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%'e investigate the statistical properties of the spectrum of large sy~~etrical matrices with each ele-
ment H;, chosen according to a broad distribution p(H) decaying for large H as H . For p&2,
(H~) is finite and the well known Gaussian orthogonal ensemble (GOE) results are recovered. When

p & 2, the semicircular law is replaced by a density which extends over the whole energy axis. Further-
more, while all states are extended in the case of GOE matrices, we show numerically and analytically
that two mobility edges appear, separating extended from localized states, with an intermediate "mixed"
phase in between. The unusual nature of these localized states is discussed.

PACS number(s): 02.50.—r, 05.45.+b, 72.15.Rn

I. III 'RODUCTION

The theory of random matrices is of paramount impor-
tance in several fields of physics: nuclear physics (where
they were first introduced), quantum chaos, localization
and mesoscopic conductors, spin glasses, random sur-
faces, and string theory [1—6]. The main achievement of
the theory of random matrices is to establish universal re-
sults, on, e.g., the density of states or the level spacing
distribution, which are independent of the particular real-
ization of the randomness. These results provide, in a
sense, the generalization to matrices of the usual central
limit theorem, since they are found to hold under rather
mild assumptions on the statistical distribution of each
element: only the symsnetry group of the matrices (or-
thogonal, unitary, symplectic) is of importance. For in-
stance, in the case of real symmetric N XN random ma-
trices with elements distributed independently according
to a law with a Snite variance, the distribution of eigen-
values obeys (in the large N limit) the semicircle law and
the distribution of level spacing is unique and well de-
scribed by the Wigner surmise: they enter the universali-
ty class of Gaussian orthogonal ensemble (GOE) matrices
(see [6] for a recent discussion). It is, however, well
known that the central limit theorem for sums or random
variables has to be modiSed when the variance of these
variables is infinite: new "universality classes" appear
and are described by the theorems of Levy and Gnedenko
[7,8]. In this paper, we consider an analogous extension
of the theorems on random matrices to the case where
the distribution of the elements are of infmite variance.
For defmiteness, we shall deal with symmetric matrices
H;J =H~;- otherwise distributed independently according
to P(H,J ) with
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H()P(H J )-H " H;JI"" ' (1)

where Ho is the typical order of magnitude of H;J and
0 & Js & 2: P(H;J ) cannot be normalized if p ~ 0, and the
distribution has a 5nite variance when p&2 in which
case, as will be recalled below, the matrix enters the GOE
case. We shall call this set of matrices "Levy matrices"
which is qualitatively speaking the complementary of
GOE in the sense of the limit theorems quoted above. It
can also be compared to sparse random matrices [9-11],
which correspond, in a sense, to @=0.

The statistical properties of Levy matrices is an in-
teresting mathematical problem in its own right; it is,
however, not devoid of physical interest for the following
reasons.

(1) Contrarily the GOE ensemble, where statistical ro-
tational invariance ensures that all eigenvectors are ex-
tended (except possibly near the edges of the spectrum),
we will see below that a mobility edge appears within the
spectrum, separating high-energy "localized" states from
low-energy extended states. We will argue that the level
spacing distribution is not universal (i.e., not Poissonian)
within this localized phase, resulting from the usual na-
ture of the localized states, which we will discuss in de-
tail. In particular, two diferent localization criteria lead
to different mobility edges: a "mixed phase" appears
where the states are both localized and extended.

(2) Broad distribution of matrix elements can indeed
occur, for instead, in a disordered electronic system. Let
us consider such a system in a space of dimensionality d
in a tight-binding approach, with a hopping element V
between sites which is a function of their mutual distance
and decays as a power law V(R)-R r (see, e.g., [12]).
The probability to Snd a site at a distance R from an arbi-
trary reference site is proportional to the surface of the
sphere of radius R: P(R) =R 'plN where N is the to-
tal number of sites and p their density. Then the distribu-
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tion of "couplings" V is obtained from P(V)dV
=P(R)dR, and thus P(V)=pl(NV'+") with /M=dly.
Thus the statistics of the Hamiltonian elements (written
in the basis of the sites) is indeed given by Eq. (1) with
Ho =(plN)' "; we shall thus often refer to this system in
order to obtain some precise physical interpretations of
the different quantities which we will encounter.

We shall see later than one indeed has to choose
Ho —1/N' " in order to get a sensible limit for the densi-
ty of states in the limit of infinite matrices. However, the
Hamiltonian of the putative electronic system is not ex-
actly a "Levy matrix" for finite d. Indeed, even if the po-
sitions of the sites are random, their mutual distances and
thus the couplings, are correlated, correlations which are
neglected in the Levy matrices. In the case of random-
ness in the position of the sites, the total number of de-
grees of freedom is Nd whereas it is of order N in the
case of Levy matrices. The effective dimension of the
problem is then of order N and is infinite for infinite ma-
trices. However, Levy matrices should capture some
features of this class of random systems, at least those
governed by the largest couplings (see, for example, the
tail of the density of states in Sec. II) which are rare
enough to be considered uncorrelated. Although it is
generally thought that there is not transition between lo-
calized and extended states on a fully connected lattice,
we have already mentioned that Levy matrices in fact
present such a transition. Consequently, this system
could be a good starting point to study localization of in-
teracting electrons in infinite dimension within the frame-
work proposed in [13,14].

Another example of a random system with power-law
interactions is that of spin glass with dipolar or
Ruderman-Kit tel-Kasuya- Yosida (RKKY) interactions

~
V(R)~-R, corresponding (in d =3) to tu= 1: the ei-

genvalues and eigenvectors of the Levy matrix should
correspond to the eigenfrequencies and eigenmodes of the
spin waves around the ground state of the associated sys-
tem [4,15] (this was already noted by Anderson in his
original article [16]). Experimental papers discussing
these localized high frequency magnons can be found in
[17],and references therein.

This paper is organized as follows: In Sec. II, we define
precisely the model studied, and we establish a recursion
relation for the one-point Green function. The study of
this equation allows us to determine the tail of the distri-
bution of G;; and the distribution of eigenvalues (or densi-
ty of states) is obtained analytically as the solution of in-
tegral relations. We give a precise interpretation of the
tail of this distribution, and the analytical results ob-
tained are corroborated by careful numerical simulations
(Sec. II). We then analyze the recursion relation for the
derivative of G,, with respect to the energy and obtain
analytically a transition between localized and extended
states (Sec. III). We also present in this third part several
numerical approaches to study this transition (inverse
participation ratio, distribution of the level spacings),
which point towards the existence of a second transition,
distinct from the previous one, and allow us to specify the
structure of the localized states. From a technical point
of view, our approach is somewhat new since we choose

The set of the Levy matrices are the real symmetric
matrices H of size N with elements H;1 distributed in-
dependently according to a symmetric power law, given
by Eq. (1) above. The distribution P has, for /M(2, an
infinite variance. The most important qualitative feature
of such distributions is the statistical "hierarchy" of the
matrix elements: a typical element is of order Ho, the
largest element of a row containing N terms is of order
HON' " [8], and the largest element of the whole matrix
(N terms) is of order HON ~". This hierarchy becomes
more and more pronounced as p goes to zero. In this
sense, p=0 corresponds to sparse matrices.

In order for the distribution of eigenvalues to reach a
stable form in the limit of infinite size matrices, the larg-
est element of a row must typically be of order 1, thus im-

posing that H0 ~ N ' ". We will see a posteriori that it is
the correct scaling; note in particular that for @=2 one
recovers the usual GOB scaling. In the following, we
shall set Ho =N

B. The recursion relation

In order to obtain some results on the distribution of
eigenvalues or to discuss the existence of a transition, we
studied the one-point Green function defined as

N (/i )2
G, , (z) =(z —H);, '= —y (2)

1z —E
where ~i ) is the canonical (site) basis of H, and ~a) and
E the eigenvectors and eigenvalues of H. We can write
a recursion relation for this quantity in the following
way. Let us consider a symmetric real matrix H of size
N, and its associated "resolvent" G =(z H) '. One c—an
express G;; as a Gaussian integral over auxiliary fields P;,

N N

f g d/t/k/t/;yfexp —
—,
' y /t//, (z H)k/y/—

k=1 k, l =1
GN

LJ (3)
N N

f g dy/, exp —
—,
' y /t//, (z H)kj/t//—

k=1 k, l =1

In the spirit of the "cavity" method [18],one can add an
(N+1)th row and its symmetric column to H, which
we call [Ho;]. In terms of a tight-binding model, this
corresponds to adding an (N+ 1)th site 0 to the system.
The size of the matrix is N + 1 and Eq. (3) for Goo+' now
reads

N N

f g dpkpoexp —
—,
' g pk(z H)k,p/—

GN+1
00

k=0 k, l =0
(4)

f g dyke p g 4k(z H)kjf/
k=0 k, l =0

One can integrate over auxiliary fields [ Pk ] k =».

to keep the energy real (as opposed to the usual pro-
cedure of adding a small imaginary part). The density of
states, for example, is obtained through the analysis of
the distribution of a real quantity, rather than the (well
defined) limit of a complex number. This point of view is,
we believe, rather transparent and physical.

II. THE MODEL AND THE RECURSION RELATION
A. The model
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ON+1
00

d004'oexp —
—,
' g Ho; Gr~&HJOP'o

—,'—(z—Hoo)do
k, I=1
N

dgoexp —
—,
' g Ho, 6, .H oP o ,'—(z——Hoo)po

k, l = 1

which is a Gaussian integral. Integrating over Po, one
finds the result

1

GN+1(z

N
=z —Hoo —g Ho;6; (z)HIO, (6)

which is the central recursion relation which we shall ex-
ploit in the following. (Note that this relation can be ob-
tained without Gaussian integrals through adequate alge-
braic manipulations. } This general equation is simplified
in the case of Levy matrices where the elements are typi-
cally of order I/N'~&. First of all, Hrn is of order
1/N' " and can be neglected compared to z. One can
then separate, in the right hand side of Eq. (6),
the diagonal terms and the ofF-diagonal terms. Using
the results of Appendix A, the latter is of order
[(1/N )g~;~J~=&~GJ ~"]' ". One can write the equivalent
of Eq. (6) for the off-diagonal terms 6;: one self-

consistently finds that they are equalitatively distributed
according to the same law as H; . The above off-diagonal
sum is then also of order N ' " and goes to 0 as N goes
to infinity. To lowest order, we thus find

N

So(»= X HoiGi~ (z» (7)

There are two ways of interpreting Eq. (7). If e
is the imaginary part of z, the standard way is to

where we have defined the self-energy So(z)
—=z —1/6+~+'(z) (from now on, we will forget the index
N and bear in mind that i is related to H and 0 to
H~+'}. The most interesting feature of this equation is
that the couplings Ho; and the terms G;; are by construc-
tion uncorrelated, and hence one may calculate the self-

energy using central limit theorems. One must, however,
not forget that G,,

+' is different from 6;, . Two remarks
are now in order.

One should note that only Ho, appears in Eq. (7),
showing that a possible asymmetry in the distribution law
(1) is irrelevant: all the properties obtained below would
still be valid if we had considered —say —positiue Levy
matrices (we have checked this somewhat surprising
statement numerically).

(2) Equation (7} is very similar to the starting equation
in the article of Abouchacra, Anderson, and Thouless
[19], see also [20] for the problem of localization on a
Cayley tree with a diagonal disorder. The mean
difference is that the sum appearing in Eq. (7) is over K
terms in the case of the Cayley tree, E being the connec-
tivity of the tree, rather than N terms in our case. Our
equation is thus easier to solve since the limit X~ Oo will

allow us to use central limit theorems.

C. Density of states

take e small but positive. Then the trace of 6, T(z)
=(1/N}Q~, G, , =(1/N)QN, [1/(z E—)] is complex
but tends to a granite limit as N goes to infinity. The densi-

ty of states p(z) is then given by

o T2 —zT+1=0, (9)

which has a complex solution when ~z~ &2o and thus,
from Eq. (g), the densitv of states obeys the semicircle
law: p(z)=1/(2n)+4 z /tr. The —only hypothesis is
that the variance of Ho; is finite.

The second method is more adapted to the case of
Levy matrices. (Note that when applied to the GOE
case, the following method fails because the sum

gP &6;;H02;, with 6;; seen as a "p= 1" random variable
does not obey the generalized central limit theorem since
strong correlations exist between the 6,, ). Since the self-

energy is not self-averaging, the variance Ho; being
infinite generalized central limit theorem tells us that the
distribution of the self-energy tends to a stable Levy dis-
tribution (see Appendix A): Pz(S)=1.&&2'@'(S). It is
characterized by three parameters p, C, and P, with

C(z) =—y ~6,, ~~", (10a)

X
P(z)= —g sgn(6, , ), (10b)

C is a "generalized variance, " and P is a parameter
measuring the asymmetry of the distribution. Equation
(7) now fixes the distribution of the real quantity Goo:

1
p(z) =—lim lim ImT(z is—) .

7T p~o+N —+ oo

The second way of looking at Eq. (7) is to consider that
@=0. T then fiuctuates even in the limit of infinite size
matrices, because the denominator z —E can become ar-
bitrarily small (although nonzero since the number of ei-
genvalues is denumerable). One can argue that the tail of
the distribution of T decays as p(z)/T (T~ ~), since
the probability that z E is very—small (corresponding
to large T) is finite and equals p(z). This argument will
be made more precise below.

In the case of matrices with elements distributed with a
finite variance Ho; =tr/N (}u,&2), Eq. (7) can easily be
solved using the first method: if e is positive, G;, is
bounded by 1/e, and the self-energy S(z) is calculated us-
ing the central limit theorem: it tends to its mean value
Ho gP ~6" 0'T. Since for e & 0 T is self-averaging
when N ~ 0o, i.e., T=G;;, then 600 becomes independent
of the disorder and is equal to T, thus leading to a second
order equation in T:
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1 1
PG(Goo) 2 Ps z-

Goo Goo

C(z)= dGlGl "-'L,"' " z ——+ OO 1
fl/2 G

(12a)

P(z)= dGL "'~" z —— (12b)

These integral equations have a unique solution for all z,
which we have determined numerically. Hence Eqs. (11)
and (12) completely determine the distribution of Goo.
We now have to relate this distribution to the density of
states. Let us consider N finite. The mean spacing be-
tween eigenvalues around an energy z is p(z)/N. Goo
will be very large if there exists some a such that
lz E

l

—((p(z)/N. Then the sum is dominated by this
particular term (i la ) /(z E) (a rnor—e detailed discus-
sion in the case of localized states is given in Appendix
B). The tail of the distribution of Goo is then given by

P(G~)=N f f dEp(E)dw P (wlE}5 Goo—

N W W
dwwPN w z — p z

G2 Goo Goo

p z
Goo 2

~oo
(13)

where we have used the normalization condition

f odw wP(wlz)=N '. Comparing Eqs. (7) and (13), we

find the relation for the density of states:

We need a hypothesis to close this recursion relation: we
will suppose that the distribution of G,,-

+' is the same as

the distribution of 6;; when N goes to infinity. This nat-
ural hypothesis allows us to write self-consistent equa-
tions on C and P as

and b„ is another p dependent number, and

Cpp(z~)=
z +P

(16b)

NH~o

X~+
NHlo

pX&
(17}

We see that the tail of this distribution is exactly the same
as (16b). If H =H;J »1 we can make the assumption
that all the other elements of the row are small enough to
assume in a first approximation that they equal 0. Then
H li ) =H,„lj ) and since the matrix is symmetric,

Hlj )=H li). Hence the vector 1/2(li )+lj )) is a
near eigenvector with eigenvalue H,„:the large eigen-
values of the matrix H correspond to very large elements
of the matrix. We will see in the next section an argu-
ment which confirms this interpretation.

We have performed numerical simulations diagonaliz-
ing Levy matrices. We determined the histogram of ei-
genvalues for matrices of difFerent sizes (up to N =1500}.
By careful extrapolation to infinite size (Fig. 1}, we ob-
tained the values of p(0) and z'+"p(z) for large z, and
found very good agreement with the theoretical predic-
tion [Eqs. (16}].

O. t 5

where c =NHo —= 1 for the normalization chosen in this
P

paper. The density of states for all values of z is obtained
numerically, and is shown in Fig. 1. A simple interpreta-
tion of the tail of the distribution can be given by looking
at the distribution of the largest element H,„of-
say —the ith row of the matrix H:

N

Pr( lH, I
=X}= 1 f—

dX x NH'+~

p(z) =Ps(z) . (14)

This equation is a central result of our paper and is very
general, since the equations (7) and (13) do not depend on
the particular system considered. In the case of Levy ma-
trices, Eq. (14) becomes

(15)

p(z)

0.1

where C and P are determined self-consistently using the
integral equations (12). Note that p(z) is not a Levy dis-
tribution since C and p are themselves functions of z.

It is easy to show that p(z) is symmetric around z =0
and is not bounded. Equations (12}can be solved analyti-
cally for z small and for z going to infinity. In this case,
we find 10

p(z —N) =a„b„z— (16a)

where

[p/21(p/2)] & I (2/p)
7T ~p

FIG. 1. Shape of the density of states p(z) obtained by solv-

ing Eqs. (12a) and (12b) for @=1.5 and 0.8. Inset: Value of
p(z=0) for different sizes, up to N=1500, for @=1.5. The
theoretical prediction is p(0) =0.1253.
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III. NATURE OF EIGENVECTORS

If the above interpretation of the tail of the density of
states is correct, then the very high-"energy" eigenvec-
tors are certainly localized on two vectors of the canoni-
cal basis. This suggests that a transition between local-
ized and extended states could exist for a certain value of
the energy. As we shall detail now, diferent localization
criteria can be investigated, leading to diferent answers.

A. Inverse participation ratio

A simple way to see if an eigenvector ~a) is localized
on the initial basis ~i ) is to calculate its "inverse partici-
pation ratio" defined as

(18)

where w; = (a~i) is the weight of site i in the state a.
(gP iw~;=1 because the state is normalized). Two ex-
treine cases can be analyzed. If ~a) is completely delo-
calized with each w; of order 1/N, then from Eq. (18),
Y is of order 1/N and goes to 0 as N goes to infinity. If
on the other hand ~a) is strongly localized on p sites,
then the sum essentially runs over p terms, each one of
them being of order 1/p. Y is thus of order 1/p and
remains not zero as N goes to infinity. It is called inverse
participation ratio since it is inverse of the number of
sites participating to state a, i.e., on which a has a
nonzero projection. A natural definition of an extended
state is that its Y should be zero (and conversely not
zero for a localized state). It appears, however, that this
quantity is not self-averaging (Appendix A), and hence a
way to characterize the transition z, is to calculate the
mean value of Y for a given energy z:

=0 for z(z,
Y(z}= lim —p(z) g 5(E z)Y—(19)&0 for z)z, .a=1

There exists a simple interpretation of Y(z) for the as-
sociated tight-binding electronic Hamiltonian. If an elec-
tron is prepared at time t =0 on a particular site

~
m ), it

will diffuse over the lattice at later times. The probability
for the electron to be on site

~
m ) at time t is

P (t)=+exp[i(E, E ~ )t/fi](m~a—) (m~a')
aa'

and the fraction of the total time spent on ~m ) is

f =lim, „(1/t)fodt'P (t'). A natural criterion of lo-
calization in terms of f is the following: if f is not
zero the electron spends a finite fraction of the total time
on the site ~m ) and is thus localized "around" ~m ). If
f is zero, the electron is delocalized over the lattice.
Following [21], we can write f as f =g, (m~a) .
Note that Y is the sum over the sites of w; for a fixed
eigenstate ~a), while f is the sum for a fixed site ~m)
over the eigenstates ~a). The two quantities are of
course related through the equation g,f,:—g Y . Thus
one finds that (1/N )g;f;= fdz p(z}Y(z} Hence, if.
Y{z}& 0 for some z &z„ the mean fraction of time spent

B. Nature of localized states

Instead of looking at Y which is the mean value {over
the sites i) of w, , one can study the full distribution

P(w) of w; over the sites. Using the same numerical
treatment as above, we find that the following two points
hold.

(1) For p&1 and z &z„ the distributions PN(w) for
different N take the scaled form Ptv(w) =NII(Nw ), which

means that all weights are of order N '. II(u) can be
very satisfactorily fitted by the following form (Fig. 4}:

0.2—

0
0

0
0

0 nnAAAA

FIG. 2. Behavior of the inverse participation ratio near the
transition z„ for @=1.5, showing that Y{z}=(z—z, ) . Inset:
Behavior of +Y(z) over the full range of z (qualitative). Note
that Y(z~ 00 )= ~

for reasons explained in the text.

on the "starting" site is finite. Another, more direct, in-
terpretation of the localization criterion Y(z) & 0 will be
discussed in the next section.

We have studied Y(z) numerically by analyzing the
eigenvectors of NXÃ Levy matrices. %'e calculated

Ytr(z) for energies E~ in a certain small interval, and for
difFerent N (from 200 to 1500}. Extrapolating to infinite
N (the corrections are proportional to 1/N), we obtain
the curve drawn in Fig. 2 (for @=1.5). The "size" p of
the localized states diverges as (z —z, ) for all p —this
is at variance with the results found on the Cayley tree,
where Yis discontinuous at the transition [22]. Y(z) fur-
thermore tends to —,

' when z goes to infinity. This last re-

sult confirms our interpretation on the tail of the density
of states: we argued in Sec. II that 1/2( ~i ) +

~j ) ) should
be a near eigenvector if H;. is a very large element of the
matrix H. The inverse participation ratio of such a vec-
tor is indeed —,'.

The transition line in the (p, z } plane is reported quali-
tatively in Fig. 3. We find a finite energy threshold z, be-

tween localized and extended states for 2)p& 1, which
diverges for @~2 (all states are extended in the GOE
limit} and decreases with p, (z, =4.2 for p = l. 5, z, = l. 5

for @=1.1) to reach z, =0 for)u& 1. Note, however, that
Y(z =0)=0 for all p: the states with zero energy are al-

ways extended in this model.
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I

ZC
I

I

I

I

I
I

zc'

GOE

11(u)=
uol [(1—a }/b] u

'a

exp—
Qp

'b

(21)

with, for @=1.5, a =0.59+0.05, b =0.81+0.05, and
un=2. 0+0.15. Note that the usual Porter-Thomas [23]
distribution corresponds to apT= —,', bpT=1, and up
We have, however, not found a proper justification of Eq.
(21).

This distribution changes qualitatively for z &z, (see
Fig. 4) and is found to decay as a power law:

P(w)-
Nw

(22)

Our data suggest that v=p/2 for all the values of p and
depends weakly on z. c (z) is a decreasing function of z
and goes to zero as z goes to infinity.

ip+4

FIG. 3. Phase diagram in the plane (z,p) exhibiting three
"phases": "extended" states (Y=O,Y= ~), for suSciently
large p {or small z), "localized" ( Y & O, U & ~ ) for small p {large
z), and "mixed" —i.e., exhibiting both localized ( Y ~0) and ex-
tended (Y= ~ ) features. Note that the mixed phase is qualita-
tively different for @&1 and p& 1 [see P(w) [see Eq. (21)] and
the level spacing distribution P, (x)].

(2) For @&1, P(w) is still given by a power law [Eq.
(22)] but only above a certain energy z,'(p) which we shall
discuss below: see Fig. 5. The exponent v is again of the
order of p/2, although slightly larger: this will be
confirmed by our analytical calculation below. For
z &z,'(p), on the other hand, Psl(w) has weight both in
the region w =N ' and in the region w =1 [giving a
nonzera contribution ta Y(z)]. In the region w =N
the above scaling PN(w) =NII(Nw }still holds (see Fig. 6),
with the same parametrization of II(u). The exponents a
and b for @=0.6 are found to be a=0.71+0.05 and
b =0.29+0.05, while up ——0.12.

We can use the language of the tight-binding model in
order to give a physical interpretation to the power-law
distribution of w, Eq. (22). Consider, in a space of dimen-
sion d, a certain localized eigenstate ~a) centered on
R =0. m; is function of the distance R between the site
~i ) and the origin. If the state is exponentially localized,
w(R) —exp( —R). Moreover, the probability to find a
site at a distance R is proportional to the surface of the
sphere of radius R: P(R)dR =pR 'dR /N. Hence the
probability of a given weight w for exponentially local-
ized states in d dimensions is P(w)-1/[Nwln '(w)].
In our case, the distribution of w is a power law, which
corresponds in real space to w (R) -1/R r with y =d /v.
Interestingly, the localized states of our Levy matrices
are the equivalent of algebraically localized states. In the
limit of infinitely strong hierarchy of couplings p=0, one
finds, using v =p/2, y = ac, corresponding to exponential-
ly localized states.

Equation (22) suggests furthermore a second interpre-
tation of Y & 0 for localized states: one can show (see Ap-
pendix B}that if the [w;] are distributed according to
(22}, then Y(z} will be nonzero if v & 1, or equivalently if
y & d. This precisely corresponds to the condition under
which the states can be normalized, i.e., fdd w(R} & ~
for y&d.

C. Analytical results

In the same spirit as for the distribution of eigenvalues
(Sec. II C), there are twa ways to laok at the transition us-

)p+ 2 )p+4

P(W)
P(W)

) p 2

1p 1 /N "
1 /N

FIG. 4. Weight distribution P{w) for p, =1.5, N =300. For
z &z„P(w) is well fitted by Eq. (21) (fit indistinguishable from
the data), while for z &z„P(w) is a power law [see Eq. (22)]
with v=0.7=@/2. We have shown the scales N ' and N
for reference.

)p-5 1/N
W

FIG. 5. Same as for Fig. 4, but for p =0.6( 1, N =400. For
z =12&z,', we find v=0.42& p/2.
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10+

P(NW)

N

&0
4-

10
W

)0+2

FIG. 6. Scaling of P„(w) for different sizes N as NII(Nw}, for
@=0.6 and z =4. Note that the departure from perfect scaling
for large Nw (dashed circle) corresponds to the fact that a finite

fraction of the weight remains in the region w = 1.

BG;;F =—
ii (23)

Similarly to the analysis of Eq. (13},one can show, using
Appendixes A and B, that the tail of the distribution of F
is given by

P (Fg, ) — p(z)N( w )' '/F; ',
F..~ oo

tl

(24)

where the average of V'w is taken over the sites ~i ), or
equivalently, at fixed z: (w}'~ = jodo' P(w/z)v'w. The
value of Y=N(w)' is another—indicator of the "localiza-
tion" of a state ~a) with eigenvalue E =z: if ~a) is
strongly delocalized, each w is of order 1/N and Y is of
order ~N which diverges for infinite N. If on the other
hand ~a) is strongly localized over p sites, w is of order
1/p on~ sites and essentially zero on all the others. Then
Y- i/p remains finite for infinite N. Hence the

ing the one-point Green function. Anderson [16],Thou-
less [24], and Abouchacra, Anderson, and Thouless [19]
have suggested looking at the imaginary part of the
Green function G, , (z+ie): its distribution over the sites
should allow one to distinguish between extended and lo-
calized states (see also Refs. [22,25,20]}. We propose here
an alternative way to look at the localization using G, , (z)
but again keeping z real (a discussion within the language
of [19] is given in Appendix C}. The localization cri-
terion becomes unambiguous: it is given in terms of the
distribution of the [iU,. ] over the sites. The derivation of
the equations which allow one to determine the localiza-
tion threshold is rather transparent. Our final equations
coincide with those obtained in [19] after some approxi-
mations, recalled in Appendix C.

We have shown in the preceding section that the distri-
bution of eigenvalues was given by the tail of the distribu-
tion of G;;:P(G;;)-p(z)/G;;. Let us now define (for finite

N)

knowledge of the tail of the distribution of F;; allows one
to know if the states are localized in the above sense,
which, as we shall show, coincides with the usual
definition of localization in terms of the imaginary part of
the self-energy. It is, however, clear that the inverse par-
ticipation ratio F can be finite while Y diverges for large
N, leading to mixed" states: this would be the case if a
finite fraction of the weight is concentrated on p sites. It
is also the case when the distribution P(w) is a power law
as in Eq. (22), but with —,

' & v&1 (see Appendix B). On
the other hand, for v & —,', and in the particular case of ex-

ponentially localized states v=0+, one indeed finds
+ & (x}.

One can easily obtain a recursion equation for F;, by
taking the derivative of Eq. (7) with respect to z. This
leads to the coupled set of equations

=z —g HO, G.. .
00 i=1

(25a)

Foo =1+g HO, F,,
600 i =1

(25b)

It is easier to solve this set of equations in terms of the
self-energy So and its derivative Do = —BSO/Bz. We find

iV

So= g
, (z —S;)

Ho;(1+D; )
Do= g

(z —S, )

(26a)

(26b)

These equations are exactly those obtained by
Abouchacra, Anderson, and Thouless [19], if So and Do
are identified as the real and the imaginary part of the
self-energy, in the limit where this imaginary part is
much smaller than the real part, i.e., in the localized re-
gime. (See Appendix C.) Note that (26a) gives back the
distribution of Ps(S) found above [Eq. (10)]. The range
of energies such that Eqs. (26} lead to well defined solu-
tions thus corresponds to localized states in the sense that
f&ao.

The localization criterion in terms of D, is the same as
for F... since F,, /G, , =1+D,. We immediately see that if
Y is infinite, F;; and D, are infinite with probability 1.
The converse is also true.

As mentioned above, Eq. (22) implies that the inverse
participation ratio is finite as soon as v & 1, while Y & ~
only if v& —,. This second criterion is stronger than the
first and we expect, from our numerical result v-p/2,
that while the first one is satisfied for p & 2 and z )z„ the
second can only be satisfied for p &1. This can be seen
directly by looking at the recursion relation:

N
Do= g Ho;F;; . (27)

i=1

By construction, the variables [F;;j and [H] are un-

correlated (see Sec. I). Then we can use the generahzed
central limit theorem (Appendix A) for Do. We find that
D0 is distributed according to a Levy distribution

I-„&2 '(Do ) for p & 1 and is infinite with probability 1 for
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Q(S,D )
A (S)

„Di+~ (28)

which can be expected to hold beyond a certain cross-
over, which is an increasing function of S. Integrating
over S can only slow down the decay of the distribution
of D, and thus g is constrained to be &p/2.

p&1: hence there is no localized state with Y& ao for
p&1.

We will closely follow the steps taken in Ref. [19]in or-
der to solve the above recursion equations. These equa-
tions are quite complicated because S0 and D0 are corre-
lated variables (they are related to the same set of [Ho, ]).
Let Q(SO, DO) denote their joint probability distribution.
We have seen above that PD(DO) = f d—S Q(S,DO) should

be a Levy distribution L„&~z '(Do). A reasonable as-
sumption for the tail of the joint distribution Q(S,DO} is
thus

Xe —ikH /(z —S)—ik'H /(z —S)

N

(29)

where Q means the double Fourier transform and Q2 the

Fourier transform over the second variable. In the limit

of k' going to zero, one can use the asymptotic form
of Q [Eq. (28)], which reads, in Fourier space,
Q2(S, k') =Qz(S, O)+a

lk'lpga(S)

(a is a certain
coefficient) and expand Eq. (29}to lowest order in k'. If,
as found below, g & 1, the resulting equation depends on
the two parameters z and g and reads

If we now suppose as above that the distribution of
(S++',D +'} is the same as that of (S,D ), we can
write (26) as an equation for Q (S,D):

k'H
Q(k, k')= f dSP(~)Q2

A(k)=E &z'@'(k) f dS lkl" "I' g —+ exp i —ri——+ sgn{k(z —S)]
2 2

(30)

dZ
A (S)

lz —Sl~+~" '

dS
A (S)
Sl v+p/2

(31a)

(31b)

we obtain from Eq. (31}a system of two linear equations:

X=x)X+x2Y, Y=y)X+yq Y,
with

(32)

and

x, =sin(np/2)8, +cos(m)M/2)8, ,

x2 =sin(n. g)8, +cos(n.g}8, ,

y, =sin(m. g)8, —cos(m.g)8, ,

yz =sin(m p/2)O, —cos(m p/2)8,

(33a)

(33b)

0,= I (g p/2)r(1——
71

—p/2)

X f + du —c(z)ue
0 7T

Xcos +zu ~"—C(z}uP(z)tan n.+
2

(34a)

A necessary requirement for states to be localized in the
sense that D remains finite when N~ 00 is that there ex-
ists an g & p/2 which allows one to solve this "asymptot-
ic" equation. The value z,' below which the solution
disappears will be the mobility edge in that sense (or at
least a lower bound of the mobility edge).

We shall find that the simplified equation (30) admits
solutions only for )M/2 & g & 1 —p/2 & 1. Introducing the
two variables

e, =r(q —
) /2)r(1 —~-) /2)

X f +" du —c(~)ue
0 7T

Xsin +zu "—C(z)uP(z)tan
2

(34b)

This system will have nontrivial solutions if its deter-
minant (x, —1}(yz—1)—y, x2 equals zero, thereby deter-
mining g as a function of z. We find that two solutions
indeed exist for lzl larger than a certain threshold z,'(p, },
which is plotted in Fig. 3: z,

' is an increasing function of
p, with z,'(0)=0 and z,'(1)=+~. As z reaches z,', the
two solutions merge into g(z,')=

—,'. Since one expects Do
(i.e., the imaginary part of the self-energy) to be smaller
and smaller as z increases, the correct solution for z &z,'

should be g+ & —,'. Note that sl+(z ~~ )=1—)M/2.

We can find a simple interpretation of the exponent g+
in terms of the distribution of the [w; ] discussed above.
We have seen that if G00 is very large it is dominated by
its largest term, i.e. , w/(z E). In the loc—alized phase
(z &z,'), this very large term correspond to w of order 1

(for infinite N), and z E«1 but still —of order 1 (and
not, say, N '. see Appendix B). Then Foo will also be
very large and is given by w/(z E) =——Goo/w. —
Thus we find. that 1/w = —FN, /G, —= 1+D0. G00 large
means by definition that S0 =z. The probability to find a
large Do with So-z is thus Q(z, DD}-A(z)/(Do + ).
This must be compared to the probability that G00 is
large for a fixed small w, which reads P(w)wp(z) (since
E —z must be smaller than w}. The change of variable
w =D0 ' finally allows one to find a relation between v
[see Eq. (22)] and g+, namely, v= 1 —g+(z). Hence v is



1818 P. CIZEAU AND J. P. BOUCHAUD 50

equal to —,
' for z =z,' and decreases to p/2 when z in-

creases, in qualitative agreement with our numerical data
for p & 1. For p & 1, however, we have not found a way
to compute the exponent v.

Let us conclude this rather dense section by summariz-
ing our results (see also Fig. 3). We have found the fol-
lowing.

(1) For p & 1, there exists a critical value z, of the ener-

gy separating extended states with Y=O from "local-
ized" states with Y & 0. These localized phases are, how-
ever, not of the usual type since Y is still infinite (i.e., the
imaginary part of the self-energy does not vanish on the
real axis), corresponding to algebraically localized states
with v & —,'. In more physical terms, this means, following
Thouless and Miller and Derrida [24,20], that the current
fiowing from an arbitrary input point is not zero (i.e., the
conductivity is finite).

(2) For @&1, all the states (except the zero-energy
states) have a finite participation ratio. However, only
those for which z &z,

' are "strongly" localized in the usu-
al sense that the current Sowing from an input site is zero
(Y is finite). For z &z,', a finite fraction of the wave func-
tions is in some sense "delocalized, " i.e., is scattered over
O(N) sites. We have obtained an analytical expression of
z,'(p) which diverges for p=l, and computed the ex-
ponent v which describes the weight distribution func-
tion. Let us now see how these properties are reSected in
the level spacing distribution.

D. Distribution of level spacings

Another quantity of great theoretical (and experimen-
tal) interest is the so-called level spacing distribution, giv-
ing information on the spectrum at the smallest scale, i.e.,
1/N. Define the level spacing as the difference between
successive eigenvalues E +&

—E . Its mean value gives
the local density of states [Np(E )] '. Then the in-

teresting quantity to consider is the distribution of the
dimerence between successive eigenvalues normalized to
1, i.e., s =Np(E )(E +, E), for all —the eigenvalues
such that Z &E &z+dz. Generally, this distribution

P, (s) depends on z. In the case of exponentially localized
states, an eigenvector typically spreads over a finite num-
ber ofp sites. The overlap between two such eigenvectors
corresponding to successive eigenvalues will typically de-
crease exponentially as a function of the size 1V of the sys-
tem. The eigenvalues are thus uncorrelated and the
level spacing distribution obeys the Poisson law
Pz(s)=exp( —s). In the case of GOE matrices, all the
states are extended, and hence level crossings are forbid-
den: the eigenvalues are strongly correlated by this level
repulsion and P, (s) is well described by the "Wigner sur-
mise" P (S)=(m/2)s exp —ms /4. This distribution is
expected to be to a large degree universal and appears in
many situations (extended chaotic systems, transfer ma-
trix of weakly disordered metals, etc.).

Very recently, however, there has been quite a number
of alternative suggestions arising from the studies of
sparse banded matrices [26,27], billiards [28], or the lo-
calization transition [29-31]. It is thus of interest to dis-
cuss this distribution in the case of Levy matrices. The

results once again depend on p.
(1) For p & 1, the situation is relatively simple: as

shown in Fig. 7, either z &z,' and P, (s) is of the Wigner
type [this is expected since a fraction of the state is "ex-
tended, " i.e., lives on O(N) sites], or z & z,' and a Poisson
distribution is found, reSecting "strong" localization
(Y& oo).

(2) For p, & 1, however, we find that the distribution is
very close to the Wigner surmise for z &z, (Fig. 8). For
z &z, the distribution is nonunioersa1 and depends con-
tinuously on z, which might be related to the unusual
(power-law) nature of the localized states with Y= ~. As
expected, it is intermediate between Poisson's law and the
Wigner surmise, with P, (s) rising from 0 for small s much
more abruptly than n s /2 Po.isson's law is only
recovered for z going to infinity.

We have tried to fit our numerical P, (s) with the so-
called "Brody" distribution -s~exp( —s~+'} [32] without
sources. This is surprising in view of the reported statist-
ical robustness of this distribution in other contexts [26].
Two other possibilities could be explored. One could, fol-
lowing Pichard and Shapiro [30], propose that the
"Coulomb" logarithmic interaction in the Dyson gas
language is progressively screened out by localization
effects, leading to a nonuniversal P, (s} interpolating be-
tween the Wigner surmise in the absence of screening and
the Poisson distribution for complete screening (see also
[33]). However, contrarily to the unitary case, the analyt-
ic form of P, (s) for intermediate cases is not known and a
Monte Carlo calculation would be needed for a detailed
comparison.

Another interesting route is the "Brownian" model of
Dyson, Pechukas, and Yukawa [34,33], who propose to
study the eigenvalue statistics by following their "posi-
tion" as a function of "time, " corresponding to the addi-

10

P(S)

10

S

FIG. 7. Level spacing distribution for p=O. S &1, N =800,
which is well fitted by the Wigner distribution P (s) for E (z,'
and by the Poisson distribution P~(s) for E&z,'. Note that
E =6 is close to the transition, and could correspond to the dis-
tribution studied in [29].
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P(S)

0.5

0

chose to work only with real (but not self-averaging)
quantities. The tail of the density of states strongly sug-
gests that the high-energy states are localized, and that a
localization transition might occur. We have demon-
strated the existence of such a transition numerically by
studying the inverse participation ratio and analytically
through the study of the one-point Green function. In-
terestingly, the location of the transition is difFerent for
these two quantities, suggesting the existence of a mixed
phase where the states are both localized and extended,
depending on one's standpoint. The situation is summa-
rized by the phase diagram of Fig. 3. Finally, we have
discussed the level spacing distribution, which is found to
be nonuniversal in a certain regime, and have proposed
possible explanations for these numerical findings.

In view of the growing application field of Levy distri-
butions in physics, we hope that the understanding of
wildly fluctuating random matrices will also prove
useful —for example, in economical or financial theories
[37].

FIG. 8. Level spacing distribution for @=1.5&1, %=300.
For E &z„P,(s) is again well fitted by the Wigner distribution.
For E &z„however, P, (s) departs significantly from a Poisson
distribution (see inset), which is only reached in the limit
E—+ ~. This persists for larger values of N. Note that the Bro-
dy distribution was not found to be an adequate representation
of P, (s) in that region.

tion of another "slice" of random matrix. This leads to a
Langevin-like equation with a potential term describing
the level repulsion and a noise term defining the "temper-
ature. " One can argue that in the Levy case, this noise
term will acquire an infinite variance. Interestingly, very
little is known about the problem of "Levy flights" in the
presence of an external force, and in particular about the
generalization of the Boltzmann equilibrium distribution

(see [35]).We have shown [36] that in the case of a single
particle in a quadratic well, the equilibrium distribution
is a Levy law of width related to the curvature of the
well. This can be interpreted as the superposition of
Boltzmann weights with a broad distribution of tempera-
tures, decaying as T ' "~, such that ( T ) = 00. Gen-
eralizing this result to the logarithmic repulsion term
which appears in the present level spacing problem, one
may argue that the small Sbehavior of P, (s) should be of
the form P, (s)=(logs) "~. This gives rise to a very
abrupt rise of P, (s), qualitatively consistent with our nu-

merical observations. Clearly, however, more work is
needed to clarify this point.

IV. CONCLUSION

Let us summarize the main points of our work. We
have introduced a family of random matrices, motivated
both by rather mathematical considerations and some
specific physical situations. Our ensemble of Levy ma-
trices generalizes the GOE in the same sense as the Levy
distributions generalize the Gaussian. We have obtained
analytically the density of states for such matrices, and
confirmed our calculations by numerical simulations.
Our analytical approach is somewhat original since we
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APPENDIX A: LEVY DISTRIBUTIONS

Def[nitions

A centered Levy distribution L„'~ is known through
its Fourier transform f(k):

1. '~(x)= f dk E(k)e'1

2m

ltd, (k) = —C
~
k~"[1+ip sgn(k)tan(mp/2) ] .

(Al)

(A2)

The three parameters p, C, and p are easily interpreted
if we study the tails of this distribution:

L '~(x) Cg
~1+@

with C+ and C given by the relations

C+ —CP=, C=y„(C++C ) .
+

(A3)

(A4)

p is the exponent describing the decay far in the tail, and
for 0 &p & 2 the distribution has an infinite variance. The
mean value is finite only for p, ) 1. p characterizes the
asymmetry of the law: —1 p~+l. If p=kl, C+ =0
and the law is maximally disymmetric and if p=0, the
law is symmetrical. C is a "generalized variance" in the
sense that the typical value of x is C'~" (y„ is a @-
dependent numerical coefficient).

Attraction basin of the Levy distributions

There exists for infinite variance distributions an
equivalent of the central limit theorem for finite variance
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distributions. Consider a set of independent variables
{x,. j, , z distributed according to a power-law distribu-
tion P:

C~
P(x).-*-N ~x~'+~

(A5)

If S=g+ &x,. then, when N goes to infinity, P (S) will
have a stable form. If p & 1, S is distributed according to
a Levy distribution P (S)=L„'~(S)with C and p given by
the relations (A4). If p& 1 then P(x) has a finite mean
value x, and P(S)=Lc'~(S Nx), —with C and p still
given by the relations (A4).

A generalization of this theorem is the case where
S=gN &c;x; with the set {x;j;,~ distributed as previ-
ously, and {c;j;,~ is a set of variables stdllciently regu-
lar. Then in the limit where N goes to infinity, and for
@&1,S is distributed according to a Levy distribution
L„'~(S)with

C —C
p= —g sgn(c;)

+ — i=1
(A6)

N

C=y„(C, +C ) —y ~c,. ~~

i=1
(A7)

Y= '2 (A8)

Calculation of the inverse participation ratio
for a Levy distribution

Let us consider a set of {x,,x; &Oj, , N distributed ac-
cording to a power law P(x)-„„1/Nx'+, with v &2.
The inverse participation ratio associated to this set is
given by (see Sec. III A)

APPENDIX 8: DISTRISU.r.xON OF
THE LOCAL %'EIGHTS

Tail of the distribution of 6;;

The derivation of the density of states given in Sec. II
implicitly assumed that w —I/¹ For localized states,
however, P(w)-1/(Nw'+"), with v&1 and hence w is
typically of order I/N'~" Th. e largest term in G;; [see
Eq. (2)] for large G;, is no longer given by the smallest
z Eb—ecause this term will be of order 1/N and so
w/(z E—)-N' ' ' which goes to zero because v&1
for localized states. We will show here that very large G;;
is still dominated by one of the term w/(z E)—but with
both w and z —E of order 1 compared to all scales in N.

The total number of {w j of order 1/N» with
O&y& 1/v is given by NP(N «)N «-N»". On the oth-
er hand, the smallest z —E among N~" such terms is of
order 1/N«". Then the largest term w/(z E) w—ith
w —1/N» is of order N»' " and goes to zero for all
yAO. Then we see that the largest term in the sum
defining G;; is given by w and z E(sm—all) but of order
1 when N~ ~. The sum rule J o (w~z)w dw equals 1/N
is conserved even if all w =N ~ are discarded because,
for v & 1, the integral conuerges around w =0. Hence our
central equation (14) is also true for localized states.

We can use similar arguments to show that the tail of
the distribution of F;; is given by (24) for all the values of
V.

Inverse participation ratio

We give here more information relative to the inverse
participation ratio when the {w j are distributed accord-
ing to a power law P(w) ~ 1/w'+" when w in the region
N ' "«w «1. The condition of normalization of the
state J Odw P(w)w =1/N gives

P(w)-, for v&1,1

Nw
(8 la)

Applying the above theorems, one sees that the numera-
tor is of order 1 and distributed according to a Levy dis-
tribution L,/2 with p= 1 and C=y„&2. But the typical
value of the denominator depends on the value of v. If
v& 1 then the distribution of x has a finite mean value
-N ' and the denominator equals, in the limit N going
to infinity, N x, which is of order N. Then the inverse
participation ratio is zero for N infinite. For v & 1, how-
ever, the distribution does not have any mean value and
the denominator is the square of a quantity distributed as

C=y~P=1
a Levy law L . The inverse participation ratio is
then of order one, but is not self-averaging. One can ex-
plicitly make the calculations for the average quantity Y
on the difFerent sets {x;,x;&Oj, , N for N going to
infinity. One finds

P(w)-
&

for v& 1 .
1

N "w '+ (8 lb)

I'-O(1) for v& 1,
I'-0(N' ") for 1 & v & 2,

(82a)

(82b)

In the case v& 1 the integral is divergent and one must
add a cutoff in this scaling form of the distribution at
1/N which becomes the typical value of the
Translating this in real space, we find that it corresponds
to volume dependent wave functions, i.e., w (R )
= 1/N" 'R ~ with y =d /v, characteristic of extended
states. If we now calculate the inverse participation ratio
I'=N fOdw P(w)w, using (81), we find

y 1(2—v)
I (2)I (1—v)

1Y-0 — for v&2 .
N

(82c)

Note that very similar calculations appear in the spin-
glass literature, for reasons discussed in [38,39]. In par-
ticular, the full distribution of Yean be discussed [39].

The inverse participation ratio is then finite only for
v&1. Similarly, T=N J Odw P(w)v w is finite only when

v& —'.2'
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APPENDIX C: DISTRIBU IION OF THE IMAGINARY
PART OF THE SELF-ENERGY

Anderson, Thouless, and Abouchacra et al. have sug-
gested looking at the distribution of the imaginary part of
the one-point Green function (the local density of states)
in order to get some information about the localization
transition. There is in fact a huge difference for this dis-
tribution for extended and localized states, even if the
mean value over the sites (i.e., the density of states} is of
course regular at the transition.

Let us write the imaginary part of 6;; as

greater with probability e and of order e(e'~ ') with

probability 1 —e for 5 & —,
' (respectively, 5 & —,

' ). The mean

value over the sites of this distribution is thus finite: it
must be equal to harp(z). In the limit where e goes to 0,
ImG is always zero except on a finite set of points where
it is infinite. It is the difference between Eqs. (B2) and
(B3) which, in principle, alllows one to distinguish be-

tween extended and localized states, and which can be ex-
ploited to describe analytically the transition.

Let us rewrite Eq. (7) for the imaginary part of the self
energy

N W~i
Im(G;;)=e g

i (z E)—+e

N

ImXo—=ho= g HoilmG;; . (C4)

The interesting limit is to take N~ 00 first, and then the
limit @~0 is taken, which means for finite 1V and e:
1/N«e«1. Let us discuss Eq. (Cl) under the as-
sumption that the quantities w; and z —E are uncorre-
lated. The distribution of Im(G, , ) thus depends on the
distribution of w,. for a axed site ~i ). One should care-
fully distinguish this distribution from the one discussed
in the text, Eq. (22), which pertains to the distribution of
w,. for a fixed ~a).

The large terms in the sum (Cl) are those with
z E-O(e—). As the other terms will only contribute to
order e, we will neglect them as 1ong as we are interested
in large values of ImG;;. In the case of extended eigen-
states (z &z, ) where the projection w; is of order 1/N,
one finds that

No;(e+b, ; }
ho=

;=i (z —S;) +(e+b,;)
(CSa)

The variables [ImG;; ] and [Ho; ] are uncorrelated (see
Sec. I). If e & 0, ImG, , has an upper cutoff. Then we can
use the generalized central theorems for b,o. We find that
P(4o)=L„)~z '(ho}, with C=O(1) for extended states
and C =et'~ (or C =e'"~ "'r ") for localized states and
5(z) & —,

' [respectively, 5(z) & —,
' ]. Whether or not 60 tends

to zero for small e should allow us to find the nature of
the states around a given energy z.

The self-consistent equation (7} is now written in terms
of the real and imaginary parts of self-energy

X; =S;+ih; as

Im(G;;) =f dE p(E) z 2
=np(z), e~0 .

(z —E)z+e2
Ho, (z —S;)

;-| (z —S;) +(e+5;)
(C5b)

p(z))/e

P(g =ImG)- '

p(z)e
1+5 for 5& —,

' .
(C3)

This last equation means that ImG is of order 1/e or

(C2)

On the other hand, for z &z„our numerical results
suggest that w; for a fixed ~i ) is distributed as a power
law P(w)-c'(z)/Nw'+ 1', with 5(z) =—,

' for all z &z, (it
is difficult to assert the dependence of 5 on z}. The imagi-
nary part of 6;; is thus the sum of the product of two ran-
dom quantities, w; and el[(z E) +e ] bo—th distribut-
ed according to a power law with an upper cutoQ{ w, & 1

and el[(z E) +e ] &1/—e). The distribution of ImG, ,
depends on the relative value of the exponents of the
tails, namely 5(z) and —,'. We find (see Appendix A)

It is diScult to find the stable distribution of Xo from
these equations in the general case. However, in the case
z & z, where the states are localized, one expects from the
above discussion, that 6 should be of order e (or
e'~'s "). Then the terms (e+b; ) can be neglected com-
pared to (z —S,. ) . It is then natural to consider, for
5(z) & —,', the rescaled quantity E=6, /e, for which the res-

caled equations read

Ho;(1+6;)
(z —S;)

2
Ho;

z —S.

(C6a)

These equations are exactly the equations obtained by our
method (see text) considering z real and looking at the tail
of the distribution of the derivative of Goo. This
equivalence is in fact a consequence of the analyticity of
Goo(z) [24].
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