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We investigate the temporal evolution and spatial propagation of branching annihilating random

walks (BAWs) in one dimension. Depending on the branching and annihilation rates, a few-particle ini-

tial state can evolve to a propagating finite density wave, or an extinction may occur, in which the num-

ber of particles vanishes in the long-time limit. The number parity conserving case where two offspring

are produced in each branching event can be solved exactly for a unit reaction probability, from which

qualitative features of the transition between propagation and extinction, as well as intriguing parity-

specific effects, are elucidated. An approximate analysis is developed to treat this transition for general

BAW processes. A scaling description suggests that the critical exponents that describe the vanishing of
the particle density at the transition are unrelated to those of conventional models, such as Reggeon field

theory.

PACS number(s): 02.50.—r, 05.40.+j, 82.20.—w

I. INTRODUCTION

In the branching annihilating random walk (BAW), a
single random walk branches at some specified rate and
two random walkers annihilate at another rate when they
meet [1-4]. As a function of these rates, the number of
random walkers may grow without bound, reach a finite
limiting number, or vanish asymptotically. Our goal, in
this paper, is to determine some of the lang-time proper-
ties of this BAW process. We are particularly interested
in understanding the kinetics and density distribution
when the initial state consists of a small number of local-
ized particles.

Interest in this process has several motivations. First,
considerable theoretical effort has been devoted to estab-
lishing the existence of and quantifying the nonequilibri-
um phase transition between "propagation" and "extinc-
tion" for a variety of interacting particle systems [5]
which are closely related to BAW's. Here the term ex-
tinction refers to the situation where annihilation dom-
inates over branching and an initially localized popula-
tion of particles ultimately disappears. In the comple-
mentary case, branching dominates over annihilation and
an initially localized population evolves into a propaga-
ting wave front which advances into the otherwise empty
system. Typical examples of these phenomena include
the contact process [6] and Schlogl models [7], as well as
directed percolation and Reggeon field theory [8]. The
propagation phenomenon is also a discrete realization of
the "Fisher wave" [9,10], which describes the continuum
dynamics of an initially localized single-species popula-
tion whose evolution is infiuenced by diffusion, as well as
by both (linear) birth and (quadratic) death mechanisms.
The relation between the continuum description of the
Fisher wave and the corresponding BAW is tenuous and
comprehensive investigations of discrete BAW models

would be helpful to understand better the relation with
the continuum counterpart. Second, there is a direct
correspondence between the two-offspring BAW and the
interface dynamics in the reaction-limited monomer-
monomer surface reaction model in one dimension
[11,12]. For the surface reaction, a lattice is Slled with A

and B particles and the ensuing dynamics is de6ned by
randomly and repeatedly selecting a nearest-neighbor AB
pair and changing it to either AA, BB, AB, or BA at
specified rates. The dynamics of AB interfaces is identi-
cal to that of the individual particles in the two-offspring
BAW.

In addition to connections with various nonequilibrium
systems, the BAW model is amenable to theoretical
analysis. Somewhat surprisingly, we Snd that the transi-
tion between propagation and extinction is controlled by
detailed features of the underlying discrete process. In
particular, the exact solution of the two-offspring BAW
model in one dimension reveals that propagation occurs
only for inSnite branching rate and the parity of the ini-
tial number of particles essentially in8uences the long-
time kinetics.

In the next section, we outline several basic facts about
the BAW process. The general conditions which lead to
propagation or extinction are discussed. In Sec. III, we
present an exact solution for the evolution of the two-
offspring BAW processes A~3A and 2A~O, in the
case where the probability of reaction when two particles
meet, k, is unity. For this case, extinction is paradoxical-
ly found to occur for all nonzero values of the diffusion
rate. When there is only branching, a behavior inter-
mediate to propagation and extinction occurs. In Sec.
IV, we present an approximate description for the transi-
tion between propagation and extinction by solving a
truncated hierarchy of rate equations for multiparticle
correlation functions. The primary result of this treat-
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ment is that the transition emerges naturally at the next
level of approximation beyond mean-field theory. In Sec.
V, we present numerical simulation results to support our
various theoretical predictions, and then conclude in Sec.
VI.

II. MODELS AND PHENOMENOLOGY

Gp(r, t) =ap(r, t ) b[p( r, t ) ) +D—hp(r, t ), (2.1)

We define the branching annihilating random walk on
a lattice as follows. A particle is picked at random. It
can either undergo nearest-neighbor diffusion or it may
branch with respective rates D and r. In a diffusion at-
tempt, a random direction is picked and the particle
moves to the target site if it is unoccupied. If the target
site is occupied, then annihilation of the incident and tar-
get particles occurs with probability k. Otherwise, the in-
cident particle remains at its original position. The de-
tails of the branching step depend on the number of
offspring produced. In the two-offspring BAW, if a
branching attempt is selected (at rate r), then branching
to the two nearest-neighbor sites occurs with probability
1 if both neighbors are empty. If one or both neighbors
are occupied, then branching to both neighbors occurs
with probability k. In this branching, if a newly created
particle is placed on a previously occupied site, then both
particles are removed. An analogous procedure is em-
ployed for the one-offspring process; namely, in a branch-
ing event, if the target is occupied, then branching occurs
with probability k. This branching entails immediate an-
nihilation of the newly created and target particles.
While these microscopic rules are somewhat involved
when both branching and a finite reaction rate are opera-
tive, any reasonable discrete realization of the continuum
process is anticipated to give qualitatively similar results.
(An exception is the case of parallel dynamics, as opposed
to the serial updating assumed here. ) Since D and r have
dimensions of inverse time and k is dimensionless, two di-
mensionless parameters which characterize the system
are D/r and k.

As mentioned above, the BAW process with an initial-
ly localized particle population generically exhibits a
transition from extinction (which is of one of two types;
see below) to propagation. However, this transition ap-
pears to be at odds with a standard mean-field treatment
of the model. Indeed, such a description of the SAW
leads to the reaction-diffusion equation

+Dip(r, t), (2.2)

where p2(0, t) denotes the two-point correlation function
at zero separation, and branchinz is accounted for by
a,„,&0. However, for p&&Qa, „/D, any reasonable
theory must give p2(O, t)=(p)+(p)2 because the birth
mechanism produces nearby pairs of particles. Thus, ex-
tinction may arise in low spatial dimension because
branching and annihilation terms are of comparable mag-
nitude in Eq. (2.1); in particular, the sign of the coarse-
grained branching rate a =a,„~,—b,~, may change as
external parameters are varied. In the foHowing, we shall
use r for the branching rate and k for the annihilation
probability.

In numerical simulations, a transition from propaga-
tion to extinction generically occurs as the ratio of
diffusion to branching increases (Fig. 1). As the annihila-
tion probability (equivalent to the reaction rate) in-
creases, the extinction transition is shifted to lower values
of D Ir. A crucial determinant for extinction is the "pari-
ty" of the branching event. For example, an even-
offspring BAW process which starts with an odd number
of particles cannot exhibit true extinction. Rather, the
number of particles remains bounded when D/r is large.
Thus extinction comes in two versions: In parity
nonpreserving models (odd-offspring BAW), or in parity

where p(r, t) is the particle density at position r at time t.
Here a, b, and D correspond roughly to the branching
rate, the reaction rate, and the dilusion rate, respective-
ly. This equation admits a propagating Fisher wave solu-
tion of asymptotic density p„=a Ib which advances into
the low-density region with a velocity proportional to
&aD, whenever a &0. Since a is implicitly positive in
this description, there appears to be no mechanism for
extinction.

To generate a transition to extinction, a mechanism
which changes the sign of a is needed. Such a mecha-
nism, however, is easily realizable. At low densities,
mean-field theory erroneously postulates that the en-
counter probability varies as the square of the particle
density, since all spatial correlations are neglected. How-
ever, a more complete treatment of correlations leads to
an encounter probabihty which is lineor in the particle
density in the low-density limit. This follow from the ex-
act reaction-diffusion equation

Bp(r, t) =a, „p(r, t ) —b,„„,pz( Ot )
Bt

propagation

D/r
0

0

propagation

l

D/r

FIG. 1. Phase diagram of the SAW process
as a function of the reaction probability k and
the ratio of the di@ssion to. branching rate
D/r. In (a) the phase diagram appropriate for
BAW processes mth parity nonconserving
branching is indicated. This behavior should
be taken as representative of the continuum
limit of the BAVf process. In (b), the p~w 'di-

agram for the twomlspring SA% is schemati-
cally indicated. In this case, the nature of the
"extinct" phase depends on whether the initial
number of particles is even or odd.
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FIG. 2. Illustration of the space-time evolution of the two-
offspring BAW in one dimension in the pure branching limit,
D/r=0 and k=1. In this case, an isolated nearest-neighbor
pair of particles remains bound and executes a simple random
walk. The particle which branches at the next step is indicated
by the open circle.

preserving models with an even number of particles ini-
tially, there is true extinction, whereas in the complemen-
tary cases, the particle number remains bounded.

The special case of the two-offspring BAW in the limits
of pure branching, D/r =0, and also complete reaction,
k = 1, deserves emphasis because of its peculiar and easily
visualized features (Fig. 2). The crucial aspect of this sit-
uation is that a pair of nearest-neighbor particles diffuses
rigidly under the action of the branching process.
Through the branching process, a single initial particle
spawns rigid pairs at a finite rate which then diffuse free-
ly. In this situation, the number of particles grows as
~t. It is only when there is nonzero diffusion that ex-
tinction can occur.

IH. EXACT SOLUTION
FOR THE TWO-OFFSPRING BAW

IN ONE DIMENSION

+P , q(t} 4P g(t}], . —(3.1)

In this section, we derive the exact solution for the
one-dimensional two-offspring BAW in the case of unit
reaction probability. This provides a complete descrip-
tion of the transition between extinction and propagation.
Our approach is based on solving for the time evolution
of PJ z(t), the probability that there is an odd number of
particles in the interval [j,k]. [Notice that the particle
density at site j is simply PJ ~(t).] In a spatially homo-
geneous system, P I,(t) is a function of j—k only and
satisfies a soluble single-variable diffusion equation [12]
while for the heterogeneous system, PJ I, (t) is a function
of both j and k. In the continuum limit, the master equa-
tion for P~i, (t) can be written as a two-dimensional
diffusion equation with a radiation boundary condition.

To write the master equation for P z(t), define Dp and
ro as the hopping and branching rates, respectively, in an
elemental event. In a single time step, the parity of the
number of particles within [j,k ] can change only by hop-
ping or branching events at j—1,j,k, or k+1. From
straightforward but somewhat tedious bookkeeping of all
these microscopic processes (Fig. 3), we obtain the follow-
ing equations for P & for j ~ k+ 1:

P, „(t+1/N) P,„(t)—
Do+ro

[P~+t g(t)+PJ I, +)(t)+P~ I &(t)

r) Q r&, Q

(a) (b)

FIG. 3. Enumeration of the processes which can change the
parity of the number of particles contained in the interval [j,k]
under the action of the two-offspring BAW. Shown are the
various microscopic events and their corresponding statistical
weights. The cases of (a) k&j and (b) k=j are somewhat
different and therefore need to be treated separately.

while for j=k
P (t+1/N. .) P (t)— .

Do+ro
[P.

&

.(t)+P, +&(t)—2P. .(t)]

2DO
P, ,(t) . (3.2)

The first equation can be extended to include j=k by in-
troducing the boundary condition

(Dp+rp)[PJ J ](t)+P&+]&(t)]=2pPJ J(t) (3.3)

+P i i(t) —4P „(t)],
while for y =0 one has

(3.4)

P& p(t)=(Dp+rp)[P&+] ~(t)+P& ~ ~(t) 2P& p(t)]

2DpP p(t) (3.5)

These two equations can again be unified by imposing the
boundary condition

(Dp+rp)[P +& ](t)+P ] ](t) 2P p(t)]

= —2DpP„p(t) . (3.6)

To obtain a nonsingular continuum limit for these mas-
ter equations, (Dp+rp) must be of order (M ),whereas,
from the boundary condition, (Dp+rp)/Dp should be of
order (M ) . These two restrictions, in turn, imply that
rp-(M ) and Dp-(M ) '. That is, an infinitely large

Here we have taken the time increment for an individual
birth or diffusion event to be of the order of the inverse
system size so that each particle will typically be updated
once in a unit time step.

These equations can be simplified by transforming to
the coordinates x =j+k and y =j—k. After taking con-
tinuous time derivatives, one finds, for y & 1,

P„«(t)=(Dp+rp)

X [P„+,«+,(t)+P„+,«,(t)+P„,«+,(t)
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microscopic birth rate is needed to counteract the instant
recombination of newly formed pairs in the continuum
limit, thus ensuring a finite continuum birth rate. In the
following, we simply replace the microscopic combina-
tion Do+ro by ro —since ro is infinitely larger than
Do—and then take the continuum limit. Denoting the
continuum»mits of (M )Do and (M ) ro as D and r, re-
spectively, the equation of motion for the interval occu-
pation probability P(x,y) becomes

BP(x,y ) =rV P(x,y), (3.7)

with the corresponding boundary condition

aP(x,y) D Px,—y
By @=p r

(3.8)

When D Ir =0, a slightly different line of reasoning must
be used to determine the equation of motion, but the
difFusion equation given above remains valid.

This equation can be solved by writing the solution as a
superposition of incoming and outgoing modes in y in
Fourier space, and imposing the boundary condition to
relate the amplitudes of these incoming and outgoing
modes. Upon inverting the Fourier transform, one Snds

dkidk2 ik((x —xo) —r(k2(+k22)t
P(x,y;xp, yo;t)= e

(2n )

ik2(y —yo) k2+ tD Ir —ik&(y+y&)

k2 tD r—
(3 9)

where P(x,y;xo, y p; t) denotes the propagator from

(xo,yp) to (x,y) in time t For c.omputing the total num-

ber of particles, we only need the propagator with final

spatial coordinate y =0. In the long-time limit, this re-
stricted propagator has the form

Io
P(x,O;xp, yp;t ) = exp '—

4~Drt

(x —xp) +yp
4rt

00

e(x, t )= dyo dxoP(x~0 xo yot ),
0

e
—x /(Srt)

(D/r )i/2nrt
(3.11)

(3.10)

which arises by neglecting the dimensionless "radiation"
length r ID compared to the difFusion length (/Dt .

For a single particle present initially at the origin,
P(xo,yo;t =0) is zero far yo & ~xo ~

and is equal to 1 for
yo ~xo~. This corresponds to

P(xo yo't =0)=e(yo ~xo)

where e(x) is the Heaviside step function. Thus for the
density distribution we find

For the case of two particles which are origiaa11y sep-
arated by a distance d, P(xp, yp, t =0)= 1 when

) (xp ~

—
yo ] & d, and P(xo,yo; t =0)=0 otherwise. This in-

itial condition leads to an expression of a similar form to
Eq. (3.11), except that there is an additional multiplica-
tive factor of d /~rt Thus the total number of particles
N(t): fc(—x, t )dx ~2r ID as t moo—when one particle is

initially present, and N(t)-(rt) '~ when two particles
are initially present. Generally, an initially loca&~
group with an odd number of particles leads to a finite
number of particles as t~~, while a 1ocaHmd initial
population with an even number of particles leads to
N(t) ~t

If there is no diffusion, then Eq. (3.8} reduces to a Neu-
mann boundary condition. With this simplification, one
finds the following density distribution for a single-
particle initial condition, after several straightforward
steps and without any approximations other than those
involved in the continuum limit:

00 3'p

c(x, t)= dyp dxpP(x 0'xp yo;t),
0 3'p

1
1 —erf2

4
(3.12}

N(t) —t~4(et ), (3.13)

where e(k} is the deviation of D /r from its critical value.
This parameter will be considered positive in the region
where propagation occurs and negative otherwise. From
the fact that N(t) grows linearly with time for e)0 and
decays as t '~ otherwise (for the more generic case of
parity nonconserving dynamics for an even number of in-

Thus for a single-particle initial condition, N(t) & +t, in-
termediate to the limiting cases of Fisher wave propaga-
tion, where the particle number grows linearly in t, and
extinction, where the particle number either remains can-
stant (through parity efFects) or else decays as t
Another interesting feature of the distribution is that it
qualitatively resembles a Gaussian. This can be made
plausible by consideration of the underlying discrete pro-
cess. When there is only branching, it is easy to verify
that a nearest-neighbor particle pair propagates
difFusively as a rigid unit (Fig. 2). When two such soli-
tonlike excitations meet, they merely "scatter" without
any change in their form. As a single initial particle
evolves, there is production of pairs at a f(nite rate which
then diffuse freely within a region of length ')/rt. Con-
versely, for an even nn~ber of particles initially, "in-
terference" between the offspring of the initial seed part
cles leads to the density van~shing as t '/ in the long-
time limit.

When the reaction rate k &1, then the transition be-
tween extinction and Fisher wave propagation can be ob-
served numerically, and the transition line between these
twa states has the qn~btative form in the D Ir kphase-
plane indicated in Fig. l. Our exact analysis also pro-
vides a basis for a sc~&~~)vg description of this transition.
For the total number of particles, we make the following
scaling ansatz:
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itial particles and parity conserving dynamics), one ob-
tains

~(1—P)/a ~ ~0
~
—(t+zp)na

l& I x (0. (3.14)

Since the exact solution shows that N(t) remains bound-
ed as t~ ac for a=0, P must equal 0. (As above, we con-
sider the case where parity is not conserved, or that the
initial number of particles is even for parity conserving
dynamics. ) Further, for small values of Dlr, this ratio
appears in the exact solution in combinations of the form
D~tlr, implying that a= —,'. It therefore follows that
N(t) ~e t for small positive e. This cannot be checked
against our exact solution, since the e) 0 regime cannot
be reached when k =1. On the other hand, for negative
s, the behavior N(t) ~(~e~~t ) is predicted, in agree-
ment with Eq. (3.11).

IV. FACTOR&&ATION OF
THE MULTIPARTICLE RATE EQUATIONS

As mentioned in Sec. II, the single-particle reaction-
diffusion equation cannot account for the transition be-
tween extinction and propagation unless there is a sign
change in the coefBcient of the linear term in the concen-
tration. Although such a sign change can be justified
heuristically, it is worthwhile to present a systematic con-
tinuum approach which leads to this mechanism. Our
approximate treatment of the multiparticle rate equations
accomplishes this task. This approach has also the ad-
vantage that it can be applied straightforwardly to
different microscopic branching and reaction mecha-
nisms. In contrast, while the exact solution of the last
section provides a complete description of the transition
in a special case, this method is neither generalizable nor
physically intuitive. Given the nature of the approxima-
tion in the multiparticle rate equations, we anticipate that
our results will not depend quantitavely on the number of
offspring in a branching event (except for parity-specific
features), but, rather, will be generic to the transition be-
tween extinction and propagation.

For simplicity, we study the one-offspring BAW in one
dimension which can be represented as

A~2A, A+A —+0. (4.1)

It should be mentioned that the one-offspring BAW with
a unit reaction probability has been investigated by
rigorous mathematical techniques [1]. These approaches
have established the existence of a transition between
propagation and extinction and provided weak bounds
for the critical value of Dlr. Our approximate method
locates the transition for all values of the reaction proba-
bility. We first determine the first two in the hierarchy of
rate equations for the multiparticle densities in this pro-
cess. These equations wi11 be closed by factorizing three-
particle densities as products of two-particle densities.
To write the hierarchy of rate equations, define p~~j as
the probability that the set [k I is occupied. Thus po is
the probability that site 0 is occupied, po; is the probabil-
ity that sites 0 and i are simultaneously occupied, po; J is

the probability that 0, i, and j are simultaneously occu-
pied, etc. The rate equation for po is found by enumerat-

ing all configurations in which an elemental event
changes the occupancy of site 0. For example, if site 0 is
empty and site 1 is occupied (which occurs with probabil-
ity p&

—
po &, which, by translation invariance, is also the

same as po
—po, ), then, by either branching or hopping

to the left, site 0 can become occupied. There is a similar
contribution if site —1 is occupied. Similarly, there are
three elemental events which lead to a decrease in the oc-
cupancy of site 0, as illustrated in Fig. 4(a). Summing
these contributions leads to the rate equation

po=rpo [1'+(2D+P)k]P o] . (4.2a)

—[r+(2D+r)k]po
& 2 . (4.2b)

The equations for po; for i 2 are obtained similarly
[Fig. 4(c)],

Po, =(D+r)Po, , 2Dpo, +—(D+r)po;+,
—[r +(2D+ r }k](po, ; + i+po, .—i, ) (4.2c)

To be soluble, these exact equations must now be closed
by a suitable truncation. A standard approach is to trun-
cate the equations at the two-particle level by the ansatz

Po, t, i+i Po, LPGA, r+t~Po Po, tPo, r~Po . (4.3)

While heuristic, this approximation yields reasonable re-
sults and turns out to be simpler than the standard Kirk-
wood truncation.

To establish the existence of propagation, we investi-

site: 0
D

Dk

I I (D+r)k

o ~ D+r

site: 0 j.

~ ~ (D+r)k

~ ~ o D

~ ~ Dk

~ I I (D+r)k

~ o ~ D+r

~ 0 r

site: 0

+ ~

+ ~

I

~ ~ (D+r)k

Dk

D

~ o D

~ ~ Dk

I ~ (D+r)k

~ o D+r

o ~ D+r

(a) (b)

FICx. 4. Enumeration of the processes which can change the
occupancy of a selected set of sites in the one-offspring BAW.
In (a) the set consists of a single site ps, while in (b) the set con-
sists of two adjacent sites po &. In (c), the set consists of two
nonadjacent sites po;. The signs to the left denote whether a
process increases (+) or decreases (—) p. The rate of the pro-
cesses (and their kind) is indicated to the right. Solid and empty
circles denote occupied and empty sites, respectively.

The rate equation for po, is obtained by enumerating
all three-site configurations for which an elemental event
changes the occupancy of sites 0 or 1. These
configurations and the associated rates of the processes
which change po, are shown in Fig. 4(b} and lead to

Po &=rpo (D+r)(1—+k)po t+(D+r)Po t
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gate the existence of a nonzero time-independent solution
to the truncated rate equations. The transition between
propagation and extmction is then identiSed by the locus
where this steady-state density vanishes as k and D /r are
varied. To stream»ne the notation, let x=D—/r and
p(i )=p—o; /po. The steady-state rate equations reduce to xk x

1+k +2xk 1+x (4.7)

Substituting the static value for p(1) into the last of the
rate equations, a constant coeScient recursion equation
for p(i) results. Using the boundary conditions supplied
by the equations for p(1) and p(2), the solution is

1 —[1+(1+2x)k ]p(1)=0,
1 —(1+x )(1+k )p(1)+(1+x)p(2)

—[1+(1+2x)k][p(1)]=0, (4.4)

with

1 —xk
1+k +2xk

(4.8)

1

1+(1+2x)k

Using this in the second equation then gives

1+x—xk
(1+k+2xk )(1+x )

(4.5)

(4.6)

(1+x )p(i —1)—2xp(i)+ (1+x)p(i+ 1)

—[1+(1+2x)k ]p(1)[p(i)+p(i —1)]=0 .

From the first of these equations,

Here p=lim; „p(i) is just the equilibrium single-
particle density. Thus a positive solution for p exists only
when x & 1/k, corresponding to the propagating phase of
the one-ofspring SAW. When x =x, =1/k, the equilib-
rium density vanishes; this de6nes the phase boundary
between propagation and extinction. Note further that
the decay of the equilibrium concentration is linear in e
as e=—x —x, ~O+. If the scaling predictions of the
preceding section are correct, the particle number should
grow as e t, for @~0—.On the other hand, the total
particle number is the particle density multiplied by the
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width of the propagating wave. This latter quantity
should grow as et, that is, the front velocity goes linearly
to zero as the critical value of x is approached.

V. M.JMERICAL SIMULATIONS

To confirm the above analytical results and visualize
the evolution of the system, we have performed numeri-
cal simulations of the one- and two-offspring BAW in one
dimension according to the rules outlined in Sec. II. For
concreteness, we have fixed the hopping rate to be unity
so that the variables in the simulation are the branching
rate r and the reaction probability k.

First consider the one-offspring BAW for which it is
known [1,2] that a transition between propagation and
extinction occurs for a nonzero value of D/r. Starting
with a single particle at the origin and with the parame-
trizations of our lattice model, the transition occurs at
x=D/r=—1/0. 89. —For slightly larger values of x, the
number of particles initially increases, but ultimately de-
cays to zero. For example, for x=1/0. 88, the average
number of particles gradually increases to 4.8 for t =400,
but then decreases to 0 for longer times. By
t = 1.5 = 11 223, only about 0.1% of the initial
configurations are still active. For 400& t ~10000, the
spatial distribution of the ensemble of surviving particles
appears visually to be well approximated by a Gaussian
[Fig. 5(a)]. In this time range, the reduced moments of
the spatial distribution are m4—= (x )/(x ) —=2. 8 —3.02
and m&—= (x )/(x ) —= 13.0—13.9, while for a Gauss-
ian, the corresponding values are m4=3 and m6=15.
This behavior suggests that the effect of branching is ir-
relevant in the scaling sense, and that the spatial evolu-
tion of the one-ofFspring BAW coincides with that of a
single purely random walk. On the other hand for
x =1/0. 95, the simulations clearly show that a Fisher-
like wave front forms which then propagates at a finite
velocity [Fig. 5(b)].

For the two-offspring BAW, we have approximately
~apped out the phase boundary between extinction and
propagation [Fig. 1(b)]. Simulations clearly indicate that
the phase boundary intersects the line k =1 at D/r=0.
Thus for k = 1 there is extinction for all D /r except when
D/r =0. At this special point, our exact solution showed
that the number of particles grows as ~t for a single-
particle initial state. Another amusing feature of the
two-offspring BAW that we have verified numerically is
the essential dependence on parity. For example, if the
initial state consists of two widely separated particles,
then propagation associated with two independent parti-
cles is observed for early times, followed ultimately by a
decay in which the number of particle goes to zero.

Finally, in the course of simulations we discovered an
interesting difference between serial and parallel updat-
ing. When all lattice sites are updated simultaneously,
the two-offspring BAW exhibits propagation, that is, a
Fisher wave, even for finite values of D/r. Thus the
BAW process is an example of a system where the
method of updating, whether parallel or serial, leads to
nontrivial differences in the resulting dynamics. We
chose to focus on serial updating, since it is more physi-
cally motivated.

VI. CONCLUSIONS

In summary, we have analyzed the dynamical behavior
of branching annihilating random walks in one dimen-
sion. Typically this system exhibits (i) propagation,
where a localized population of particles spreads ballisti-
cally for large branching and/or small reaction rates, and
(ii) extinction, where a localized population eventually
disappears for the complementary range of parameters.
For parity nonconserving rules, there is a continuous
transition between these two behaviors which occurs at a
finite value of the branching rate when the reaction prob-
ability is unity. This transition appears to have a univer-
sal character and can be accounted for by analysis of a
truncated hierarchy of rate equations for multiparticle
distribution functions, as well as by scaling.

When the branching and reaction mechanisms con-
serve parity, rather different behavior arises. In particu-
lar, for the two-offspring BAW with a unit reaction prob-
ability, an exact analysis of the master equation for the
parity of the particle number in a fixed length interval
shows that the transition between propagation and ex-
tinction occurs for infinite branching rate. The long-time
behavior also depends fundamentally on the parity of the
initial number of particles. When this number is odd, ex-
tinction corresponds to a long-time state where the parti-
cle number is bounded, while the particle number van-
ishes as t ' for an even number of initial particles, i.e.,
extinction is complete. In the limit of infinite branching
rate, a single initial particle gives rise to a Gaussian-like
density distribution where the particle number grows as
t '~ Numeric. al studies confirm many of these analytical
predictions.
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