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Chaotic patterns in a Joseyhson junction model
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The eeect of an applied rf signal on the dynamics of a large area Josephson junction is examined by
means of a model based on the sine-Gordon equation. In particular the problem of characterizing spa-

tiotemporal chaotic patterns induced by the external harmonic varying magnetic field is addressed. In
general it is found that instantaneous spatiotemporal patterns, i.e., patterns confined to one period of os-

cillation of the external field correlates poorly. Also the correlation between instantaneous patterns and

average patterns is poor. However, the correlation between patterns obtained as averages over, e.g., ten

or more consecutive instantaneous spatiotemporal patterns is high. Furthermore, averaged spatiotem-

poral patterns obtained for difFerent values of the magnetic field amplitude correlate well. The average

potential and kinetic energies of spatiotemporal patterns are calculated. In general the energies in the

chaotic regions are lower than in regions with periodic response.

PACS number(s): 05.45.+b, 74.40.+k, 52.35.Mw, 03,40.Kf

I. IN I.RODUCTION

There has been an increasing interest in properties of
systems that show spatiotemporal chaos, with large Quc-

tuations in space and time. Recently investigations deal-

ing with the analysis of spatiotemporal chaotic systems

[1,2] have shown that such patterns can have highly or-
dered time averages. Experiments such as a rotating
Rayleigh-Benard system [1] and a Faraday instability in

large fluid layers [2] were considered. In [1], ordered
time-averaged patterns in the presence of large Quctua-
tions were determined quantitatively. The effects persist-
ed far into the chaotic regime. Similar results were found
in [2]. It is intriguing that the application of a simple sta-
tistical measure, i.e., time averaging of fluctuating pat-
terns, shows highly ordered average patterns.

Previously [3-5], the influence of an applied rf signal
on the radiation emitted from a long Josephson junction
was examined theoretically. The study of the dynamical
behavior of long Josephson junctions is of fundamental as
well as practical interest. From a theoretical point of
view the system shows a rich variation of nonlinear prop-
erties which are suitable for detailed investigations of,
e.g., nonlinear wave dynamics and chaotic states [6—10].
From an applications point of view there have been sug-
gestions for the use of Josephson junctions in such
diverse Gelds as microwave-oscillator amplifiers and
data-processing systems. The Josephson junction model
was based on the sine-Gordon equation. The microwave
pump signal was applied to one end of the junction. Thus
the system was modeled by a perturbed one-dimensional
sine-Gordon equation with appropriate boundary condi-
tions describing the inhuence of the rf signal. The rms
value of the voltage of the emitted signal was calculated
and used to evaluate the response of the junction. Vari-
ous interesting phenomena were found depending on the
amplitude of the rf signal: period doubling sequences or
bifurcation trees (devils staircase), chaos, quasiperiodici-
ty, and hysteresis. Further, for particular values of the

applied frequency the following scenario was observed
[5]: for small and large values of the applied amplitude
the system response was periodic. The periodic patterns
observed in the two regions were different —the dynamics
in the transition region from one pattern to the other
were characterized as chaotic. Seen in the light of the re-
cent investigations [1,2] of spatiotemporal chaotic sys-
tems, the described scenario observed in the Josephson
junctions model is a case where chaotic patterns can be
compared to periodic patterns. Further, energies can be
calculated based on the Hamiltonian defining the system.

The aim of the present work is to study the spatiotem-
poral patterns generated in the Josephson junction sys-
tem described above. The dynamics of the system at one
frequency coo=0.7 is considered when the amplitude a is
varied. For values of a ( 1.46 and a ) 1.92 the response
is periodic, frequency locked to the driver signal. The
mode sustaining the periodic response for a ~1.46 was
identified as a breatherlike mode [4]. Between these two
values the response is chaotic supposedly due to a com-
petition between different patterns [3]. Inspired by the
results in [1,2] we analyze the patterns in the chaotic as
well as in the region with periodic time response. We
find that instantaneous spatiotemporal patterns (i.e., pat-
terns con6ned to one period of oscillation of the external
magnetic field) in the chaotic region correlate poorly.
The correlation between instantaneous patterns and aver-

age patterns is also rather poor. A much better correla-
tion is found between average patterns (obtained from,
e.g., j consecutive patterns, j being in the range 2—100).
Further, the correlation between average patterns ob-
tained for different values of the amplitude is high. In the
chaotic region the potential as well as the kinetic energies
drop compared to the energies of the periodic patterns.

Me paper is outhned as follows: Section II contains a
description of the model, the numerical procedure, and
some examples of spatiotemporal patterns. In Sec. III
the results are presented. Finally, Sec. IV contains a dis-
cus S1OIl.
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II. MODEL AND NUMERICAL METHOD

In the present section the model used to describe the
dynamical behavior of long Josephson junctions is out-
lined, and examples of spatiotemporal patterns are
presented.

A. Model

q„(O, t)=0, y„(l,t)=a sincoot, (2)

where a=H, /JA, J and l=L/A, Jare the normalized
magnetic-field strength and junction length, respectively.
The external magnetic field is assumed to in6uence only
the boundary condition and not Eq. (1), which describes
the dynamics of the interior of the junction.

B. Numerical methods

The numerical procedure applied to solve the system
described by Eq. (1) with the boundary conditions given
by Eqs. (2) is based on a "leap-frog" scheme [11]. The
spatial discretization step was dx =0.05 (the correspond-
ing time step was dx /2). In Fig. 1 we show the results of
such a solution in terms of the rms value (qr, )'~ (at
x =I) as a function of the applied amplitude a. The
specific parameter values in Fig. 1 are frequency up 0.7
and length 1=5. The loss parameter (a=0.2) is held
fixed. In order to stimulate an experimental situation we
follow the procedure from [5]. Thus for a =0 we use flat
initial conditions [qr(x, O)=0 and y„(x,O)=0], and a is
then increased gradually by an amount ha [using a ramp
function a„,„=a,&&+(b,a/50)t for t (50]. The steady
state is typically obtained after t =100, and each run is
continued to t =15000. After calculation of the last
eight rms values, (qr, )'~, the computations are stopped
and restarted, (the initial conditions now being the previ-
ous solution), and a is gradually increased. This pro-
cedure is continued for a &2.0 with ha=0. 005. Note
that the rms value (y~$ ) '~ is defined as the square root of
the following quantity:

Q)p tO +( 271/coO )

(y', ) = y,dt,
277 fo

The mathematical model used to describe the dynamics
of a long Josephson junction is a perturbed sine-Gordon
equation. The perturbation includes a dissipation term.
In normalized form the equation is

f'xx hatt f'+ f't ~

where y(x, t) is the superconducting phase difFerence be-
tween the electrodes of the junction, the spatial coordi-
nate x is normalized to the Josephson penetration depth
A,J, the time t is normalized to the inverse plasma fre-
quency Qp, and a is the dissipation coeScient. The loss
parameter models dissipative currents (quasiparticle
currents).

If an oscillating magnetic field H, sincopt is applied to
one end (in this case the right end) of the junction, per-
pendicular to the length of the junction and parallel to
the plane of the barrier, the boundary conditions for the
phase difference y at the ends are
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FIG. 1. The rms value (q, )' vs the applied amplitude a.
Parameter values are I =5, a =0.2, and co=0.7. The amplitude
has been increased from 1.4 to 2.0 in steps of ha =0.005. For
values of a & 1.46 and a & 1.92, the response is periodic. The set
of scattered points indicates chaotic time response. The units of
the various parameters and variables are deSned in the text.

where to is the time for a positive zero crossing of y, (l, t)
[i.e., qr„(l, t) changes from a negative value to a positive].
In Fig. 1 the resulting curve is shown for 1.4 ~ a ~ 2.0. In
this region no hysteresis is observed in contrast to what is
found for 0.75 & a ~ 1.16 [5]. For each value of a, eight
consecutive values of the rms value of y, have been plot-
ted. This a11ows the identification of regions with period-
ic dynamics as well as regions with chaotic dynamics. In
Fig. 1 it can be seen that the rms value changes rapidly
for a =1.46, which corresponds to a change in the wave
dynamics. For 1.46&a (1.92 the resulting dynamics
give a scattered set of dots corresponding to a chaotic
time response. The response is again periodic for
a & 1.92. In the regions where the response is periodic,
the phase y oscillates around a fixpoint 2mn. However, in
the chaotic region the phase jumps between fixpoints.

In Figs. 2-4 examples of spatiotemporal patterns for
a =1.4, 1.7, and 2.0 are shown in terms of the spatial
derivative p„(x,t). Thus examples of patterns from the
periodic regions as well as from the chaotic region are
shown. Dotted and full lines correspond to positive and
negative values of p„(x,t). Furthermore, the dot-dashed
lines correspond to q&„(x,t)=0. The external magnetic
field has been shown to the right of the patterns. Power
spectra are also shown. The power spectra are calculated
from the last 10000 time units of p, (l, t) In Fig. 2 the.
response is clearly periodic, which is also supported by
the power spectrum. Figure 3 shows an example of
chaotic response, again supported by the power spec-
trum. Finally, in Fig. 4 an example of the spatiotemporal
pattern in the region a & 1.92 is shown.

In order to analyze the spatiotemporal patterns, aver-
age patterns are calculated. Because the phase y jumps
in the chaotic region, the patterns are analyzed in terms
of gr„(x, t) (cosy might also have been used). One spa-
tiotemporal pattern is confined to one period of oscilla-
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and the potential energy by
o+(2~/~o) I,E~,= f f [—,'qr„+(I —cosy)]dx dt .

Furthermore, the energy dissipation

to +(2'/a)o )

E~„,= a—f f y, dx dt

(6)

(7)

and energy input
to + (2m/a)o)

E;„=f y„(l,t)y, (l, t}dt (8)

in one period of oscillation are calculated. In Sec. III re-
sults from the analysis described above are presented.

IH. ANALYSIS OF SPATIOTEMPORAL PATl KRNS

First, in this section, patterns generated at a specific
value of the amplitude of the applied external field
a=1.7 are investigated. This value corresponds to a
point placed in the middle of the chaotic region (see Fig.
1}. Second, the patterns generated for 1.4&a &2.0 are
analyzed. Finally, the energies of the chaotic and the
periodic patterns are compared.

z0 I I I I I I I I I

A. Amplitude a =1.7
To better understand the averaged patterns the follow-

ing question is posed: How well do average patterns ob-
tained for the same values of frequency and amplitude of
the applied signal correlate? A number of k =25 average
patterns consisting of a varying number of consecutive
instantaneous patterns are generated. The number of in-
stantaneous patterns j used to generate the average pat-
terns varies from 2 to 100. The average patterns obtained
for each number are then cross correlated. In Fig. 5 the
results are shown in terms of probability densities of the
correlation coeScients c. The density labeled I corre-
sponds to the correlation of patterns averaged over two

instantaneous patterns, while the density labeled II corre-
sponds to correlations between patterns averaged over
ten consecutive patterns. The density labeled I has a
shape not far from Gaussian and an average value
(c)=0.69; the standard deviation is cr(c)=0.15. The
correlation between averaged patterns increases drastical-
ly with the number of consecutive patterns. For j =10
the average correlation coeKcient is 0.93. Now in Fig. 6
the average values (c ) and standard deviations o (c) for
the cross-correlated average patterns are shown as a func-
tion of the number of instantaneous patterns j used to
generate the averages. Ifj is increased to 100, the corre-
lation coefBcient increases to 0.99, i.e., the average pat-
terns are virtually identical. From the observed densities
of correlation coeScients no evidence is found that states
very close to the average pattern occur.

B. Amplitude 1.4&a &2.0

Now the correlation between instantaneous patterns
and averaged patterns obtained in the second procedure
are analyzed for a in the interval from 1.4 to 2.0. In Fig.
7 the average correlation coefiicients ( C ) (diamonds} and
the standard deviations (dots) are shown vs the amplitude
of the applied field a. Further, the cross correlations be-
tween patterns averaged over 100 consecutive instantane-
ous patterns are shown as the dashed line ((c ) =0.99).
%hen a=1.455 the response changes from regular to
chaotic dynamics, resulting in a decrease in the average
correlation ( C ) from 1 to 0.78. A similar behavior is ob-
served for a =1.93 when the upper region for periodic
response is entered. The standard deviation in the chaot-
ic region is close to 0.1, indicating a probability distribu-
tion corresponding to I in Fig. 5. Note that the correla-
tion increases when the onset for periodic response is ap-
proached.

For each value of a an average pattern has been stored
(averaged over all patterns except the first 50 patterns).
In Fig. 8 correlation coeScients C,„between average pat-
terns are shown vs a. The diamonds correspond to the
correlation between the average pattern obtained for
c =1.4 and patterns obtained for a & 1.4 while the dots
correspond to the correlation between the average pat-
tern obtained for a=2.0 and patterns obtained for
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FKx. 5. Probability densities of cross correlation coefficients
c. The density labeled I corresponds to the correlation between
patterns averaged over two consecutive instantaneous patterns,
while the density labeled II corresponds to correlations between
patterns averaged over ten consecutive patterns.

FIG. 6. Average values (c ) (diamonds} and standard devia-
tions o(c) (dots) for the cross-correlated average patterns are
shown as a function of the number of patterns j. The amplitude
a =1.7.
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FIG. 7. Correlation coeScients vs a. The diamonds corre-
spond to the average correlation coeScients between instan-
taneous patterns and average patterns, while the dashed curve
corresponds to correlations between average patterns (from 100
consecutive patterns). The dots indicate the standard deviation
for correlation coeScients between instantaneous patterns and
average patterns. The units of the various parameters and vari-
ables are deSned in the text.

a «2.0. This figure indicates that the average patterns
obtained in the chaotic region are more similar to the
patterns observed in the periodic region for smaller
values of u than the patterns observed in the periodic re-
gion for larger values of a.

1.0 =

~& 0.8-

FIG. 9. Average potential and kinetic energies vs a. The dia-
monds and triangles correspond to average potential (upper
curve) and kinetic (lower curve} energies, respectively. A line
through the average points have been drawn to guide the eyes.
The dots indicate the standard deviation. The units of the vari-
ous parameters and variables are de6ned in the text.

C. Energy variation

As mentioned above, various energy terms have been
calculated for the instantaneous patterns [Eqs. (5)-(8)].
In Fig. 9 average potential and kinetic energies vs a are
shown. Diamonds and triangles correspond to average
potential (upper curve) and average kinetic (lower curve)
energies, respectively. The dots indicate the standard de-
viation. Again drops are observed when the chaotic re-
gion is entered. The average potential and kinetic ener-
gies decrease in the chaotic region compared to regions
with periodic response. However, the energy difFerence
between periodic and chaotic patterns is largest for large
values of a, in accordance with observations in Fig. 8.
Thus the modes sustaining the regular response have a
higher energy than the chaotic modes in the present sys-
tem. From that it also follows that the energy input and
energy loss is reduced in the chaotic region compared to
the ordered region. On average, the energy input and en-

ergy dissipation will of course balance.

IV. DISCUSSION

1.4 1.6 1.8 2.0

FIG. 8. Correlation coeKcients between average patterns vs
a. The diamonds correspond to the correlation between the
average pattern obtained for a =1.4 and patterns obtained for
a & 1.4, while the dots correspond to the correlation between
the average pattern obtained for a =2.0 and patterns obtained
for a «2.0. The units of the various parameters and variables
are deSned in the text.

In this paper some simple statistical properties of spa-
tiotemporal chaotic patterns have been investigated.
Time averaged patterns (averaged over, e.g., 10-100con-
secutive instantaneous patterns) are ordered in the sense
that they are highly correlated. Thus averaged patterns
are virtually identical. In the present example periodic
patterns observed for small values of a are more correlat-
ed to the average patterns obtained in the chaotic region
than the periodic pattern found for large values of a.

The average potential and kinetic energies are lower in
the chaotic region compared to the periodic regions.
Thus the modes sustaining the periodic response are
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more energy rich than the chaotic modes.
One reason for the relatively high correlation

coefficients (virtually no negative coefficients are ob-
served) is the presence of the harmonic external Seld.
The reason for the high correlation between average pat-
terns might be a slow (and almost periodic) variation in
the chaotic regime. Such a slow mode has not been

identified.
The reasons for observations of highly ordered average

patterns remain an open question.
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