale or embedding time ivindoiv is a seg-
ment [t, t + T] of the time series with length in time of
T =my~, . It is convenient to take the delay y equal to
unity so that at a given time window length, the number
of points m in the window is only determined by the sam-
pling frequency. As mentioned by Grassber ger,
Schreiber, and SchaFrath [8], in the case of infinitely pre-
cise measurements, any T &0 will do to characterize the
state of the dynamic system. However, in practice the
length of the time window is limited from below and from
above. First of all, T should not be too large so that the
first value x; and the last value x;+, in the time win-
dow are practically uncorrelated. But, on the other hand,
T should be sufficiently large to cover the dominant fre-
quency of the motion [8]. In addition, the proper choice
of the window width may also be affected by the noise in
the signal, as Casdagli et al. [9] have shown in the case of
measurement noise.

Independent of the choice of the length of the time
window is the choice of the number of measurement
points to be contained in the time window. This number
of points m determines the number of elements of the
vector X in the reconstructed state space. m can be con-
sidered as the embedding dimension that should be
chosen in such a way that a faithful and smooth embed-
ding is obtained to have the data points sufficiently open
up the details of the attractor. Thus, m should be chosen
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as large as possible but at least large enough to obey the
embedding theorem (Sauer, Yorke, and Casdagli [10]).
As soon as T and m have been chosen, the sampling fre-
quency automatically follows from f, =m IT.

It may also be convenient to choose an upper bound 10
of the scaling distance 1. This is due to the fact that the
scaling relationship 1 only holds for sufBciently small l.
Moreover, at larger 1, the correlation integral will be
dominated by saturation effects [C(l)~1] when I be-
comes of the order of the size of the attractor. The neces-
sity of a maximum scaling distance is even more clear
when one needs to normalize distances when using
Takens's maximum-likelihood estimator of the correla-
tion dimension [11]. First, 10 must be chosen larger than
the maximum possible noise distance l„between two
points on the (noisy) attractor. Furthermore, lo should
be suSciently large, so that the sample of distances with
I„&1 & lo is not too small; however, this sample size can
be raised by considering more pairs (X, ,Xj). Also, lo
should not be too big: as mentioned earlier, the scaling
law 1 will certainly be violated for values of 1 that are
too large. Especially when the correlation dimension D is
high, the last two requirements may force one to consider
very large numbers of pairs (X,,X ).

The distance between two reconstructed vectors in an
m-dimensional state space can be calculated using the
Euclidean norm or the maximum norm. Because the re-
sults based on both norms in terms of dimension are
equivalent [5], it is advantageous from a computational
viewpoint to use the maximum norm. We will show fur-
ther that application of the maximum norm also facili-
tates the estimation of the error level of a noisy attractor
directly from the correlation integral. The distance be-
tween two points X; and X on the attractor is thus
defined as

with

Ilx; —x II= max I» +k x'+%I
0&k&m —1

(2)

and

~i ~Xi&Xi+1& ' ' ' &Xi+m —1~

JKXJ)XJ+1) ~ ~ ~ )XJ+m1 /

INFLUENCE OF NOISE

The most important dim. culty arises with the presence
of noise that may corrupt the scaling behavior at all
length scales. In practical cases, the log-log plot will then

For a numerical determination of D, we generally start
with generating a large number of randomly chosen pairs
(X;,Xj ) from the sequence X(t) and count the number of
pairs for which the distance is smaller than 1 for various
values of 1 with 1 ~ 10. In this way we obtain estimates of
C(l) for which it is expected that 1n[C(l)] depends
linearly on ln(l) for small 1 (the scaling region). The
correlation dimension then follows from the slope of
1n[C(l)] versus ln(l). This method has some disadvan-
tages when it is applied to experimental time series.

not even show a linear part at all. This means that the
power law relationship l no longer gives a good repre-
sentation of the interpoint correlations.

The infiuence of noise on the correlation integral can
be evaluated as follows: Let us consider two points X;
and X that are located on the reconstructed attractor on
different orbits. These points are not disturbed by noise,
so they may be considered as true points satisfying the
exact (chaotic} dynamics of the system. The maximum
norm distance between these points is given by Eq. (2).
Let now each point in the time series be corrupted by
noise that is bounded in magnitude with a maximum pos-
sible amplitude of +—,'5x . In that case the elements

(z, k and z. k ) of the noise-corrupted vectors Z; and Z.
each are assumed to be composed of a noise-free part
(x; k and xj k } and a noisy part (5x, k and 5»j k } accord-

k+ 5»;k and zj k x '
k +5»

and

= lim max Ix; k
—xj k I+5»,„=l„+I„.

m~oo 0&k &m —1
(3)

Here, 1, is the corrupted distance, 1„ is the noise-free dis-
tance, and 1„=5x is the maximum noise distance.

Equation (3) illustrates that the probability of finding
interpoint distances 1, below 1„=5x is zero. In other
words, this means that C(1,~1„)=0and C(1,)1„))0,
which implies that the maximum noise scale can be
directly obtained from the correlation integral. This can
be seen as a sort ofgltering of the data where application
of the maximum norm prevents interpoint distances

25»max —5»j —+ 25»max

Basically, we assume thus that there exists a trajectory
satisfying the true dynamics of the chaotic system, which
is su5ciently close to the measured, noise-corrupted tra-
jectory. If this is not the case, the simple linear addition
of noise-free and noise-corrupted contributions is not al-
lowed.

In principle, 5x can be due to any time of noise; howev-
er, we will assume here that in the case of dependent (dy-
namic) noise, the time scale of the correlations is consid-
erably smaller than the time scale T of the time window
used in the reconstruction. Theoretically, when the num-
ber of vector elements is infinite, m ~ 00, the probability
of finding two corresponding elements z; k and z~ k that
are maximally corrupted with —

—,'5x,„and +—,'5x,„,
respectively, will then be unity. Furthermore, one needs
the maximally corrupted pair also to be the pair for
which Ix, k

—xj k I is maximal. If the embedding dimen-
sion is suSciently large, while x;k and xjk depend
smoothly on k, then this coincidence can be well approxi-
mated (see also Appendix A). The maximum norm dis-
tance between the corrupted vectors is thus found from

I, = lim max Iz;k —zjkIm~oo 0&k&m —1

= lim max I(x,. k+5x,. k) —(x.k+5x. k)Im~co 0&k &m —1



1854 SCHO'UTEN, TALONS, AND van den BI.R&K

below the maximum noise distance 5x from being in-
cluded in the computation of the correlation integral. In
practice, m will be bounded by practical »citations. This
implies that a good estimate of the maximum naise level
will only be obtained when m can be taken sufficiently
large. Principally, the choice of an appropriate value of
m depends on the type of noise and on its resolution; see
Appendix A for an order of magnitude estimation of m in
the case of uniform white noise. Generally, it is ap-
propriate to choose m as large as possible. In practice, a
trivial approach would be, af course, to increase m to ob-
serve its efFect on the correlation integral.

When the power law dependency holds for the noise-
free distances I„according to C(1 )-(I„),we can write
that

C(/, 1/, & 1„)-(1,—1„)D,

because I, =I,—1„[Eq.(3)]. With the requirements that
C(l, =/„)=0and C(/, =/o}=1,we obtain

m is taken at least of the order of 50, it is clear that for
moderate values of r„(0 to 0.5}, C, (r &r„}=r will be
very small (smaller than 10 '

) and Eq. (6) reduces again
to Eq. (5).

DIMENSION ESxmNATIGN

When I„ is known a priori, all distances can simply be
rescaled. The correlation d'~ension can then be estimat-
ed from the slope of ln[C(/)] versus ln(l I„)—(or
ln[C(r)] versus ln(r r„))—or, alternatively, D can be
computed using the maximum-likelihood method [11]
from which the maximum-likelihood dimension DPI „of
the noise-free chaotic attractor is found as (see Appendix
B)

DML,

I, —I„
C(1,)=

0 n

1„&l,&/o .

C(r)=
r Dr r~ r„~r ~1 .

This expression illustrates that we have effectively res-
caled the corrupted distances I, in order to let the corre-
lation integral obey the power law function again.

Equations (4) and (5) can also be derived by the fallow-
ing reasoning: If we embed a noisy chaotic attractor in
an m-dimensional state space, we may expect that the
noisy part will be space 1»ng on length scales smaller
than the noise scale. When it is space filling, C(/) scales
like I . We may thus expect that a plat of ln[C(/)] as a
function of ln(/) will have a slope of D down to length
scales characterized by the noise strength (/&I„) and
then a slope af m for distances I & I„,as has been demon-
strated, for example, in Ref. [12]. This suggests splitting
the correlation integral into two parts,

Ci(l & l„)-1
and

C,(1&I„)-(I—1„}D.

Using the requirements that C, (0)=0, C, (1„)=C2(1„)
=/„, and C2(/s}=1 and after normalizing, we obtain
that

We normalize all distances with respect to the maximum
scaling distance /0, using r =I, I/O and r„=/„I/O, in
which case it follows that

Here, M is the sample size of interpoint distances r; with

However, in nearly all practical situations, /„ will be
unknown or, in the best case, not known to su%cient ac-
curacy. In that situation the parameters r„and D can be
estimated fram a nonlinear least-squares fit of the integral
function Eq. (5} [or (6)] to the experimentally detei—-.ined
correlation integral. Because the function C {r)is known
analytically, it is convenient to use the Levenberg-
Marquardt least-squares method to estimate r„and D.
This standard curve Stting method is elegant and quick
and works very well in practice [13].

Of course, in principle, it is possible also to formulate
maximum-likelihood estimators for D and r„Howe.ver,
in practice, it has been found that the numerical calcula-
tion of these estimators is not as straightforward as and
much more time consuming than with Takens's best esti-
mator [11] It requires the solving of two nonbnear alge-
braic equations —which is nat always simple —while in
the meantime, it also necessitates the storage of all dis-
tances r; on which the best estimation is based. That has
been the reason we preferred the Stting procedure. Of
course, after the fit has been obtained, the resulting corre-
lation integral should always be compared with the origi-
nal one in order to observe how good the fit is.

When we apply Takens's maxi~urn-likelihood estima-
tor of the correlation dimension straightforwardly
without rescaling of the noise-corrupted distances, the di-
mension estimate DPI is given as [11]

C&{0&r&r„)=r
D (6)

r —r„C2(r„r & 1}=r„+(1r„)—
When m ~~, it is immediately seen that

C, (r & r„)=0 and Eq. (6) effectively reduces to Eq. (5). If

Because the computation of D~L is now based upon the
noise-corrupted distances r;, it wiH electively overesti-
mate the true correlation dimension of the uncorrupted
attractor. This can readily be seen from
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g ln{r;}

Vr„&r; &1 . (9)

In that case the approach in Ellner [14] might be con-
sidered as an alternative.

D~L and D will be related because these invariants are
obtained from the same correlation integral. Their rela-
tionship can be derived by calculating the expectation
value of ln(r} with probability distribution p (r)dr on [0,1]
which is determined from the cumulative distributions
C, (r) on [O,r„] and Cz(r) on [r„,1] (see Appendix C). It
is found that for suSciently high values of m that D~L
and D are approximately related according to

D+r„
D~L

r„
(10)

So DML can readily be calculated when D and r„have
been determined from a least-squares fit of the correlation
integral. Furthermore, it is seen from Eq. (10) that Dsrz
is larger than D in the case of the presence of noise
{r„&0), which of course is to be expected.

RECONSTRUCTION PARAMETERS

So far, we have not given any indication as to a proper
choice of the length of the time window T and the max-
imum scaling length lo. The choice of these parameters
is actually a matter of empiricism because no clear-cut
theoretically founded choices are available. The specific
choice of these parameters is not crucial for the demon-
stration of our method, but to illustrate its functioning on
real data, we nevertheless have to choose some values of
T and lo. For that reason we will only give here some
suggestions that seem to work quite well for the evalua-
tion of our data. For example, we have used these
specific choices of the reconstruction parameters success-
fully in our studies of chaotic pressure fluctuations in
gas-solid fluidized beds [15,16]. For us, the most impor-
tant criterion for the choices of T and lo is that they
should be unambiguous with the exclusion of any subjec-
tive interpretation. In this way it is possible to compare
results between different measurements in a relevant way.

It is our experience that the average cycle time T, of
the time series provides a robust and characteristic mea-
sure for the length of the time window T. The average
cycle time is defined as the average time that is needed to
complete a fuB cycle after the first passage through the
average of the signal:

ax= —g /x, —x/.N.
1

The average of the time series is obtained from

(12)

x=—gx, .
N,.

(13)

To eliminate any effect of origin or scale, we further
suggest working always with normalized data points.
Data points are conveniently normalized with respect to
the average absolute deviation to create a standarized
time series with data points y; according to

This choice is predominantly based on the assumption
that the structural information needed to reconstruct a
point on the attractor is mainly contained in the data
sampled during one average time period of length T,.
Generally, this period of time can be compared to an
average orbital period on the attractor. Choosing a
longer time segment T would add only a little informa-
tion to that already contained in the components con-
sidered in the window of length T, {see also Ref. [17]).

The value of T, is unambiguous for each given time
series and can be readily calculated by counting the num-
ber of crossings of the time series' average, Eq. (11). We
also suggest using T, as the characteristic time in the ex-
clusion of interpoint distances to avoid dynamic correla-
tions in the computation of the correlation integral [18].

In the derivation of our algorithm to estimate D and
r„, we suggested taking m at least of the order of 50
points per time window (see also Appendix A}. In gen-
eral this will be quite sufBcient to satisfy the requirement
that m &2D+1 in order to accommodate the attractor
in the state space. In most cases it seems appropriate to
take m in the range 50-200. This immediately fixes the
required sampling frequency f, at 50 to 200 times the
average cycle frequency f,. Of course, it is of no use to
have f, exceeding the response frequency f„of the
measuring device. Thus, in practice, f, imposes an upper
limit on the choice of m (m =f, If, &f„/f, ), where, first
of all, of course, the response frequency should satisfy the
requirement that f, If, ~ 50.

These necessarily high values of m will generally imply
that the data have to be oversampled. In combination
with white noise, this is not the usual regime where noise
reduction methods are applied because in this regime a
straightforward low-pass filter may do equally well.
However, when the characteristic time scales of the noise
and of the data are similar, these simple filters become
problematic.

According to our experience, it is furthermore very
practical to take the maximum scaling length lo equal to
the average absolute deviation of the time series. This is
in general a robust estimator of the data's width around
the mean. In particular, application of the average abso-
lute deviation hx is very convenient in combination with
the maximum norm; it is computed from

[length of time series (units of time)]
[(number of crossings of average of time series)/2]' Xi X

yi= ~ ~ (14)
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The data points y, in the normalized time series thus will

have a mean equal to zero and an average absolute devia-
tion equal to unity.

Of course, in specific cases it may be possible that the
correlation integral, from which the dimension is estimat-
ed, is dependent on the choice of the reconstruction pa-
rameters ( T and m). That means that the estimated di-
mension may also depend on this choice. Furthermore,
the definition of the correlation dimension is only valid in
the limit case, which means specifically for small dis-
tances lo. In principle, this dependence can be checked
by repeating the estimation for various combinations of
the reconstruction parameters and the scaling region.
Especially in the case of time series with a relatively large
entropy, the effect of the dependence of the dimension on
the reconstruction parameters may be clearly observed
specifically with long time windows where data points
have become practically uncorrelated within one window.
!n this latter case it can even be expected that the dimen-
sion will increase with longer time windows irrespective
of the presence of noise.

SUMMARY OF THE ALGORITHM

simple rule can be given for the size of the bins in the his-
togram. It is our experience that bin sizes 51 of the order
of lo/400 ~ b, l ~ lo/100 give good results.

Also, no clear rule can be given for the total number of
pairs M to be included in the histogram. The more pairs
are taken into account, the more accurate the correlation
integral will be. As a first indication, we base the total
number of pairs on the relative standard error of
Takens's maximum-likelihood estimator (see Appendix
B). We require this standard error to be less than 1%',
this means that M should be at least of the order of
10000.

Step 4. Calculate the normalized cumulative histo-
gram. This cumulative histogram may be considered
equal to the correlation integral when the (normalized)
bin size b, r is sufficiently small (viz. , ~i ~ b, r ~,~, as sug-

gested in step 3).
Step 5. Estimate D and r„ from fitting the correlation

integral to Eq. (5) or Eq. (6) using the Levenberg-
Marquardt least-squares method.

EXAMPLES

and

z&, zan+1, . . . , zt+m —1

j+1& '
& g+m —1

To avoid dynamic correlations, be sure that ~i
—

j~ &m.
Determine the maximum norm distance l, . Create a his-
togram of the number of pairs with distances l, lo. No

We will now briefly summarize the various steps in our
algorithm to estimate D and r„ for a given time series.
This algorithm is the basis for a user-friendly and menu-
driven software package RRCHAOS that has been written
by the authors [19j.

Step 1. First of all, before we start acquiring the time
series, we have to choose a proper sampling frequency to
obtain at least m =50 points per average cycle (prefer-
ably somewhere in the range 50—200 points). This can be
done by carrying out the experiment once at some initial
sampling frequency, adjusting the sampling frequency f,
in the appropriate direction, and repeating the experi-
ment to obtain m at least in the range 50-200 points per
average cycle. Be sure that f, &f„.

m is computed as follows: Calculate the time series'
average [Eq. (13)] and count the number of crossings
N„„„„,of this average. Calculate the number of cycles

NQyz]zs in the time series from

Ncycles Ncrossings /

Calculate m from m =N/N, „,i„, N being the number of
points in the time series; of course, m should be rounded
off to obtain an integer number.

Step 2. Calculate the average absolute deviation from
Eq. (12) which gives lo.

Step 3. Choose randomly pairs of points

(Z;,Z ),

Let us now illustrate the applicability of our method
with two different sets of time series.

Lorenz attractor

First, we will demonstrate our method using time
series of the X variable of the Lorenz system that are cal-
culated with a fourth-order Runge-Kutta method. The
parameters are o =10.0, b =2.67, and R =28.0; a total
of 75 000 points have been computed with a sampling fre-
quency of 50 Hz', the time step in the Runge-Kutta pro-
cedure is 0.001; initial conditions are X =1, Y =1, and
Z =1; the first 10000 points are omitted before the time
series (65000 points) is acquired; and data points are
discretized with 16-bit resolution. Six time series
(Ll —L6) have been computed in which the original data
points (X variable) are disturbed with additive, indepen-
dent, and uniformly distributed noise with, respectively,
5x,„equal to 0.25, 0.5, 0.75, 1.0, 1.5, and 3.0 in units of
the variable X. These maximum levels of the added noise
correspond with 3.9% (Ll) to 46.1% (L6) of the average
absolute deviation. An overview of the results is given in
Table I. In general, the rescaled correlation integral
function gives a much better fit to the data. The sum of
least squares of the rescaled function is generally a factor
10 to even up to 1000 times smaller. In Table I it is ob-
served that the rescaled correlation integral leads to good
estimates of the dimension even at a noise level up to
7.7% (L2) where the maximum-likelihood method al-
ready leads to an overestimation. At higher noise levels
(L3—L6), the maximum-likelihood method overestimates
the dimension even more, while the rescaled correlation
integral function tends to underestimate the dimension.
As expected (see Appendix A), the level of noise in the
signal (r„) is underestimated.
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TABLE I. Results of estimation of dimension and noise level of Lorenz data sets.

Lorenz series

5x
5x /)be (%)

X L1

0.25
3.9

L2

0.5
7.7

L3

0.75
11.6

1.0
15.4

L5

1.5
23.1

L6

3.0
46.1

m

T, (sec)
178

3.56
158

3.16
132

2.64
112

2.24
93

1.86
73

1.46
39
0.78

14 167 22 790 40225 66 750 98 610 149060 150968

Dm
D

2.14
2.14

2.14
2.14

2.22
2.13

2.28
2.05

2.35
2.01

2.52
1.85

3.17
1.60

r„(%) 0.0 0.0 2.2 5.6 8.7 16.8 35.6

F1uidized bed data

The second example is based on tine series of pressure
fluctuation data that have been measured in two gas-solid
fluidized beds aperated with air at ambient conditions.
The experimental conditions are summarized in Table II.
The pressure fluctuations have been recorded with a
Kistler piezoelectric transducer, low-pass filtered and
discretized with 16-bit precision. The pressure fluctua-
tions were measured with respect to the average pressure
at the tip of the pressure sensor. The time series consist
of 65 000 points; the results are summarized in Table III.
It is observed that D is in all cases considerably lower
than the maximum-likelihood dimension D~L. The es-

timated noise level is relatively high, viz. , about one-third
of the average absolute deviation, which is, for example,
much higher than the inaccuracy of the pressure sensor
[even in the worst case (FB3), this inaccuracy is stiH

smaller than 3% of the average absolute deviation]. This
suggests that another type of (dynamic) noise is also
present which the methad corrects for. As mentioned
also in the case of the Lorenz data, the Sts of the rescaled
correlation integral function are nuch better than that of
the original function. A typical example is shown in
Figs. 1(a)—1(c) where the rescaled and original functions
are compared with the measured correlation integral
(data set FB3). Figure 1(c) in particular illustrates that

the difFerence between the rescaled correlation function
[Eq. (6)] and the experimental correlation integral is
much smaHer than in the case of the original correlation
function based on the maximum-likelihood dimension.

CONCLUDING REMARKS

We have derived a simple expression for the correla-
tion integral that accounts for the effect of noise which is
strictly bounded in magnitude. This function is based on
a rescaling of the interpoint distances on the attractor.
The assumption is that the noisy trajectories on the at-
tractor stay within the proximity of the uncorrupted tra-
jectories of the underlying (chaotic) dynamic systetn. In
that case separation between the noisy component and
the chaotic component is passible and useful. The res-
caled ca'rrelatian integral can be used to estimate the
correlation dimension belonging to the underlying dy-
namic phenomenon. At the same time the noise level is
obtained, however, generally this will be underestimated.

We suggest estimating the correlation dimension and
the noise scale with this new method and reporting these
values possibly together with the maximum-likelihood di-
mension. In this way a useful impression is obtained
about the presence of noisy components in the time signal
as well as about their influence on the increase of the
correlation dimension.

TABLE II. Experimental conditions of Quidized bed data sets.

Bed diameter (m)
Static bed height (m)
Superficial gas velocity (m/s)

FB1

0.284
0.60
1.04

Fluidized bed series
FB2

0.15
0.30
1.53

FB3

0.15
0.30
0.051

Particle type
Average particle diameter (mm)
Particle density (kg/m )
Minimum Buidization velocity
(m/s)

Polystyrene
1.78

1102

0.61

Polystyrene
1.78

1102

0.61

Glass beads
0.1

2800

0.02

Sampling frequency (Hz)
Low-pass filter frequency (Hz)

1000
340
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TABLE III. Results of estimation of dimension and noise level of Im@~M bed data sets.

FB1
Fluidized bed series

FB2 FB3

T, (sec)
155

0.78
102

0.51
153

0.15

53 267 41 117 32 776

DuL
D

4.83
3.08

5.18
3.14

6.05
3.73

30 33 33

Finally, we would like to make a general remark about
the meaning of the correlation dimension. In the case of
a self-similar attractor, the correlation dimension D may
well be able to quantify the self-similarity in a "scaling re-
gion" where ln[C(r)] is proportional to ln(r —r„). Self-
similarity, however, does not necessarily have to be al-
ways present in practical situations; in that case it is use-
ful to interpret the correlation dimension in a broader
sense. Therefore, we would like to emphasize that the
purpose of our method is not to look for a scaling region
in the first place, but to describe the correlation integral
as adequately as possible by a two-parameter model that
corrects for the presence of noise. This implies that one
should not conclude on the basis of the model fit only
that the data are samples from a strange attractor with
noise added.

APPENDIX A

An order of magnitude estimate of m can be derived
analytically for the simple case when the time segments
that represent the true vectors X; and XJ are more or less
parallel in state space. This is the case when

~x; k
—

x~ k ~
=const with 1 ~ k ~ m. The maximum norm

distance will now be obtained for that combination of x; „
and xj k with the largest noise amplitudes 5x; k and Sxj k
with 1&k &rn Howev. er, when the time segments are
not parallel, there will effectively always be a shorter
range of successive corresponding elements z; k and z k
wherein the maximum norm distance is obtained:

k I
& k & k2 with k

&

—kz & m —1 or it may even be the
case that k, —k, «m —1. In that situation the max-
imum noise level is estimated from a smaller subset
mo & m of corresponding vector elements. This "efFective
embedding" mo will be strongly dependent on the specific
time series that is considered and moreover it will differ
from segment to segment. This makes it difiicult to esti-
mate mo. Nevertheless, mo provides a lower bound of m

which we can use to estimate the order of magnitude of
m in a specific case.

Let us suppose now that we have measured a time
series that we discretize with 16-bit precision. That
means that the time series consists of integer numbers be-
tween 1 and 65 536. Suppose that in the case of uniform-
ly distributed noise, the maximum measurement error in
integer units equals 2—,'(Nz —1) (for convenience we take
N to be an odd number) with equal probability 1/N for
each data point in the time series. The probability that
two corresponding elements in two reconstructed vectors
are maximally corrupted with maximum noise ampli-
tudes of, respectively, + ,'(N~ —1} an—d —

—,'(N~ —1)
equals 1/N~ [because there is only one combination lead-
ing to the maximum difference of (N —1)]. Thus the
probability that two corresponding elements are not max-
imally corrupted equals (1—1/N ). So with m successive
vector elements, the probability that none of the corre-
sponding elements is maximally corrupted equals
(1—1/N~ ) . This leads finally to the probability that at
least one set of two corresponding vector elements is
maximally corrupted:

P(maximum norm of noise part of distance equals I„)= 1 — 1— 1

N
(A1)

For example, with a noise resolution N~ =200 and a
number of vector elements m =100, the probability that
exactly the maximum noise amplitude l„ is found equals
2.5X10 . This probability is extremely small and m

should be of the order of m & 185 000 to obtain probabili-
ties larger than 0.99. Obviously, m should even be

(much} larger when Nz )200. This order of magnitude of
m of 10 is not realistic in practical measurements where
m will be much smaller. That means that l„will general-

ly be underestimated. The question now is to what extent
l„ is underestimated. To answer that, we will determine
the expectation value of the actual measured distance l,
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0.8

(a)

C(r), Eq.(6)

[I, given in integer units, with I, & l„and l„=(N& —1)].
First, from an evaluation of all possible combinations

N XN of differences a =(x; «
—

xz «) between the noise
parts of two corresponding vector elements, it can be de-
rived that

0.6

& 04

0.2

C(r), OML
P(o)=

N2

with

(N ——1)&a &(N —1) .P P

(A2)

0.5 0.6 0.7 0.8 0.9 In other words, P (a) is the probability that the difference
between corresponding elements of two vectors equals a.

From this probability distribution, the cumulative dis-
tribution P ( A & a)=g P (a) is derived as

0.1

0.01

G(r), DML

I z/
i'/

r' C(r}, Eq.{6}

P(A &a}= '

(N, —!a!)(N,—!a!+1)
2NP

(N —1)—&a &0
P

2N (N a}(N——a ——1)P P P

2NP

1 ~a &NP —1 .

(A3a}

(A3b)

0.001

0.03

0.02

0.4 0.5 0.6 0.7
r (-)

0.8 0.9
The probability P ( A & a) that with m successive corre-
sponding vector elements a distance smaller than or equal
to I, is found is simply given by P ( A & a)
=[P(A &a}] . The probability that a distance larger
than 1, is found is thus obtained as

V
0.01

V

0

O
-0.01

C(r),FBS - C(r),Eq.(6)

!

C{l},FB3 - C(r), DML

P (A )a)=1 P(A &a)~ .—

The expectation value of the actual measured noise dis-
tance 1, will be E(1,)=1„=5x~ when m is infinite.
When m is not infinite, the expectation value of 1, is ob-
tained from

0 0.2 0.4 0.6 0.8

N —1
P

E(1,)= g aP (a) .
P

(A4)

FICx. 1. The correlation integral of fluidized bed series FB3:
comparison between the rescaled correlation integral function
(D =3.73, r„=0.33) and the maximum-likelihood result
(D~L =6.05); the dotted lines in (a) and (b) represent the corre-
lation integral of experimental time series FB3. (a) C(r) as a
function of r. (b) ln[C{r}]as a function of r. (c) Differences be-
tween C(r) of the experimental time series FB3 and the original
and rescaled integral functions.

P (a) is the probability that exactly the noise distance 1,
between two vectors is found. This probability is ob-
tained from

P (a)=P (A &a)—P (A &a —1),

with, of course, g P (a}=1:
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TABLE IV. The expectation value of r„Eq. {A6),at dMerent values of the noise resolution (N~ ) and
the number of points (m) per time medor in the case of independent and»iformly d&tributed noise.

m =2 m =5 m = 10 m =20 m =50 m = 100 m = 150 m =200 m =250

10
20
50

100
200
500

1 000
2000
5 000

10000

0.257 0.526
0.245 0.501
0.238 0.487
0.236 0.482
0.235 0.480
0.234 0.478
0.234 0.478
0.233 0.477
0.233 0.477
0.233 0.477

0.681
0.649
0.630
0.624
0.621
0.619
0.618
0.618
0.618
0.618

0.797
0.761
0.739
0.732
0.728
0.726
0.726
0.725
0.725
0.725

0.903
0.864
0.840
0.832
0.828
0.826
0.825
0.824
0.824
0.824

0.954
0.917
0.892
0.884
0.879
0.877
0.876
0.876
0.&75

0.875

0.974
0.940
0.915
0.907
0.902
0.900
0.899
0.898
0.898
0.898

0.985
0.953
0.929
0.921
0.916
0.913
0.912
0.912
0.912
0.912

0.991
0.963
0.939
0.930
0.925
0.923
0.922
0.921
0.921
0.921

P (a)= '

(N, —(a()(N, —~a)+1)

2'
(Nz a)(N——a —1)p p

2'

(&p I a ——1I )(N, —
I
a —1I+1)

2'
(N~ —a + 1)(N —a)p p

2N

(N ——1)&a &0

1&a &(N —1) .

(A5a)

(A5b)

The normalized expectation value of the actual measured
noise distance r, is thus derived as

M

g ln(u;)
i=1

N —1

E(r, )= g P (a),
a= —(N —1) pP

(A6) with

where r, =1,ll„has been normalized with respect to the
maxi~urn noise distance 1„=(N —1).

Some exatnples are given in Table IV. This table illus-
trates that the expectation value of r, is already of the or-
der of about 0.8 or higher at moderate values of the num-
ber of vector elements m ( & 50). As mentioned above, in
practice the effective number of vector elements mo wi11

be smaller than m with the obvious but rare lower bound
at mc =1. At this lower bound of ma = 1, the expectation
value of r, is, of course, zero; however, at ma=2 or 5

values of, respectively, about 0.23 and 0.48 are already
obtained. From Table IV it can be concluded that in this
specific case of uniformly distributed noise, mo should be
of the order of 50 or higher (preferably & 100) to have
E (I, ) & 0.8. In practice, with an unknown noise distribu-
tion, a trivial approach would be, of course, to increase m

to observe the effect on E (1, ).

APPENIMX 8

Another way of estimating the correlation dimension
from the correlation integral of an attractor with known
noise level l„can be obtained from Takens [11].Here the
maximum-hkelihood rule is applied to derive an unbiased
estimate of the correlation dimension with minimal vari-
ance in case of a noise-free attractor. Takens's derivation
can striu+~tforwardly be applied when we use the substi-
tution u =(r r„)l(1 r„) with —C(u)=u, 0&—u l.
This leads to

u,. =(r, r„)/(1 —r„), r—„r; 1 .

Using the same substitution, the relative standard error
in D~l „ is obtained as M '; it is only dependent on
the sample size M and independent of the estimate of the
correlation dimension D~L „and the noise level r„. For
example, the maximum-likelihood estimate of the corre-
lation dimension wi11 have a relative standard error of
10% if the sample size M is 100, while a relative standard
error of 1% is obtained with a sample size of 10000.
This would mean that, respectively, 100 and 10000 pairs
of points have to be included with /„& l & lo.

APPENDIX C

DML and D wil1 be related because they are invariants
obtained from the mme correlation integral. This rela-
tionship can be dete~i~ed by calculating the expectation
value of 1n(r) that, using Eq. (8), will be equal to

1E(ln(r))=E f ln(r)P (r)dr = Dsil' . —
0

We calculate the probability density p (r)dr on [0,1] from
the cumulative distributions C, (r) on [O,r„]and Ci(r) on

[r„,1],from which it follows that



50 ESTIMATION OF THE DIMENSION OF A NOISY ATTRACTOR 1861

E(ln(r))= f In(r)p(r)dr=in(r)C(r)~c+ f dr
0 0 r 'D

1 (1—r„) ) (r —r„)=r„——ln(r„) + "n f "
dr .

m (1—r)n &. r (C2)

) (r —r„)
E(ln(r)) = —I /Dstt —— f "

dr .
(1 r—) ~. r

(C3)

The integral in Eq. (C3) cannot be solved analytically.

For suSciently large values of m, it is clear that r„~0
and 1/m ~0 and Eq. (C2) can be approximated by

D+r„
D =Dstt r„(DssL—+1)=Dstt =

1 —rn

(C4)

From a numerical evaluation of the integral for a range
of values of r„and D, it is concluded that D~L, D, and r„
are approximately related as
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