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Irreversibility for a class of chaotic systems is seen to be an exact consequence of the dynamics

through the use of a generahzed spectral representation of the time evolution operator of probability
densities. The generalized representation is valid for one-dimensional systems when the initial probabili-

ty density satisfies certain "physical conditions" of smoothness. The formalism is first applied to the
one-dimensional multi-Bernoulli map, which is a simple map displaying deterministic diffusion. The
two-dimensional, invertible baker and multibaker transformations are then studied and the physical con-
ditions determining which discrete spectral values are realized are seen to depend on the smoothness of
both the density as well as the observable considered. The generalized representation is constructed us-

ing a resolvent formalism. The eigenstates of the diffusive systems are seen to be of a fractal nature.

PACS number(s): 05.45.+b, 05.20.Dd, 05.70.Ln, 05.60.+w

I. IIV rRODUCr ION

In the world around us irreversibility plays a funda-
mental role. On the other hand, the basic dynamical laws
of physics are expressed as time-reversible equations,
where time plays only a parametric role. For some years
it has been recognized that unstable dynamical systems
are the most typical in nature and that they play an
essential role in the elucidation of irreversibility [1]. Re-
cently, irreversibility for classes of chaotic systems has
been discussed using the explicit construction of the gen-
eralized spectral resolution [2-4]. The main idea is that
irreversibility can be understood from the intrinsic prop-
erties of the dynamics without using extradynamical ar-
guments such as coarse-graining. For unstable systems
the concept of a trajectory loses operationa1 meaning,
leading one to consider the evolution of probability densi-
ties. Irreversible behavior, such as approach to equilibri-
um, can be understood from the purely mathematical
spectral properties [5,6] of the full time evolution opera-
tor for densities. For a class of systems the time evolu-
tion of probability densities is exphcitly decomposed into
a sum of exponentially decaying eigenmodes —the gen-
eralized spectral resolution [7].

Since the dynamics is time reversible, we need to speci-
fy a supplementary condition to decompose the time evo-
lution into exponentially decaying eigenmodes. Ordinari-
ly, a kinetic equation is derived using approximation
schemes or extradynamical arguments such as coarse-
graining. We assert that the supplementary conditions
for irreversibility have to be determined from the dynam-
ics. For certain chaotic systems Ruelle [5], Pollicott [6],
Baladi and Keller [8], and Rugh [9] showed that under
the condition of smoothness of observables, the spectral
radius is bounded exponentially and only certain discrete
spectra are realized. This means that physical time scales
which characterize irreversibility have been made explicit
by the introduction of this condition.

The decomposition of the time evolution of probability

densities into a sum of exponentially decaying modes was
introduced by the Brussels group for thermodynamic sys-
tems using a weak coupling expansion [10]. For maps the
time evolution operator of densities is known as the
Frobenius-Perron operator [11]. Mori, So, and Ose [12],
Doree [13],and Roepstorff [14] studied exponentially de-
caying eigenstates of the Frobenius-Perron operator of
some simple dissipative chaotic systems. Their eigenval-
ues are related to the Ruelle-Pollicott resonances [5,6].
These resonances are the zeros of the Ruelle g function
and may be obtained by counting the periodic orbits.
From this point of view, Dana [15]obtained the diffusion
coeScient for some simple Hamiltonian systems and
Christiansen, Paladin, and Rugh [16], Artuso [17], and
Gaspard [18]obtained the generalized spectrum for some
highly chaotic systems.

In this paper our main interest is in chaotic systems
which display thermodynamic behavior such as diffusion.
For the systems we consider, there exists a simple in-
tertwining relation between the Frobenius-Perron opera-
tor and the derivative operator. Using the intertwining
relation, we can show under which conditions the irrever-
sible kinetic description becomes valid, even when the un-
derlying trajectory dynamics may be time reversible. The
condition is essentially m-times differentiability of the
probability density for a one-dimensional system. For a
two-dimensional system it is necessary to have
differentiability for both the probability density and the
observable. These conditions reduce the spectral radius
as exp[ —mA, ], where A, is the Lyapunov exponent, and
introduce physical time scales into the spectrum. In the
limit of m ~ 00, we recover the result of the general argu-
ment by Rugh [9] for hyperbolic analytic maps.

As Artuso [17] and Gaspard [18] calculated for
diffusive systems, the generalized spectrum can be ob-
tained as zeros of the Ruelle g functions by counting
periodic orbits. In this paper we explicitly construct the
eigenstates using a method based on the Euler-Maclaurin
expansion and the intertwining relation. Since the eigen-
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states give us the coeScients of the exponentially decay-
ing modes, the explicit construction becomes important
for comparison with experimental data.

The one-dimensional dyadic Bernoulli map forms the
basis of our analysis so we review it in Sec. II. In the Ber-
noulli map the evolution of a probability density is just a
simple decay to the equilibrium state of a constant densi-
ty. "Physical" decaying eigenstates have been construct-
ed which are associated with discrete eigenvalues corre-
sponding to physically observed time scales. The degree
of smoothness of the initial density determines which
discrete decaying modes are realized [4,19]. A spectral
decomposition of the density in terms of the determined
physical eigenstates and a remaining contribution is seen
to correspond to a Euler-Maclaurin expansion.

In Sec. III we consider a one-dimensional model of
deterministic difFusion which is constructed by coupling a
chain of Bernoulli maps. It is referred to as the multi-
Bernoulli map [20-22]. The evolution of this map is
closer to more realistic thermodynamic systems as the
dominant mode is diffusive. The one-dimensional maps
that we study are not governed by unitary evolutions
since they are noninvertible. The adj oint of their
Frobenius-Perron operator is isometric and so they share
many mathematical features with the unitary case. The
physical behavior of the one-dimensional maps is in-
teresting in its own right also.

We construct physical eigenstates of the multi-
Bernoulli map using a resolvent formalism and an expan-
sion in terms of a basis of eigenstates of the Bernoulli
map. We discuss how the spectrum is determined by the
smoothness properties of the functions in the domain of
the Frobenius-Perron operator. The intertwining relation
between the Frobenius-Perron operator and the deriva-
tive operator with respect to the spatial coordinate plays
a key role in this analysis. The evolution of the system
follows an approach to local equilibrium inside each cell,
and then a global approach to equilibrium through
difFusion between cells. Since we have the exact disper-
sion relation, any higher order diffusion coeScient, such
as the Burnett coefficient, may be obtained. The left
eigenstates of the multi-Bernoulli map are seen to have a
fractal nature.

The two-dimensional area-preserving baker transfor-
mation is then studied using a two-dimensional, Euler-
Maclaurin expansion. Here smoothness of both the ini-
tial density and the final observable are needed to deter-
mine the discrete spectral values that will be realized.
The physical eigenvalues of the baker transformation are
degenerate so one has associated eigenspaces instead of
eigenstates. A projective decomposition of the resolvent
is used to isolate contributions from the poles. The expli-
cit form of the time correlation function from the first
three poles is given and the connection with subdynamics
[2,10] is discussed. Compact forms for the time correla-
tion function are given in terms of a set of self-similar
functions.

Finally, we consider the two-dimensional multibaker
map [18,22] using the Euler-Maclaurin expansion. The
multibaker map is the two-dimensional, area-preserving
version of the multi-Bernoulli map. As in the multi-

BernonBi map, we use a discrete Fourier transform to
separate the evolution into independent components.
The analysis of the transformed multibaker map is quite
similar to that of the baker map, but the form of the off-
diagonal part of the Frobenius-Perron operator allows for
more transitions. The explicit form of the time correla-
tion from the first two poles is given.

The classic reversibility paradox and recurrence para-
dox, raised against an irreversible description of time-
reversible dynamical systems, are completely resolved in
the physical spectral representation. The time-reversible
unitary evolution of the baker and multibaker transfor-
mations becomes irreversible. Since the probability den-
sity is irreducible to trajectories, the recurrence of points
in phase space does not confh. ct with the fact that densi-
ties do not recur. Also, we are able to see explicitly for
the systems considered here how the irreversible kinetic
description arises from the instability of the underlying
time-reversible dynamics. We expect that features of our
analysis are applicable to a wide class of systems, includ-
ing true Hamiltonian systems.

II. EVOLUTION OF DENSITIXS
IN CHAOTIC SYSIMPS

p(x, t+ 1)= Up(x, t ) = p(x, t)
,,„=~(,) I

f'(&)
I

(2.1)

where the sum is over the inverse branches of the possibly
many-to-one map f (and we have assumed that the Jaco-
bian of the transformation is 1). For invertible maps, U is
unitary in a Hilbert space setting.

The adjoint of the Frobenius-Perron operator is the
Koopman operator [11],U, which gives the evolution of
an observable A(x ) as

UtA(x)=—A(f(x)) . (2.2)

The solution of the equation Up'""(x ) =p'""(x ), i.e., the

We are interested in investigating the dynamics of
chaotic maps from the point of view of nonequilibrium
statistical mechanics. Instead of following an individual
iterate of the map, which would correspond to calculat-
ing the trajectory of a Hamiltonian system, we study the
evolution of a probability density of iterates evolving un-
der the map [11]. Even though the evolution of iterates is
deterministic because we have a rule for determining the
iterates, the sensitive dependence on initial conditions
makes following the trajectory impossible from any prac-
tical point of view [23]. In this sense determinism is only
a mathematical property for chaotic systems but not a
physical property. It is thus natural to consider statisti-
cal properties of the iterates. We will see that when the
domain of the time evolution operator of probability den-
sities is restricted, the mathematical representation of the
time evolution matches the physically observed behavior.
The precise restriction that is necessary will be given for
the individual models we will study.

The time evolution of a probabihty density p for a map
f is governed by the Frobenius-Perron operator U, which
advances the density by a unit step as
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eigenstate of U with eigenvalue 1, gives the invariant den-
sity of the map from which time averages of observables
may be obtained for maps which are ergodic. We refer to
the invariant density as the equilibrium state of the map.
(In this paper we always consider the measure to be Le-
besgue measure. In general there may exist invariant
densities corresponding to singular measures. )

e„t (x )=exp[2n i2"(21+1)x], (2.7)

where n is a non-negative integer and I is an integer
[4,13,24]. Since any nonzero integer k can be written
uniquely as k =2"(21+1) for integers n ~ 0 and
—ao &I & ao, e„I(x)and 1 are the Fourier basis of
L2(0, 1). The states e„I(x ) are "shift states" of U~ as

A. The Bernoulli map

We first consider the analysis of the dyadic Bernoulli
map which is a transformation on the unit interval given
by the rule

e„,,(x) if n)0
Use„l(x ) =

0 if n=0. (2.8)

x„+,=f(x„)=2x„(mod1) . (2.3)
From the shift states we can obtain the "coherent" eigen-
state P, &(x ) of Uz, with complex eigenvalue z [4,25], as

The Bernoulli map is chaotic with Lyapunov exponent of
ln2. Since the Bernoulli map is noninvertible, its evolu-
tion is not time reversible. We review here the analysis of
the Bernoulli map and consider in Sec. III the noninverti-
ble multi-Bernoulli map because their mathematical
analysis is simpler than and they are the one-dimensional
projections of the invertible baker and multibaker maps
that wi11 be considered in Secs. IV and V.

The Frobenius-Perron operator U~ for the Bernoulli
map is given as

p(x, t+1)= Uzp(x, t )

1 x x+1
p —,t +p

2 2' 2
(2.4}

It is clear that the uniform density is the invariant densi-
ty of Uz. The evolution of a nonequilibrium density can
be obtained from the spectral decomposition of Uz.

The Koopman operator, Uz, for the Bernoulli map
acts on an observable as

A(2x) if 0&x & —'

UzA(x)= A(2 1) (2.5)

B. Spectral representations of the Bernoulli map

The spectral representations of the time evolution
operator of probability densities evolving under the Ber-
noulli map have recently been studied by several authors
[2—4]. Various spectral representations of the
Frobenius-Perron operator are obtained depending on the
functional space one is considering the operator to act in.

In the Hilbert space L2 (on the unit interval) consider
the states e„I(x ) defined by

In the following we employ a Dirac bra-ket notation
where (f lg ) denotes the inner product off and g:

(

fig�)

—=f dx f'(x)g(x) . (2.6)

For an operator 0 we will write (f lOg ) as (f l Olg ) in
the sense of its matrix elements. We will also formally
write an operator 0 as g;la;)(b, l if matrix elements of
0 are written as

$, 1(x)= g z"e„&(x).
n=0

(2.9}

For lz l
& 1, the series converges absolutely and uniformly

and defines a continuous square-integrable function. The
spectrum of Uz in L2 being a closed set [26] therefore
fills the unit disk lz l

& l.
The Koopman operator, Uz acts on the states (2.7) as

the shift

Use„((x)=e„+., I(x), n 0 (2.10)

Uzp(x)=( lip)+ g g e„t(x)(e„+,Ilp),
n =01=—oo

(2.11)

where we assumed p(x) CLz and used the fact that 1 is
the invariant density.

If dp/dxEL, z, then, integrating by parts, we may
rewrite

for which no eigenstates in L2 (except for the trivial con-
stant eigenstate with eigenvalue 1) can be constructed
[27]. Since Uz is isometric, i.e., Uz Uz =1, it necessarily
follows that it can only have eigenvalues of magnitude 1

in Hilbert space.
From the coherent states (2.9) a density can be con-

structed that decays at any rate [4,19]. For chaotic sys-
tems with a uniform stretching factor, one would expect
the Lyapunov time, i.e., the inverse of the Lyapunov ex-
ponent, to play a role in the approach to the equilibrium
density. In experimental observations (i.e., the power
spectrum from a computer simulation) these are the
physical time scales which are observed. As we will show
below, for a smooth initial probability density the decay
rates are uniquely determined and are characterized by
the Lyapunov time. The decay rates correspond to poles
in the Fourier transform of the correlation function and
are naturally interpreted as resonances of the dynamical
system [28]. The poles have been obtained for certain
systems by Christiansen, Paladin, and Rugh [16],Artuso
[17], and Gaspard [18], using periodic orbit theory and
dynamical g functions. They are called "Ruelle-Pollicott
resonances" [5,6].

Consider U~p(x) expanded in terms of the shift states
as
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1 —1

2' i2m2"(21+ 1)

X(p(i) —p(0) —&e„,, I p&) .
d

dx
(2.12)

Using this equation, (2.11) is

U~p(x ) = & 1 ~p &+—y' "(x )f dx', p(x )2' 0 dX'

dx'y' '(x —2'x'), p(x'),(1) (2.13)

where we de6ned

y(m)(» )
—y 2nikx

k~0 (277lk)' (2.14)

for m ) 1 and y' '(x }—= l.
If d pldx EL2, then, by repeated integration by

parts, we obtain

U'p(x)= y e ' 'y' )(x)&y( )lp&
m=0

&(M)&+())t) (2.15)

where the exponents y' )=m ln2, formally y' '(x )

=d /dx, and

dM
'(x, t)=——f dx'y' '(x —e~ 'x') p(x') .

where e is an io~itesimal positive number.
The mathematical structure of the generalized repre-

sentation may be understood in the sense of a Gelfand
triplet (rigged Hilbert space) [31,32], PC%PC Pt .The left
eigenstates y' '(x ) belong to the larger functional space
of Schwartz distributions 1t), rather than to the ordinary
Hilbert (L2) space %. Therefore, the initial probability
density p(x) should belong to the smooth test function
space P; otherwise, the generalized spectral resolution
(2.15) is not valid. Clearly, a "point distribution, "
5(x —xo), it not applicable for (2.15}. This is consistent
with the fact that a trajectory shows no approach to equi-
librium.

For initial densities which are entire functions of ex-
ponential type less than 2m, the value of M in (2.15) may
be taken arbitrarily large. Taking M —+ 00, we obtain the
complete decomposition into independent decaying
modes [3]. This restriction on the density seems to us
rather stringent from a physical point of view and so it is
much more natural to consider the evolution as in (2.15).
Also, the slowest decaying modes, which are dominant
except for very short times, are determined when the den-
sity is just differentiable to a few orders.

C. The Euler-Maclaurin exyan~ion

The expression (2.15) for t =0 corresponds to a Euler-
Maclaurin expansion [3,33] of p(x ). For convenience we
can rewrite (2.15}for t =0 as

Since
(2.16)

M dm
p(x)= g P (x)f dx' p(x')

m=0 o dX™

—%st(x ).f dx'e'(x'), ~p(x'),
0 dx

(2.18)

the last term of the right-hand side in (2.15) is decaying
as ( —,') ' or quicker. As a result, if d pldx~&Lz,
the slowest M exponentially decaying modes
(m =0, 1, . . . , M —1}are uniquely determined and their
decay rates are m ln2. These correspond to the Ruelle-
Pollicott resonances [2,5,6].

The expression (2.15} is a generalized spectral resolu-
tion of Uz. The right eigenstate y' '(x ) is equivalent to
the mth Bernoulli polynomial p (x } defined by the gen-
erating function [29]

ue""/(e" —1)= g P (x)u
m=0

We note that p (x) are Bernoulli polynomials with a
nonstandard normalization and the argument is taken
modulo 1.

The left eigenstate y™(x) can be interpreted as a gen-
eralized function on the space of smooth test functions
expandable in terms of the right eigenstates. In the sense
of Mikusinski and Boehme [30],the derivative operator is
considered as a generalized function. More explicitly,
y' '(x ) is written in terms of the (m —1)-times derivative
of the Dirac 5 function as

y (x)=(—1)™1[5™1)(x —1+e)—5( "(x—e)],
(2.17)

where

X~(x ).e(x') = y p~ „(x)e„(x')

and

f(x)= g P (x)&P ~f &
—$1)t(x)&ega)t~f &, (2.19)

where p (x)=d /dx =y' '(x). In the space of func-
tions whose Mth derivative belongs to I-2,

g Ip &&p I

—l&~&&e8jtl=1st
m=0

(2.20)

is a unit operator. %e refer to the basis of this expansion
as the Bernoulli basis (with remainder).

The Bernoulh map satisfies the intertwining relation
between the Frobenius-Perron operator and the deriva-
tive operator of

( d Idx ) Ul,f(x ) = ,' U~ (d Idx )f(x ) . —

PM „(x) = e' /(2m—ik )

for k%0, pst 0(x ) =0, and ek(x ) =e ' . Using a bra-ket
notation, we can write the Euler-Maclaurin expansion of
f(x ) up to Mth order as
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We may iterate this relation to obtain

x
Ug f(x)=(—,') "Us f(x)

x

iff(x ) is at least m-times difFerentiable.
Using the Bernoulli basis, the intertwining relation,

and that Us =1,we reproduce (2.15) as

p(x, t )= Usp(x, O)

M= X ~-(»&&-~Ua~~&-+M(x)&e&~~U'~~&
m=0

= g e-r "p.( )&H. lp&
m=0

The multi-Bernoulli map is given by the rule

4X„—3q —1 if q +X„(q+—,
'

X =+(X )= '"+' " 4X„—3q —2 if q+ —,
' &X„&q+1,

(3.1)

where q is an integer. Since the stretching factor is uni-
formly 4, the Lyapunov exponent of the map (3.1) is ln4.
The multi-Bernoulli map is illustrated in Fig. 1.

We decompose X„into its integer part q„and its frac-
tional part x„E[0,1). The Frobenius-Perron operator
U s of the multi-Bernoulli map (3.1) acts on a probabili-
ty density as

e—r '$~(x)&eg,
~ Us ~p& . (2.22)

1 x 3
U sp(q+x, t ) =—p q

—1+—+ , t—

The intertwining relation (2.21) plays the crucial role in
allowing us to use the Euler-Maclaurin expansion to ob-
tain the independent decaying modes and a background
term dependent on the smoothness of the density. The
corresponding relation for the maps to be studied will
also play a fundamental role in our analysis.

III. THE MULTI-BERNOULLI MAP

x 1
+p q+ —+—,t

4 4'

+p q+ —+—,tx 1

4 2'

+p q+1+—,t4' (3.2)

We have seen in Sec. II that the evolution of a density
under the one-cell Bernoulli map is a simple exponential
decay of modes, with constant decay rates, to the equilib-
rium state of a constant density. The irreversible
behavior of more realistic thermodynamic systems is
characterized by transport properties and hydrodynamic
modes. In order to understand the dynamical origin of
such behavior, we consider in this section and in Sec. V a
system of chaotic maps which are coupled in order to al-
low transport of iterates throughout the composite sys-
tem. These systems are models of deterministic difFusion.

We will see that the diffusive modes are modes of the
Frobenius-Perron operator itself and that the diffusion
coeScients are obtained from the eigenvalues of the
Frobenius-Perron operator. Eigenstates associated with
the other Ruelle-Pollicott resonances of the system are
also constructed. The latter eigenstates decay with rates
that are multiples of the Lyapunov exponent and so are
quickly damped and represent a correction to diffusion
for short times. Also, since we have the exact dispersion
relation, the higher order diffusion coefBcients, such as
the Burnett coefBcient, are also obtained.

The map that we study is made up of cells of Bernoulli
maps that are coupled. It is referred to as the multi-
Bernoulli map [20]. The map may be obtained in various
ways, and we will see in Sec. V that it is the one-
dimensional projection of the area-preserving, two-
dimensional multibaker map. It belongs to the class of
piecewise-linear periodic maps displaying deterministic
difusion [34]. Since the multi-Bernoulli map is not inver-
tible, its evolution is necessarily irreversible, but the mul-
tibaker map is invertible and much of the analysis used
here will be applicable to it. Some of the results of this
section have been presented in two previous papers
[20,21] of the authors.

L —1

p(q+x, r)= y e'" '~'e*p, (x, r),~i, , (3.3a)

X

FIG. 1. The multi-Bernoulli map.

Considering the system on the interval [O,i ) with
periodic boundary conditions, we separate the dynamics
among unit intervals (i.e., in the variable q) from the
internal motion (in x) in the intervals through the
discrete Fourier transform pair
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L —1

e i—(2n/L )qs

VL, ,
Each mode p, evolves independently as

(3.3b)

p(x t +1)ei(2n/L)s1 X
s & 4 s 4

X+1 X+2
+p, , t +p, , t

—i{2~/L)s
s

X +3
4 ' (3.4)

This transformation corresponds to two successive appli-
cations of the operator U„i.e.,

p, (x, t+l)=U, p, (x, t),

As for the Bernoulli map discussed in Sec. II, in order
to obtain a spectral representation of U, that contains
only the physically reahzable eigenstates and eigenvalues,
we must go to a generalized functional space. %'e now
turn to the construction of the generalized spectral repre-
sentation of U, .

By (3.5) we see that the transformed map is, except for
the phase factors, just the dyadic Bernoulli map whose
eigenstates are the Bernoulli polynomials and their duals.
This suggests that a good "unperturbed" basis to choose
is the Bernoulli basis. (In Ref. [20] the physical eigen-
states of the multi-Bernoulli map were calculated using a
basis of modified-Legendre polynomials. ) The
Frobenius-Perron operator (3.5} of the transformed map,
U„canbe rewritten as

i{n.s/L )r&{x)
U, =U~e

where U, is defined by
(0) o's=e *

Ut) 1+i tan r)(x) (3.10)

U,p, (x, t)= —e' 'p ,t—
—i{n.lL)s X + ~+e p, , t (3.5)

where r)(x) is the first Rademacher function r, (x)=1
for 0 & x & —,

' and r((x )—:—1 for —,
' &x & 1, and, as will be

shown later,
(m)

e ' =—cos(m.s /L )/2
Note that taking s=O in (3.5) recovers the case of the
dyadic Bernoulli map on the unit interval. We have thus
decomposed the evolution of the density under the
multi-Bernoulli map as

p(q +x, t )= U'
2)p(q+x, O)

are the eigenvalues of the exponentially decaying eigen-
states of U, . The operator U, is explicitly separated in
(3.10}into parts that are diagonal and ofF-diagonal (as will
be seen below} with respect to a basis of Bernoulli polyno-
mials and their duals as

L —1
((2n/L)qsU2(

( 0)~i, ,
(3.6) U, = U,O+5Us,

where

(3.11a)

so that we may solve for the time evolution by consider-
ing the eigenvalue problem for U, .

Before turning to the construction of the generalized
eigenstates, we briefly note that construction of formal
coherent eigenstates of U, . The action of U, on the states

(0)
Uo=—e ' U~,

(0)

5U, = i tan — e ' U~r)(x)

(3.11b)

e„((x) =exp [i2"[2o + 2m (2l + 1)]x I, (3.7) ITS=t sin Ut)p((x ) .
L

(3.11c)

c„,e„(((x) if n &0
U, e„((x)=~

"
0 if n=0,

where the weight factor

c„=e' cos[cr(2"——,
' )] .

(3.8)

where (7 =2m.s/L and n and l are as in (2.7), is that of a
weighted shift [27], i.e., The matrix elements of U, with respect to the Bernoulli

basis (and the remainder part) are given in Appendix A.
It is seen there that they are upper triangular so that
transitions occur in only one direction and once a state is
left it cannot be returned to.

The operator U, satisfies, if f(x } is difFerentiable, the
intertwining relation

From the weighted shift states, we may thus construct
the coherent eigenstate, P, ) (x ) of U, with eigenvalue z as ( d /dx ) U,f(x )= ,' U, (d /dx )f(x—) .

n=0

i=0
Ci

Z"
P;,( )=xg, e„,(x), (3.9) We will make repeated use of this relation in its iterated

form of

where the product in the denominator is one for n =0
and we assume that cr is such that c„is nonvanishing for
all n.

d n 1 mnU,
"f(x ) = ( —,

' ) "U," f(x ),

iff(x } is at least m-times differentiable.

(3.12}
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A. Time evolution and spectral determination

1
dz z

27Tl (z( =1+@
1

p, (x,O),
z —US

(3.13)

The time evolution of the transformed probability den-
sity for the multi-Bernoulli map is given in the resolvent
formalism by [2]

p, (x, r)=U, p, (x,O)

where e is an inSnitesimal positive number so that the
contour is taken just outside the unit circle. Eigenstates
are obtained from (3.13) by enclosing poles of the resol-
vent analytically continued into the unit disk.

We now proceed to rewrite the resolvent acting on an
initial density in terms of separate parts that are singular
and regular in a region of the unit disk depending on the
smoothness of the initial density. Inserting the Euler-
Maclaurin expansion (2.20) on both sides of the resolvent
gives

M M

p, (x,o)= g P, (x )&8, 1 IP,'& &8,'Ip, &
—g P, (x )&8J I Isr & &e8M lp, &

z —U, ' = z —U, .= z —U,

++sr(x ) & e8M I

S

(3.14)

where we used the upper triangularity of U, .
We now expand the resolvent to rewrite the transition &8111/(z —U, ) 1%sr & as

&8, 1 I &= g „„&8,1U,"I &.
U

M n+& J s M (3.15)

Once 1%sr & makes a transition to some given intermediate state 18J &, it never returns, due to the upper triangularity of
U, . This transition may occur at any of n —1 possible places in &8 I U, 1%sr &. Using this fact and summing over all
possible intermediate states, we have that

&8)l lsr&= —g „„gg &8, 1U,
" 'lP,'&&8,'IU, I+sr&&e8~IU,

' 'I+sr&
z —U, „=pz"+'

J =OI=]

= —g &8, 1 IPJ &&8,'IU, I+sr &&e8MI (3.16}

Using this in (3.14) and by the completeness relation (2.20) that

we obtain

1

S

Ip, & ,
S

(3.17)

M

p, (x,O)= g P (x)&8JI IPJ &, &8 Ip, &
—

&8J IU, IS xr&&e8slrJ U J g s J s M Ip, &

z —US

-~ ( )&e8 I Ip, &.
z —US

(3.18)

For a density that is at least M-times differentiable, the intertwining relation (3.12) gives

&earl Ip, &=&e801 ~ I ~p, &,
z —U, z —(U/2 ) dx

(3.19}

showing that & e8~11/(z —U, ) Ip, & is regular with respect to z for Iz I
& ( z' } . By (3.18},then, the singularities of the

resolvent (i e., the spectrum} in the region Iz I & ( —,') are determined by evaluating those of &8 11/(z —U, )IP'&.
From the decomposition (3.11),we may write the "perturbation" expansion

'n

z U =o z Up
5U,

z —Usp

(3.20)

Using this, repeatedly inserting the Euler-Maclaurin expansion, and using the upper triangularity of 5U, gives
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&8, I lp,'&= y &8, 1

z —U —o s —Uo z —UsO

n

(j) j j
z —e ' =~j J'2

& p, l», lp„& „,, &p, , l», lp,-, &

~$z —e
( )~n —1
$z e

x &p, , is@, lpj. & (j')
z —e

(3.21}

Due to the zero diagonal and upper triangularity of 5U„
j &j& &j2 « j', so that the "perturbation" expan-
sion terminates at the (j' —j )th order. Thus

(m)

&p ll/(z —U, )lp~'&, has only simple poles at z=e
for j & m ~j' and no other singularities. The location of
the poles are the eigenvalues. We note that for s &L/2,
they are positive and for s )L /2, they are negative. For
s =L/2, the eigenvalue is zero and the diagonal part of
U, as we have defined it in (3.11b}vanishes. The eigen-
modes then belong to the null space.

Due to the simple analytic structure of the resolvent,
we may shrink the contaur in (3.13) and pick up the con-
tributions from each of the determined poles. This means
that the modes which decay slower then ( —,

' )
' are unique-

ly determined for

(d /dx )p, (x,O) EL2 .

The smoothness of the initial probability density is a
physical condition that specifies which decaying mades
are realized [19,21].

The number of poles in the region ( —,') & lzl (1 de-
&(o)

pends on the position of the first pole at z =e ' . Its lo-
cation is given by

y(o)
(3.22a)

$ $

where M, is an integer greater than or equal to 1. The
(m)

pole at z =e ' thus satisfies

1 ~(m)

M+
$ $

(3.22b)

so that there are M —M, + 1 poles in the region
(1)M&lzl(1

The time evolution of the density can now be written
as a sum of contributions from each pole and a back-
ground integral whose contour is just outside af a circle
whose radius is ( —,

'
) as

p, (x, t)= g p,
' '(x, t)+%,' '(x, t}, (3.23)

m=0

where

p,' '(x, t)= g dzz"
2@i z=e

and

1
p, (x,0)

z —US

(3.24)

'(x, t)= dzzz'
2mi [z[=2 ~+'

1
p, (x,O) . (3.25)

z —US

In order to evaluate p,' '(x, t },we assume that

(d ' /dx *
)p, (x,O)FL2

and use the expansion (3.18) up to the mth order since
(m)

the pole at e ' is associated with lp & & p I. We then
obtain

p'™(x,t)= .It}, ,
dzz" & pj(x}&p, l Ip & &8 Ip, &

—&8 18U, I+ &&e8 I Ip, &

$ j=O S

(3.26)

Using

z —US

gives then

1+ 5U,
1 — 1

z —U z —US sO

(3.27)

m

p,
' '(x, t)= $ dzz ' g pj(x)&p Il+ 5U, lp

z=e
(m)

z e

x.&8. lp, &
—&H. iso, lx. &&M. I Ip, & . .

S

(3.28)
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Because of the simple pole, p,' '(x, t }can be written in

terms of right and left decaying eigenstates as
—y(, )Z~ (m)p( )(x, t)=y( )(x)e '

&y,
' 'Ip, &, (329)

where

y,' '(x)= g dz p (x}1 1

y("(x)=(x—
—,')+—,'i tan

77$
y(z)(x ) =2(» —x+—')+—'(x ——')i tans 2 6 2 I.

+—,'i 2 tan

(3.36b}

(3.36c)

and

= y p, ( )(P, ll+
j=0 (m)

e ' —US

Su, lp ) (3.30) y'"(x)= -'(x '—-'x '+ -'«)
s 6 2 2

ITS+ '(xz —x ——'}itan
4 7 I.

()I )
1

g d(P
z=e

=&8 Ip, &
—&8 I», l& &

Ip, )
S

+—,'(x —
—,'}i tan

+ —,', i tan (3.36d)
x&eg I, , Ip, &

Since the resolvent operator 1/(z —U) is well defined
only if lzl ) IIUII, the resolvent operators in (3.30} and

(m)
(3.31) are formal expressions (Ie '

I

& IIU, II). Hereafter
we always interpret the resolvent operator inside the
inner product as

(3.32)

The eigenstates satisfy the relation

dy,' '(x)/dx=y, ' "(x) .

The eigenstates of the full multi-Bernoulli map,

r,'-'(X)=r,' '(q+x),
are related to the states of the transformed map by

r(m)(q+x } ei(2~/L)qsy(m)(x )
1

(3.37}

(3.33}(m)

e ' —US

The expressions for the eigenstates, (3.30) and (3.31},
may be written in a more symmetric form by utilizing the
completeness relation (2.20) and the upper triangularity
of U, . We obtain then

y(m)(x )= 1+ 1

with the same relation holding for the left eigenstates,
I", '(q+x ). [The subscript s in I,' '(X) is a label for the
eigenstate and does not denote the transform of the
undefined ob'ect I™(X).] We may construct pairs of real
eigenstates, ,' '(q+x) and I,' '(q+x}, by taking linear
combinations of states with the same eigenvalue as

and

(P,( 'Ip, )=&8 Il+
5 Us
(m)

e ' —US

Ip, & . (3.34)

f", '(q+x) =-,'[r™(q+x)+r(', (q+x)] (3.38a)

B. The right eigenstates

From the expression for the right eigenstates (3.30), we
can write the following recursion relation:

m —1

0.5

-0.5-
20

y,' '(x )=pm (x )+ g pJ (x )
j=0 ~(m) ~(j)

e ' —e

x(H, ISU, ly,' '&, (3.35)

from which it is clear that y,' '(x ) is a polynomial in x of
degree m. Using this expression and the matrix elements
of U, given in (A4), it is straightforward to calculate ex-
plicitly the right eigenstates.

The Srst four eigenstates are

f (o)
4

0.5

-0.5

5

(b)

4

10 15

y,"'(x)=1, (3.36a} FIG. 2. The right eigenstates: (a) f', (X) and (b) f's (X).
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0.5

, I
-0 5-

f,(1) j4

(b)

0. 5

(b)

20
-0. 5

FIG. 3. The right eigenstates: (a) f', (X) and (b) f'4 (X).
FIG. 4. The right eigenstates: (a) f'( (X) and (b) f', (X).

(2) (2)

and

I'~™(q+x )=——[I", '(q+x) —I z™,(q+x)] .
l

(3.38b)

x, (q+x)= cos qs
~(p) l 2m

L
(3.39)

f","(q+x)= — (x —
—,
' }cos qs

L

The explicit forms of f", '(q+x) for m =0, 1, and 2
are

The term m ln4 comes from the intercell dynamics
governed by a 4-adic map. It gives a quick approach (for
m)0) to local equilibrium inside the cells. The term
—21n~c so(ms/L)~ is due to the intracell dynamics and
gives a slow approach to global equilibrium through
dhffusion.

The long time dynamics of the system is governed by
the slowest decaying mode which is the m =0 mode with

r(0)
eigenvalue e ', where

I = —2ln cos(o) %$
S L

ITS . 2K—
—,
' tan sin qs (3.40) 2

l 2&$ 1

4 L 96

'4
27TS

L
(3.44)

f", '(q+x }= —,'(x —x+ —,')—
—,
' tan

L

2'
Xcos qs

Since 2ms /L is conjugate to q, we have
2ms/L ——i(()/Bq). The time evolution of the state I', '

is then governed by the difFusion equation

77$ . 277

L
——'(x ——') tan sin qsL

—r( ) —2 (m)

e ' =e

so that the decay rates I,' ' are

(3.42)

(3.41)

Graphs of right eigenstates f", '(q+x) for some
representative values of m and s are given in Figs. 2-4.
We may obtain I", '(q+x) from the above expressions
for f', '(q+x) by changing the phase (2m/L)qs to
(2m /L )qs —

m /2.

C. The exact kinetic dynamics

r(rn)
The eigenvalues of the full map, e ' are the squares

of those of the transformed map, i.e.,

as

Ut I (0)( + )
—(1/4)(2ms/L) tl (0)( +x )q x-e

S

(&/4(s'/sq'il (0)( +S (3.45)

(3.46)

Thus, I,' '(q+x) is the eigenstate associated with
diffusion and the difFusion coefBcient D=4. Since we
have the exact dispersion relation (3.44), we may also ob-
tain the higher order dilusion coefBcients, such as the
Burnett coefBcient B=

—,', obtained by Gaspard [20].
We may consider the mean square deviation of q with

respect to the mth mode, (q )( &. Neglecting boundary
effects and considering an initial distribution Snite in the
q =0 cell only (with the conSguration of the system cen-
tered at I=0), we obtain

%$I' '=m ln4 —21n cosS L
(3.43) showing explicitly that for short times all modes contrib-

ute to the mean square deviation but that the contribu-
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tions of all modes, except for the m =0 mode, decay with
rates that are multiples of the Lyapunov time. The m =0
mode, corresponding to diffusion, shows purely linear
growth of the mean squared deviation.

D. The left eigenstates

The left eigenstates as given in (3.31) act as functionals
on a density belonging to the test space of suitable func-
tions. Before proceeding with the mathematical analysis,
it is worthwhile to consider what structure we may ex-
pect for the left eigenstates. From (3.10) the adjoint of
the Frobenius-Perron operator is

—i(ms/L)r&(x) —
g (3.47}

The eigenvalue equation

&
~(m)

I & &
~(0)

I p, &. (3.49)

The adjoint of the Frobenius-Perron operator of the Ber-
noulli map, Uz, acts essentially as the scale transforma-
tion x~2». Since the eigenstates are invariant (except
for a phase factor} under this scale transformation, they
must obviously have a self-similar nature. A noninteger
dimension is expected for P,' '(x ) when s &0 since then

( )

the eigenvalue e ' is not an integer power of the scal-
ing factor of 2.

Without loss of generality, we may consider in detail
only the rn =0 left eigenstate, 7)', '(x ), since the action of
the mth left eigenstate is given simply in terms of the
m =0 eigenstate as

[ )
Utp(m)( ) e s p(m)(» )

can be rewritten as
—y +i (ns/L )r

&
(x )

Usfs (x )=e (3.48)

We are mainly interested in the long time behavior of
the probability density so we will consider the case of
M, =l. Then for (d/dx)p, (»,0)GL2 [for M, =2 we
would require here that (d /dx )p, (x,O) CL2], we have
by going to the next order of the Euler-Maclaurin expan-
sion of (3.31) that

-y,"'. ms 1 d= &Palp, &+e ' i tan I dx dx'r((x)[P)(x) —P)(x —x')] «),p, (x') .
L o 'Ys

U /2
dx

(3.50)

Performing the integration over x gives

XP(X )X )X X

l

From the form of U, , (3.47), and usin~ that
( Us )"r,(x )=r„+,(x ) gives for the nth power of U, ,

x' if x'& —,
'

s(((x )
1

s f s) )
2

(3.51)

where the argument of A, )(x ) is taken modulo 1. Thus,

J
—i( srs /L ) g r (x).

{Ut}ll e i=1
( Uf )/j

Using this in {3.55) gives w, & (x ) as

(3.56)

where

w, f(x }= „,f(x),1

(3.52)

(3.53)

w, )„(x)=g
n=0 %$

cos
n 2n

OPS
exp —i g r (x)

A, )(2"x )

(3.57)

The self-similar nature of w, )„(x) is clear since it is made

up of rescaled copies of A, )(x ) multiplied by a somewhat
complicated x-dependent factor involving the complex
exponential of a sum of Rademacher functions. The
function w, z (x ) is nowhere difi'erentiable and except for
s =0 is discontinuous.

In the limit of s ~0, we have(3.54}

y(0)
whose inner product, when le ' /2I (1, with any L,
function is well de5ned. Under the scale transformation
given by Us, the function w, f(x ) satisfies

—y —i(ms/L)r (x)
Usw, f(x)=2e ' '

[w, f(x) f(x)] . —

w, z(x)= g
n=0

(3.55)

We can give an explicit form of (3.53) by doing a series
expansion of the term with U, as

U, e 'ys

)()(x) .

A, )(2"x )
w, =o z (x)= g =2T(x ),

n=0
(3.58}

where T(x ) is the continuous but nowhere differentiable
Takagi function [35). The graph of the curve T(x) is
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(a)

WS, AI

0.5

0.2 0.4 0.6 0.8

(b)

0.5

known [36] to have Hausdorlf dimension, D~[T(x )]=1,
so that t0, 0& (x) has Hausdorlf dimension of 1 also.

For s/L increasing from 0 to —,', the radius of conver-
gence of (3.55), numerical evidence leads us to conjecture
that the graph of (3.57) has Hausdorlf dimension increas-
ing from 1 to 2. In Fig. 5 the real part of w, ~ (x) is

represented for three values of s /l. .
For s =0 we recover the result of the Bernoulli map as

Po '(x)=d /dx . For s)0 the transformation corre-
sponding to U, is no longer a measure preserving trans-
formation with respect to Lebesgue measure. This is

(0)
clear since then e * (1. Thus there is an escape of
"probability" and the dynamics of U, settles onto an in-
variant fractal set. Thus the eigenstates of U, (left eigen-

states of U, ) which are invariant (except for some numer-
ical factor) should have the same fractal structure [37].

If we assume thai p, is inhn~tely diierentiable, then we
may extend the expansion in (3.31) to infinity. We recov-
er then the form of the left eigenstate given by Gaspard
[20].

IV. THE BA&&R TRANSFORMATION

In the previous sections we have studied one-
dimensional and hence noninvertible chaotic maps. The
Frobenius-Perron operators for these maps were not uni-
tary, but their adjoints were isometric which forced us to
go out of the Hilbert space to construct a complete spec-
tral representation including decaying modes. In this
section we study the invertible two-dimensional baker
map. Its Frobenius-Perron operator is unitary so that
now both the left as well as the right decaying eigenstates
will belong to generalized functional spaces. %'e will see
that physical conditions for obtaining the generalized
representation are necessary for both the observable and
the probability density. We will thus consider the evolu-
tion of correlation functions.

For the baker transformation the poles of the resolvent
operator are degenerate. This is due to the fact that the
system is area preserving so that there are pairs of both
positive and negative Lyapunov exponents. The Ruelle-
Pollicott resonances of the baker transformation are
directly related to its Lypounov exponents [2]. As will be
shown, the rnth pole has m+1 degeneracy. Thus, we
need to construct an m+1 dimensional eigenspace in-
stead of just a simple eigenstate. This leads to a time evo-
lution that is not a sum of pure exponentially decaying
terms but now the exponential decay is modified by fac-
tors which are polynomials in t. In order to calculate the
eigensp ace systematically, we introduce a projective
decomposition of the resolvent.

The baker transformation is a one-to-one transforma-
tion on the unit square given by

(x„+„y„+,)=F(x„,y„)
—0 1. 0.2 0.4 0.6 0.8 (2x„,y„/2) if 0&x„(—,

'

(2x„—l,y„/2+—,
'

) if —,
' (x„(1. (4.1)

Since the map is invertible and its Jacobian is 1, the ac-
tion of the Frobenius-Perron operator Ub is simply given
by U~ A(x,y)= A[I' '(x,y)]. Specifically,

ws,

1.5-
A (x /2, 2y ) if 0 &y (—,

'

U~ A(x,y)=
A(x/2+ —' 2y —1) if —,

' &y (1 . {4.2)

0.5

I
'O. 2

—0.5-

0.4 0.6
I i

0.8'

gM

~ Ub A(x,y)=
Bx 2

Since the map reduces to the Berno~~Bi map if we
neglect y, the operator Ub satisfies the following in-

tertwining relation analogous to (2.21):
'M

Ub A (x,y ), (4.3)~ 8
Bx

FIG. 5. The real part of the function m, z {x}for (a} s /I- =0,
{b)s/I =0.15, and {c}s/I. =0.3.

if A (x,y ) is at least M-times difFerentiable with respect to
x. Similarly, the adjoint operator Ub satisSes
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M

(Ubt}"B(x,y)= {Ub)" ~B(x,y), (4.4}

if B(x,y ) is at least M-times differentiable with respect to

A two-dimensional Bernoulli basis is introduced
through the Euler-Maclurin expansion with respect to x
for the right state and with respect to y for the left state.
For example, the inner product of A (x,y ) and B(x,y ) is
expanded as

(BIA)= g [{BIp;,8, )(8;,p, l A) &;,b—r(BI+M,H, )(eg~,pjl A)
i,j =0

5~ br—{BIp;,pbIe){p;,%br I
A )+5;br' br(BI%br, p be)(ep br, S baal A )], (4.5)

where we used the following two-dimensional bra-ket no-
tation:

I

dimensional basis are given in Appendix B. They are also
triangular, as for the multi-Bernoulli map.

(BI A)—:f dx dy B'(x,y)A(x, y) . (4.6)
0

We note that, for example, the generalized function PJ(y }
in (4.5} can be interpreted as the j-times difFerential
operator ofy which operates to the left.

The Frobenius-Perron operator of the baker transfor-
mation (4.2) may be rewritten as

Ub A(x,y)= U„[1+r&(x)r&(y)]U»A(x,y), (4.7)

where U„is the Frobenius-Perron operator of the Ber-
noulli map acting on the x coordinate, U„is the Koop-
man operator of the Bernoulli map acting on the y coor-
dinate, and r, is again the first Rademacher function.
The decomposition (4.7) splits the Frobenius-Perron
operator into a part diagonal, Ub0= U„U~,with respect
to the two-dimensional Bernoulli basis, and an off-
diagonal part,

5 Ub =U„r,(x )r, (y ) U» .

The matrix elements of Ub with respect to the two-

A. Time evolution of correlation functions

(BIUbIA)= . f «z'(BI
27Tl ized =1+a z —

Ub
(4.8)

For a smooth probability density with respect to the di-
lating direction and a smooth observable with respect to
the contracting direction, i.e., B„A,B BEL2, we can
rewrite the resolvent (BI1/(z —Ub)l A ) using the Euler-
Maclaurin expansions in (4.5}:

The time evolution of correlation functions under the
baker transformation has recently been studied by several
authors [2,38]. Although they restricted the observable
and probability density as a polynomial [2] or a certain
class of analytic functions [38], there is no physical
reason to consider such a strong restriction. In this sec-
tion we construct the correlation with only the restriction
that the observable and density be m-times differentiable.

We consider the time evolution of the correlation func-
tion of the observable B(x,y) and probability density
A(x,y }, i.e., (BI Ub I

A }. Using the resolvent formalism,
we have

M
(BI IA )=(R& 'Iz —UbIR& ')+ g (R' 'Ip, pbre)(p, ,&MI)A+UbR' '}

z b i=0
M

+ y (B+UJR,' 'Ix,p, )( p„,p,. IR~ ~).
j=0

M M
+ g g {B+UbR'"'lp, ,p, ){p„p,l Ip, ,p,'}{p,',p, .

l A+UbR,™),
i'&i=0 j&j'=0 z —U (4.9)

where

R„' '(x,y)= —f dx'%~{x).e'(x')P~(x') A(x',y),
0 z —Ub

Rs '(x,y)—= —J dy'%~(y). e'(y')/br(y') t B(x,y') .
0 z —U~

b

(4.10a)

(4.10b}

The derivation of (4.9) is given in Appendix C.
From the intertwining relations (4.3) and (4.4), it is easy to show that the resolvents R z '(x,y ) and Rs '(x,y ) are reg-

ular with respect to z for lz I ) ( —,
' ) as
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Rz '(x,y)= — dx'%sr(x). e (x') ~B A(x', y),
0 z —U, n"

Ra™(x,y)= —f dy'%sf(y). e'(y') t ~8»8(x,y') .
0 z —U /2

(4.11a)

(4.11b)

IP; P,')

Thus only the last of the four terms in (4.9}is singular for lz I
& ( —,

' } and for smooth observables the singularities of the
resolvent in this region are determined by evaluating those of (P;,P I 1/(z —

Ub ) IP;.,P'). Here, again, the smoothness is
a "physical condition" that determines which decaying modes are realized in a physical representation of the time evo-
lution. For the baker transformation it is necessary to consider not only the smoothness of the initial distribution func-
tion A (x,y ) with respect to the dilating direction, but also that of the final observable B(x,y ), with respect to the con-
tracting direction.

The singularities of (P, ,PJ I 1/(z —
Ub ) IP;,PJ') can be determined from the expansion analogous to (3.21):

(8;,PJ I IP;,8) )= & (8;,PJ I

1
00

(;.,I
fi. 'fij, j'+ X X

1' 2''''' —1

J1 JP . Jg

(P„P,IfiU IP„H,, } (i1+j1 )

z e

x(P;,P, ,
lfiU IP;,P,, ) ~ ~ ~

(i +' )n —1 Jn —1

z —e

x(P; P, lsU IP;.8J, ) (i'+j ')
z —e

(4.12)

The matrix ~l~~ents of 5Ub are strictly upper triangular (zero diagonal}. Thus intermediate states are ordered as
& «& «z & ' ' ' «', and j& j& & j2 » j', so that the "perturbation" expansion terminates at the order
min I

&' —i,j—j'I. The singularities of (p ~pj I 1/(z —
Ub ) lp;, p') are thus given by those of the resolvent of the diagonal

part of the Frobenius-Perron operator and are poles at z =e ~ for m =0, 1, . . . , i''+ j. Since i, +j1 can equal i2+j2
even for i1 & iz and j1 &j2, the poles are degenerate in general.

The time correlation function is given as the sum of contributions from each of the poles and the background integral
at Izl =(-,')~+e as

1 1
M —1

(&ILIA)= . $ dzz'(&I IA)= g (&l&™(t)IA)+(&I&'~'IA),
2''l ~z) = 1+e Z Ub

where

(4.13}

and

(SIX' '(t)IA)= .y, ,
dzz'(Bl IA)

27Tl — —y z b

(4.14)

(BI%' 'IA)= . f dzz'(BI IA) .
2mi ]z&=1r2 +~ z —

Ub
(4.15)

B. Projective decomposition of the resolvent

In order to evaluate the mth decaying mode, (BIX™(t) I A ), we choose M =m + 1 since it is the minimum condition
necessary to specify the mth pole. By substituting (4.9) into (4.14) we obtain

1 m+1 m+1
(m+1)(alrt ~(r)IA)= It}, ,

dzz' g g (~+U,'~,' +"IP,,P, )(P, ,P, I IP,',P,')
7Tl z=e y ') =Q ) '=0 J ' J U

' J

x(p,„P,,IA+U, z„' +"), (4.16}

where the regular parts of (4.9) do not contribute after integration so they are not written here.
Because of the degeneracy, we introduce a projective decomposition I2, 10,39] of the resolvent to isolate the poles.

We define the generalized projection operators which include all the members of the two-dimensional BernouHi basis
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(m}
whose eigenvalue of U&0 is e

IP;,8; }{8,,P, I,
i+j =m

g(m) I p(m)
M

where I~ is the identity operator. For such generalized projectors we have the following identity:

1 —[p( )+p( )(z )]
1 [P' '+S' '(z)]+P '(z),

z —
Ub z —e( '(z)

wheretheoperators C' '(z},2)( '{z},P '(z), and)I(( 'aredefinedby

P( )(z)= g( )U P( )1

g( )U g( )

S( '(z)=-P' 'U Q' 1

z —Q( )U Q(

cp(m)(Z )
—g (m) g(m)1

g( )U g( )

iII(m)(z )
—P(m) U P(m)+P(m) U g(m)P(m)(z )

(4.17a)

(4.17b)

(4.18)

(4.19a)

(4.19b)

(4.19c)

(4.19d)

The proof of the identity {4.18}is given, for example, in [39].
Since Q' ' only includes members of the Bernoulli basis whose eigenvalue with operation by Ubo is not e r, there

(m}
is no pole such as 1/(z —e r ) in the perturbation expansion of 1/(z —Q' )Ubg™),i.e., C™(z),S( '(z), and

(m}P' '(z) are regular at z=e r . The upper triangularity of Ub guarantees that these expansions terminate. Hence, the
projective decomposition decomposes the resolvent into the regular parts (s( '(z ), X)™(z},P '(z },and )I(( '(z) and the
singular part 1/[z —%(™(z) ] at z =e

The operators C' '(z) and S( '(z) can be evaluated through the following recursion formulas, respectively:

{g. . .,p...l~'-'{ }IP. ..H;)

1
(m —k+() (~m j k&pj+! I—b—I p i'~J}-

z e
(k, I)

+ y (p, )„p,+, IUi, lpm, ), ,p, +!)(Pm, k,pj~(I ' '( lp, ip,
(k', I') =0

(4.20)

(P. j.p, l&(™()IP. ...,Bj

1
(Hm j,pj I s I p j+k»j !)--

z —e r

+ g (p, ,pjl Uslpm j+k', Pj !'}{8m j+k'~pj —!'I {—z}lpm —j—+k~pJ
(k', I')=0

(4.21}

where the summation should be interpreted as

(k l) k I

X { ~k', I')( ~k, k'~l, !') '
(It', I') =0 k'=0 I'=0

(4.22)

We now show how to evaluate the pole inl/(z —)p( ').
The first term in the de6nition of 4 is explicitly

IP;,8, }(8;,P, I U, IP;,8,')
i+j =m i'+j'= m

I

(m+1)X(m+I} matrix and keep in mind that it is an
operator on the fu11 space with nonzero entries only in
the P( ' subspace. The second term can be calculated us-

ing the recursion formula (4.20} for C ' '(z ). It is a strict-
ly upper-triangular square matrix with zeros on the diag-
onal. Thus, %" ' is an upper triangular matrix with

(m}
e r on the diagonal and the part above the diagonal
we denote by 6' '. behave then

x(P,.„pjI,
(m}

which is upper triangular with e r on the diagonal.
For convenience we may consider it as an

)I(( )( )
—p( ) —r' + j) ( )

where

(4.24)
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~(m) —P(m)8U P(m)+P(m)()U P(m)(z) (4.25)

Since h, ' ' is strictly upper triangular and of dimension
(m+1}X(m+1), it follows that (6( ') +'=0. Thus
the singular part of (4.18) can be written as the finite sum

p [b,( )(z ) ]kp(m)
Z @(m) k=0 [Z —e

(4.26)

The expression (4.16) for the time correlation with
respect to the mth mode can be written then as

1 m+1 m+1
(Blr( )(r)lw)= .f, ,

dzz' g g (B+UbB.,' +"lP;,8, )(p;,P, l[p( )+C' '(z)])
i'~i =Oj ~ j'=0

m g(m) Z
k

x g ' [p' '+&' '(z)]IP 8 }
k=0 [2 —8 ]

x(p,„P,. I
~. + U,B„™+'). (4.27)

(m)
Smce the pole at z =e r has been made explicit in (4.27), the integration may be evaluated by the Cauchy residue
theorem.

Our construction using the Bernoulli basis (with remainder) introduces self-similar functions which enable us to ob-
tain compact expressions for the first three exponentially decaying modes in the time correlation function of the baker
transformation. The expression for the mth mode is applicable for any prabability density and observable if the m-
times derivative with respect to x of the prabability density and the m-times derivative with respect to y of the observ-
able belong to L2.

In the calculation of the time correlation function, it is convenient to consider a set of projection operators which
project out each exponentially decaying mode. For the baker transformation it is necessary to cansider projection
operatars which project out an eigenspace instead of an eigenstate. The formalism of the projection operators for the
eigenspaces was introduced by the Brussels group and is called subdynamics. It is discussed in Appendix D.

The explicit evaluation of (4.27) is tediaus for m )0. Here we give the results for m =0, 1, and 2. Some details of the
calculations are given in Appendix E.

(1) m =0 case:

(BI&"'(r )I & )=(B
I 1,»(1, ll & ) .

(2) m = 1 case:

(4.28)

(BI&"'(r)
I
& )=e ~ ' (BIP„1)+-,'(

+&
~

Il, l} &1,PI&)+-,'(,ll, ) + —,', t ' " "( Il, l)(l, ll ). (4.29)

(3) m =2 case:

(BI&"'(r}I& )=e " '[(&„'Bll, 1)I(1,Pzl ~ )+-,'(wg, P)l(}' ~ ) ——,'(w„,11(}.' ~ }+—,', (wi, , I(}.' ~ )]

+ [(~„BIP) 1)+—,'(()„BI 1,w, )] [(1,P(l(}„~)+-,'(w, , ll(}„'~ }]

+[(BIP 1)+ ,'((} BIP—w,) ,'((3 Bll—w—„)+—,', ((} Bll w, )](1 ll()'. &)]

+« ~ " "-,'[(a„'Bli,»[(i,p, la. »+-,'(w, , 11~.'»]
+ [(a,BIP„1)+-,(a,'B I 1,w, )](1,1 la„'~ )]

+ ' ' ' e-"'"'-"—'(a'Bll 1}(1 lie'A } (4.30)

1
wf(x ) = t f(x),

1 —Us /2
(4.31)

1g(x)=— dx'wz (2x')r, (x')P, (x' —x) .
0 2

(4.34)

A,„(x)—:—J dx'r, (x')[P„(x') P, (x' x)], (4.33)— —
0

1w/(x)= — t, f(x),
(1—Us /2)

(4.32)
The explicit form of )(.2(x ) is given as
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FIG. 6. The function mq (x ).
2

—x /2+x/4 if 0&x & —,
'

A2(x)= (4.35}(1—x) /2 —(1—x}/4 if —,
' &x &1 .

The function to& (x ) is a self-similar function which is il-
2

lustrated in Fig. 6.

V. THE MULTIBAKER TRANSFORMATION

Gaspard's multibaker map [18,22] is the two-
dimensional extension of the multi-Bernoulli map to an
area-preserving transformation. We again have diffusion
as for the multi-Bernoulli map but here the transforma-
tion is time reversible. Diffusion is the simplest transport
property but its elucidation in, for example, a Hamiltoni-
an gas system proceeds from the Hamiltonian through a
series of assumptions and approximations to the phenom-
enological diffusion equation governing the evolution of
an inhomogeneous density. Thus, the kinetic behavior as
an exact consequence of the dynamics demonstrates that
extramechanica1 elements are not a necessary condition
for an irreversible description of deterministic time-
reversible systems.

The multibaker map is constructed on a chain of
squares along the X axis. The first map acts on the
squares

SI"= I(X,y): q
—

—,
' &X&q+-,',0&y & 1j, (5.1)

as

4,(X y)= '

2X—q+ ——
q
——&x &q 0&y &11 y 1

2X—
q
——,—+—,q &x &q+ —,0&y &1 .1 y 1 1

2'2 2 ' 2'

(5.2}

as

The second map 4z(X,y }acts on squares shifted —,
' to the right

Szs'= [(X,y): q &X&q+1,0&y & 1 j, (5.3)

4 (Xy}= '

2X—q, +, q &x &q+ —,0&y &1
1
2'

2X—
q
—1, +—,q+ —&x &q+1, 0&y &1 .

v 1
'2 2 '

2

(5.4)

The multibaker transformation is given by the composition of these two maps:

4(X,y )=@&(X,y )o 4,(X,y ),
which then maps regions of each cell to the adjoining cells. We obtain from the above definitions that

r

(5.5}

4X —3q —1 ~+—,q &X&q+—,0 y 1
1P 3 1

'4 4 ' 4'

4(X,y)= '

4X—3q —1,—+—,q+ —&X&q+—,0&y &1y 1 1 1
'4 4 ' 4

4X—3q —2, ~+—,q+ —&X&q+—,0 y 1
1 1 3

'4 2 ' 2

(5.6)

4X—3q —2, +, q+ —&X&q+1, 0 y&1 .3

J
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The map is illustrated in Fig. 7.
Note that the projection of the multibaker map onto the X axis is the multi-Bernonlli map which has been studied in

Sec. III. The multibaker map has the I.yapunov exponent ln4 associated with the stretching in the X direction and ln —,

associated mth the contraction in the y direction.
Since 4 is invertible, we may immediately write down the action of the Frobenius-Perron operator as

p —+ ——,4y;t, q &X&q+1, 0&y &—X 3q 1 1

4 4 4' ' ' ' 4

p(X,y;t+l)=U bp(X,y;t)=p(4 '(X,y);t)= '

p —+ +—,4y —1;t, q &X &q+1,—&y
X 3q 1 1 1

4 4 4' ' ' '4 2

p —+ +—,4y —2;t, q &X&q+1,—&y &—X 3q 1 1 3
4 4 2' ' ' '2 4

(5.7)

p —+ +1,4y —3;t, q X&q+1,—&y 1 .
X 3q 3
4 4 ' ' ' '4

Decomposing X into its integer q and fractional part x, we separate the motion among cells from the internal motion
in the cells through the discrete Fourier transform with respect to q as we did for the multi-Bernoulli map using (3.3).
The modes p, evolve under the map then as

e
—i(2m/L)s + 4y. t 0 &y (

4 4' ' ' 4

p, (x,y;t+1)= '

x 1 1 1
p, —+—,4y —1 t —&y(—

4 4' ', ' 4 2

x 1 1 3
p, —+—,4y 2 t), ——&y (—

4 2' ' '
2 4

(5 g)

e'(2 /I-)
p

x
4y 3.t &y & 1S 4

This transformation corresponds to the square of the
transformation

U,p, (x,y;t)

which for s =0 is the baker transformation.
As for the baker transformation, the operator U,

satis6es the following pair of intertwining relations analo-
gous to (4.3) and (4.4):

e p —+—2y t 0&y(——I'(m/L)s x 1 1
s 2 2 ~ ~ ~ 2

(5.9)

gM

~ U,"A, (x,y )=
Bx

gM
U,

"
~ A, (x,y), (5.11)

2 Bx

We may rewrite this as

U,p, (x,y;t )

=cos U„ 1+r,(x )r, (y)

&S+i tan [r,(x)+r, (y)] q-1

LW&%%~%&

F/111//111/zi

q q+1

X U„p,(x,y;t), (5.10) FIG. 7. The multibaker transformation.
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if A, (x,y) is at least M-times differentiable with respect
to x and

( Ut)"B,(x,y )=s s

'M
gM

(U, )" B,(x,y ),
2 By

(5.12)

if B,(x,y ) is at least M-times differentiable with respect
to y.

The two-dimensional Bernoulli basis used for the baker
transformation in Sec. IV is also used here. The decom-
position (5.10) splits the Frobenius-Perron operator as

matrix elements are given in Appendix F. Again, we

have triangularity for the matrix elements but here the
off-diagonal part allows for more transitions than in the
case of the baker map.

A. Time evolution of correlation functions

We consider the time evolution of the correlation func-
tion of the observables B(q+x,y) and A(q+x, y), i.e.,
(Bl U~bl A)r, where the subscript F denotes the inner

product in the full configuration space. Using the resol-
vent formalism, we have

U, =UO+SU, ,

where

y(0)
Usp=8 U& U&

5U, = U» I r
&
(x }r

& (y )

(5.13)

(5.14a)

(B IU' b I
A )p= —g (B,IU,'I A, }

dzz'(B
I IA, ) .L, 2~i lzl=&+~

' z —U,

(5.15}

+i tan(ns/L )[r,(x )+r, (y )]I U (5.14b)

The operator U,o is diagonal with respect to a two-
dimensional Bernoulli basis and 5U, is off-diagonal. The

For a smooth probability density with respect to the di-
lating direction and a smooth observable with respect to
the contracting direction, i.e., 8 A„B»B,ELz, we can
rewrite the resolvent (B, I 1/(z —U, ) I A, ) using the
Euler-Maclaurin expansions in (4.5):

(B, l IA, )=(R,'a'lz —U, IR,' „'}+g (R,'a'Ip;, pbte)(p;, SHIA, +U,R,' „'}
S i=0

M
+ g (B,+ U, R,' s'

I Sbt, pq )(epbt, pj I R,' q' }
j=p

M M
+ y y (B,+ &,'R,'~~' Ip;,8, )(8;,p, I Ip;,8) )(8;,pj I A, + U, R,', g'), (5.16)

where R,' „'(x,y ) and R,' ~' (x,y ) are defined by replacing Ub, A, and B by U„A„andB„respectively, in (4.10).

From the intertwining relations (5.11) and (5.12) and the expansion analogous to (4.12), the singularities of the resol-
(m)

vent (the spectrum) are determined for lz I
) ( —,

'
) and are poles at z =e ' =cos(ms/L ) l2— for

m =0, 1, . . . , M —M, +1, where M, is defined in (3.22). It is the same result as for the multi-Bernoulli map except for
the m + 1 degeneracy of the mth pole.

The time correlation function is given as the sum of contributions from each of the poles and the background integral
at lz I

=(-,') +e as

(BIU'blA)p= —g g (B,I&,' '(t)IA, )+—y(B, I&,'~'IA, ),
s m=0 S

where

(5.17)

and

(B,lr,'-'(t}IA, )= g dzz'(B,
l IA, )

Sz=e
(5.18)

„dzz'(B,
I

2m.i )zI = in~+~ ' z —U,
(5.19}

B. Projective decomposition of the resolvent

In order to evaluate the mth decaying mode (B,IX,' '(t)l A, ), we choose M=m+M, . By substituting (5.16) into
(5.18), we obtain



m+M m+M,

(B,Iy.,' '(r)IA, )= y dzz' y y (B,+UtR s *
Ip;,pJ)

2%l f f )i—p j)j —pz=e

x(8, ,p, l 'U Ip...p,'){p;.,p,,
l A, +U,R,

' „+') .
S

(5.20)

As for the baker transformation, using the projective decomposition analogous to (4.18) of the resolvent in conjunc-
tion with the "perturbation" expansion to isolate the poles, we obtain

m+M m+M

(B,IX~ '(t)IA, )= y dzz' y y (B,+U, R, s '
Ip;,pJ)

2m'i y( } . ).—p )j —pz=e s

m(z) k

x(p p I[P' '+e' '( )] y
k=P [

rs ]k+1

X[P,' '+2)' '(z)]IP' P')

x(p. ..p, , lA, +U, R,„),(5.21)

where P,' ', 8,' ', Xl,' ', 5™,and other associated operators are defined in the transformed space by replacing U~ by U,
in the equations which define P(™C' ', . . . in Sec. IV.

(ns)

Since the pole at z =e ' has been made explicit in (5.21), the integration may be evaluated by the Cauchy residue
theorem. The explicit evaluation of (5.21) is tedious for m )0. Here we give the results for m =0 and 1 and M, = 1:

(1) m =0 case:

(B, I X,' '(t ) I A, )=e ' (B, I 1,y' ', )(P,
' ', 1

I A, ), (5.22)

where P,' ' is the m =0 left eigenstate of U, whose explicit form is given in (3.52). The relation of the eigenmodes of the
multibaker map with the eigenstates of the multi-Bernoulli map was pointed out in our previous paper [20].

(2) m =1 case:

y(1)]
(B,I&,'"«)IA, )=e ' (B, ll, y,"') (i,pglA, )+—

~ tan
'

[(1,1IA, ) —(l,p, la„A,)]

+—~ 1+2 tan2
1 77$

2 L (w, k, lla„A,) — i tan —(w, k, 1 la„A,)

+—(w,„,lla„A,)1

s, fl

m$——i tan
8 L

1+tan (w' „,lla„A,) .

+ (B,lp), l)+ i tan [(B,ll, 1)—(a,B,lp„l)]
2 L

r

+—~ 1+2 tan
1 %$

2 L
(a B,ll, w, k ) — i tan —(ayBgll, w, k )

1.+—i tan
4

+—tan (a B lp„w „) i tan (ayB I l, w
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+ (—d B,il, w,„)1

1

1 . m.s——i tan
8 L

~ 1+tan

+—tan' '
(&, ll, y",')(y,"', I, )

+te ' —1+tan
—y,"'f 1 2 ~s

(5.23)

where the self-similar (fractal) functions w, &(x }, w,'&(x},
and r), &(x ) are deSned as

1
w, &(x)—= &o, f(x},

1 —U, e'/2
1

w f(x)—= —
+& f(x)

(1—U, e ' l2)

(5.24a)

(5.24b)

r), ~(x)—= J dx'P&(x' —x)r, (x')U, w, &(x') . (5.24c)

The subdynamics formalism for the multibaker map is
discussed in Appendix G.

VI. CONCLUSIONS

For chaotic systems characterized by trajectory insta-
bility {positive Lyapunov exponent), the classical concept
of a deterministic trajectory loses operational meaning
but the description in terms of an ensemble characterized
by a smooth probability density is solvable and manifestly
displays the intrinsically irreversible nature of such sys-
tems. In this paper we showed for the baker transforma-
tion and the multibaker transformation that decay rates
of the time correlation function are uniquely determined
by restricting the observable and the probability density
and we constructed the decaying eigenspace explicitly.
After a time scale characterized by the Lyapunov time,
only modes associated with diffusion dominate in the
multi-Bernoulli and the multibaker map. Then the kinet-
ic equation (diffusion equation) is valid.

In our construction of the generalized spectral repre-
sentation, we found that the eigenstates (eigenspaces)
have a self-similar nature. The eigenstates {eigenspaces}
were written as products of self-similar functions and
derivative operators. Using the self-similar functions, we
obtained closed expressions for the first few exponentially
decaying modes in the time correlation function of the
baker and multibaker transformations.

The eigenstates of the diffusive systems we considered
are of a fractal (noninteger dimension) nature. The frac-
tality can be seen as a consequence of the eigenstate equa-
tion which can be considered as a scaling relation due to

the stretching dynamics of the map. (Recently, Tasaki,
Antoniou, and Suchanecki [40] have considered the frac-
tal nature of the left eigenstates of the multi-Bernoulli
map and have shown how they can be expressed in terms
of solutions to DeRham's functional equation. ) The frac-
tality of the eigenstates is not just a property of the sys-
tems we considered but a general one of highly chaotic
periodic systems. For example, for the standard map, we
can consider motion inside a cell as a scale transforma-
tion in the highly chaotic region for large stochastic pa-
rameter. Therefore, the eigenvalue equation in the
Fourier transformed space can be considered as a scale
relation so that we expect similar fractality for the eigen-
states of the standard map.

In the usual spectral theory in Hilbert space, highly
chaotic conservative systems such as the baker and the
multibaker transformation have absolutely continuous
spectra (Lebesgue spectrum) [41] containing no special
time scales associated with irreversibility such as decay
rates or diffusion coefBcients. This is reasonable, since
these systems are symmetric under a time reversal trans-
formation. By imposing the condition of differentiability
on the observable and probability density with respect to
the coordinate we consider, we obtain the decay rates
which characterize irreversibility. This is a kind of sym-
metry breaking.

In this sense it is interesting to compare the chaotic
system with a spin system since a spin system is a typical
model of symmetry breaking. Although the Hamiltonian
of the spin system is symmetric under a rotational trans-
formation, a special direction of magnetization appears in
the ordered phase. It is possible to consider a spin distri-
bution for which another direction of magnetization ap-
pears. But because there is an infinite energy barrier, as
in the Ising model, it is impossible to transform from one
distribution to the other so that symmetry breaking is
realized.

On the analogy of the spin system it may be possible to
consider differentiability with respect to a new coordinate
determining different decay rates. Clearly, the physical
decaying eigenstate in the original coordinate will not be
smooth in the new coordinate. The transformation from
the original coordinate to the new coordinate changes the
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Lebesgue measure to a singular measure [36,42]. In this
sense it is physically impossible to change decay rates.
This means that we already select one set of physical de-
cay rates when we consider the original coordinate with
Lebesgue measure. This is related to the reason Kolmo-
gorov introduced his entropy to distinguish two spectral-
ly equivalent systems [43].

Although the phase space of the maps we considered is
uniformly highly chaotic, in Hamiltonian systems chaotic
regions and regular regions may coexist. Since the
stretching factor approaches unity near the boundaries of
these regions, intermittency or anomalous difFusion
[44,45] is dominant over normal defusion for long times
[46]. Since our method is based on the piecewise linearity
of maps, we need to Snd a good piecewise-linear approxi-
mation for these systems. Intermittency and anomalous
diffusion using a piecewise-linear approximation of the
systems will be discussed in forthcoming papers [47].

&.,8 IU. IP,'&=0,
—y,(j). ms

(PJ IU, IPbr k & =e ' i tan c~

(A5)

(A6)

and

( e«8M I U, I Pbr, k' &

(M)
S 7TS5—2« k. +i tan

L
Cp, k' —2k, (A7)

where

Cj, k
= ( rl IP,;k &

We also need the matrix elements of U, with respect to
the remainder part in the Euler-Maclaurin expansion.
They are (j,j' ~M)
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APPENDIX A: MATRIX ELEMENTS OF U,

The matrix elements of Uz are easily calculated as

According to (A4} [and (A5)] U, is upper triangular in

the Bernoulli basis.

APPENDIX B: MATRIX ELEMEXIS OF U

The matrix elements of the diagonal part are

«, b
I Ubplc, d ) = &a I U. Ic & & b I Uy'Id &

=
& a I U„lc & & d

I
U Ib &', (81)

where a(x) =8;(x ) or ek (x )8br(x ), b(y }=P;(y) or

%br k (y), c(x ) =P;(x ) or %br k (x ), and d(y) =8;(y } or

ek (y )Pbr(y ) (i =0, 1, . . . , M ). From (Al}, for example,

(Al)

For the matrix elements of Usr, (x}, we use the in-
tertwining relation between U~r& and the derivative
operator to obtain

{i+j)
(P; P, I UbplP; 8J') =~;„'6,,,'e

Similarly, for the ofF-diagonal part,

(a, bISUblc, d}=(aIU„r&Ic&(blr&Urld &

=&alU„r&lc&&dlU, r, lb &' .

(82)

(83)

where

. IP'&
1 — d'

2J dx

(A2)

From (A2}, for example,

(8 PJ I&Ub IP' 8j')'= &8 IU r)(x)IP'& &P'J lr)(y }Uy 181'&

(i+j ')
e c;. ;c. ' rf i'&s, j j'
0 otherwise .

(84)

IP, & =2P, (-,' }-P, (1}—P, ,(0) . Similarly, we can calculate the other matrix elements.
A3

From (3.10), using (Al) and (A2), we obtain the matrix
elements of U, as

APPENDIX C: DERIVATIGN QF (4.10)

We assume that

&8; IU, IP,'& =
~ .,e 'i tan c. ' if j')j

(j)
e ' if j'=j
0 if j'&j .

(A4)

a„a(x,y ),a~a(x, y }el.,
Since Ub is upper triangular with respect to the Bemo~R&

basis of x, on the analogy of (3.18}the resolvent operator
of Ub satis5es
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where

P, (x) &8, l&(y) &. —
&8; I U), l+M &.&ePMI I &(y) &.

b j=o z b

l~(y) &„,
Z b

(Cl)

&f I A (y ) &
=f dx f '(x ) A (»y ) .

Similarly,

(C2)

pB xp = & p ~ B x J y
B & Me y M b j y

' j3
0 z —Ub 0 j=0

—&&(x) I i&Me &,&M(y } (C3)

Then from (Cl) and (C3), we can rewrite the correlation with respect to the resolvent as

M
(&I I&)=f dxdy y &&(x)IP &,

—&&(»I
z —

Ub 0
~
l,J=~ f 0 0 U

I&Me&, &M I rIbIHJ &,
Z b

x)()) (y} 0;(x) &8; l&(y}&.—&8; IUbl+M&. &eHMI
Z b Z b

i'=0

xp, ,(x) &8;.I A(y) &„—&t)};.IU(, IBM &„&eHMI
U

I A(y) &„
Z b

&&(x)18, &y
—&&(x)l 18Me&y&+Ml&bl8, &y P, (y }

j=o Z

xS (x}&eP I IA(y)&„M —U

+ &g(x )I I'M &~%M(y)(z —U&)SM(x )& AM I I ~(y) & (C4)

Using the Euler-Maclaurin expansion and the
definitions of R „'M'(x,y ), (4.10a), and R~( '(x,y ), (4.10b),
we obtain (4.9).

rt'M'—= lim %(M)(t )
t~o

(Dlb)

II' ':—lim X( '(t) for m=0, 1, . . . , M —1,t~o (D la)

APPENDIX D: SUBDYNAMICS FORMALISM
FOR THE SA&&R TRANSFORMATION

Because of the m + 1 degeneracy of the mth pole, it is
necessary to consider m+1 dimensional eigenspace in-
stead of simple eigenstates. It is convenient to introduce
a set of projection operators which project out each
eigenspace and the background. The projection opera-
tors are defined as the t ~0 limit of each X( '(t ) and the
background part A( ', respectively.

These projection operators satisfy the following proper-
ties:

n~-~rr~ '~=S,n™for m, m' ——O, i, . . . ,~—l,

n' 'U =U rr' ',b b

M

y rr'-'=I„.

(D2a}

(D2b)

(D2c}

11(m) [p(m)+ C(m)] g (m)[p(m)+D(m)] (D3}

As has been shown by the Brussels-Austin group [2,10],
II' ' is decomposed as
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where

A (m) —p(m)g(m)p(m)
7

C(m) —g(m)ll(m)p(m) A (m)

~(m) —
A (m)p(m)ll(m)g(m)

7

where A' 'isdeSnedby

(D4a)

(D4b)

(D4c} where

(six( '(t)IA)

(g I
[p(m)+C(m)][8(m)]tA (m)[p(m)+D(m)]l A )

(D5}

p(m) A (m) A (m) A (m) A (m)
Q~(m) —p(m)U pf m) +p(m)U C(m)

b b (D6)

There exists a simple relation between A' ' and D' ' and
C(m).

A (m) —p(m)+D m C

Using the operators A ' ', C' ', and D' ', we can write
{8I

X' '( t ) I A ) as

[For the derivation of (D3) and (D5), see Ref. [2]].
It is convenient to use these operators to derive the ex-

plicit form of (8 IX' '(t)l A } especially for m ) 1. From
(D3) and (D4) the explicit forms of A ' ', C' ) A (™,and
A' 'D' 'areobtainedas

m 1 dk
A (m) p(m)+ y [g(m)(z ) ]

kid�"

z=e

m
C' 'A' '= y &' '(z)[&' '(z)]"I,(.)

k=o k) dz' z=e

p( +"(9(m)(z)+ p + 8U [p m'+pm(z)] [g (z}] I (

m 1 dk 1

k —() kl dz z —Ub z=e

m

A .D' = g [~(-)(z)]"&"(z)i
k) d k z=e

(D7a)

(D7b}

[g(m)(z}]k.g)(m)(z}P( +')+[p(m)+g)' '(z)]$Ubp' +" 1

k=0 k! dz" z Ub (m)z=e
(D7c)

where

p'-'-=y lp, ,8, )(8,,p, l,
i j =0

(D8a)

p,' '= —g Ip, ,8 )(8,,+ I+I+,8 }( P,& I

j=0
(D8c)

p.' '= —g I+,8, )(e8,p, l+l, 8 e)(e8,+ I,
j=O

(D8b)

Q(1)—P(1)U P(&)
b

(a I
c"'Ip,8, )=o,

(& I
C"'Ip(,80)=-,'(~,'& I l, wk, },

(8,poID"'I A )=0,

(8,p, ID"'I A ) =—,'(w&, ll 8 A ) .

(3) For m =2:

(D lob)

(D loc)

(D lod)

(D loe)

(D lof)

A (2)—p(2)

Q(2) p(2) U p(2)
b

(~ lc"'lp.,8, )=0,

(&IC(z)IP,8 )=-,'(~,'~ll, &, },

(Sic(z)IPz, 80)=—,'(() SIP„w )——,'(B„8ll,wz)

A (O) —p(O)

Q(O) —p(O)

C(o)—0

D")=O.

(2}For m = 1:

A (1) P(1)

(D9a)

(D9b)

(D9c}

(D9d}
+ —,(,(B„Bll,wj ),

(Dloa) (8„P,ID'"I A )=o,

Since A' '=P' ' for m =0, 1,2, we can easily obtain
the explicit form of A' ', C' ', D™,and 8' ' by com-
paring (4.28), (4.29), (4.30), and (D7):

(1}For m =0:

(D 1 la)

(Dl lb)

(D11c)

(D 1 ld}

(Dl le}

(D11f)
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(8&,P, I~"'I A ) =-,'(w&, 1 la,'A ),
(H.,P, ID'"I A )=-,'(w, ,P, la„'A ) ——,(w„,llew„'A )

+,&, (w', , 1 la„'A ),

(Dl lg)

(D 1 lh)

(BIx'"(&)
I A )

„,dz z'(B IPo, Ho)

=(B
I 1, 1)(1,1 I A ) .

1
(p( (Hp~Ppl A )

z —e r

(El)

where the operators for the m =2 case are explicitly cal-
culated in Appendix E.

APPENDIX E: CORRELATION FUNCTIONS
FOR THE BAKER MAP

i. m=Ocase

For m =0, the evaluation of (4.27) is trivial. Due to
upper triangularity, only the P( ' component contributes.
Since the singularity of the resolvent operator at

r(0) .
z =e r is a simple pole, the summation over k just con-
tains the k =0 term in (4.27). Thus we have

2. m = 1 case

For m=1 we now have a contribution from the
remainder terms and the singularity of the resolvent

(1)
operator at z=e r is a double pole so that there is a
term for k =0 and 1 in (4.27). The k =1 term will modify
the exponential damping by a coeScient linear in t.

Since (8;»il5UblP, ',HJ. ) is only nonzero for i (i and

j)j', there is no 5Ub between (B I
and IPo, H, ) and there

is only one or no 5Ub between (B I
and IP&,Hp). Similarly,

there is no 5 Ub between (H„Pol and I
A ) and there is only

one or no 5Ub between (Hp»&l and
I
A ). Using these

properties, we have

(Bla("(r ) I
A )= '.

It) „,dz z' (BIP„Ho)—(B IPp, H, )(Hp, p, le"'(z) IP„Hp)2

IPo~Pze)(Ho +215Ub IP( Ho) '

z bo

1
(,((8),Pol A )

z —e

+(BIPp, H&) „,(H.,P, I
A )+(Ho», I&"'(z)IP„H.)(H„P.I A )

z —e

1
(Ho Pl I5 Ub I2 80)(e82»ol

z b0

+(BIPp, H&) (,), (Hp»(l~"'(z) IP(,Hp)(8)»pl A )
(z —e r )

(BIP( Ho) (BI
( ( IPo»ze)(Ho +215UblP( Ho) (8(»pl A)

e r —Ubo

+(BIPo 8&) (Ho»&l A) (8o P(15Ubl+2 Ho)(e82»ol
1

A )
e r —Ubo

+re r '(B IPo~H()(Ho Pz, 15Ub IP, Hp)(8, Ppl A ), (E2)

where we used that (Hp»zlC("(z)IP, Hp)=(Hp PzlS (z)IPz Hp)=0, since cz=0.
Utilizing the intertwining relation and writing the derivative operators explicitly gives

T

(BI&("«)IA)=e ' '
(BIP&,1)—2(~„'BI t ll, e)&X Ir()c, (l, llew„A)

1 —
UE /2

+(a Bll, l) (1,P IA) —2c &r&l&z)«, ll

(E3)



HIROSHI H. HASEGA%A AND GRAN J.DRIESR

obtaining then the expression (4.29) given in Sec. IV B.
3o Nl =2 CQC

For m =2 we will derive (BIZ( 'I A) using the sub-
dynamics formalism which is introduced in Appendix D.
First we calculate A' ' using {D4a). Since the terms for
k =1 and 2 include b, ( '(z ), we will calculate b, ' '(z).

From {4.19}and (4.25),

g(2)(z) P(2)5U P(2)
b

(1) (B I
C(z) Ipo, 8z). From the prope~y of 5U», there is

no 5U» between (Bl and IPo, 8z) so that

{Blc'"IV.,8, )=0. (E&)

(2) (B I
C' )IP„8,). From the property of 5U», there is

only one or no 5U» between (B I and IP(,8, ). We have

(BIC("IP(,8))=(BIPo, 83){8o,P31(-'"(e ' ) IP),8))

Since

+P(z)5U g(2) Q(2)5U P(2)
Q(2)U Q(&)

b (E4)

1
(,) IPo 83e}

e ~ —Ub0

X(8o~31 5U» IP),8(} . (E6)

(8, ,e, 15U, l@,8,')
is only nonzero for i &i' and j &j', there is no transition
between P(z) and P' ' through Q' ' so that the second
term on the right hand side in (E4) vanishes. Since

g(2)(z) —P(2)5U P(&)
b

does not depend on z, the terms for k =1 and 2 in {D4a)
also vanish so that A ' '=P' '.

From the fact that there is no transition between p' '

and P' ' through Q(z), we can immediately obtain that
O~ =P UP We will derive C from (D4b), since
g~2~g ~»=C~2~ because of g ~2~=Pt2~

Since cz =0, the Srst term on the right hand side in (E6)
vanishes. By utilizing the intertwining relation and writ-
ing the derivative operators explicitly, we obtain

(BIC"'IP),8) ) = —2c) ((},'B I t I l, e)&S,lr( &

1 —
Uy /2

,'(By'B—ll, w)„). (E7)

(3) (BIC' )I){)}2,8o). Similarly, there are only two, one,
or no 5Uo between {BI and IPz, 8o). We will consider the
Euler-Maclaurin expansion up to the second order and
will extend it up to the third order later for convenience.
We have

(Blc(z)lp, ,8o)= —(BI „, Ip),82e){8)2I5U»IPz 8o}+(BI (2) I&o»ze}{8o+zl5U»IP( 8(}
e ~ Ub (e r U»())

x(8( P(l ~"'(e ' ) IP2 Po) . (E8)

py utihzing the intertwining relation, writing the derivative operators explicitly, and extending Euler-Maclaurin ex-
pansion up to the third order for the second term on the right hand side in (E8), we obtain

(BIC'"IP,8o)= —2c {5,'B I I({))),~z}+4c'(5,'BI, , ll, ~z) .1

1 —U» (1—
Uy /2)

(E9)

Here the Srst term on the right hand side in (E9}is rewritten as

(~,'Bl 1+
1 —U b »0

= —2c)(a,'BI, IP( X, )—2c((5,BI, 5U», IP„~,)1

1 —U,'/2
' ' ' 1 —U» 1 —U, /2

= —2c, ((} BIP, w)„)—2c, ((} Bl t I l, r, U w ), (E10)

where we used U„P,(x ) =—,(P((x ) and 5U»P)(x)A2(y )=c(r)(y)U~Az{y }. Using the Euler-Maclaurin expansion for the

second term, we obtain

2c ((} Bl IP k )=—2c ((} BIP,,w )—2c', ((}„'Blw„).
b

By substituting the above equation into (E9) and using the definition of w I, (y ), we obtain

{BIC'"IP,8o}=-,'{5,'B IP, , ) ——,'(5,'B Il, „)+—,', {~,'B ll, w', ) .

(El 1)

(E12}
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Similarly, we can calculate D' ). By substituting the explicit forms of A' ', 8( ', C' ' and D' ' into (D5), we obtain
(4.30).

APPENDIX F: MATRIX ELEMEXIS OF U,

The matrix elements of the diagonal part are

(8;,PJI U,oIP;,8J )=~;„'&,,,'e '
where

(Fl)

(i+j)
Se

77$
cos

2i+J
(F2)

For the off-diagonal part,

(i+j ')
~s 77$ s) P ~ ~ P ~ )

(8 p ISU Ip 8 )
e c,'—,cJ—J+«an [c' 5J,J—+&, '~J f] ' — —' J —J

i~ j s i~ J L

0 otherwise,
(F3)

where c is given in (A3).

APPENDIX G: SUBDYNAMICS FORMALISM
FOR THE MULTI-BAKER TRANSFORMATION

Using the subdynamics formalism introduced in Appendix D, we can write (B, I
X( '(t ) I 2, ) as,

lg( )(t)l g ) (g l[p( )+c( )][o( )] g( )[p( )+D( )]I g ) (Gl)

where operators A,( ', C, ), D,( ', and 8( ' are de5ned by replacing P' 'Q' ' and Ub by P, )Q,( ' and U, in (D4) and
(D6). The explicit forms of the operators for m =0 and 1 are calculated as follows.

(1) For m =0,

g (0)—p(0)
s s

&(o)0(0) p(0)e rs
s s

(&, lp,'"+c,("Ipo,80)=(&, I l, p(0) ),
(8.,P.IP,")+a,("I~, )=(P,(",ll ~, ) .

(2) For m = 1,

(8o P) I ~,"'IPp 8)}=l

(G2a}

(G2b)

(G2c)

(G2d)

(G3a)

(80,P) I A,("IP),80)=—tan~ (G3b}

(8) &01~'"1&08))=0

(8,,)(t.l~,'"le, ,8.)= l,
(1)

(8.,e, l, ")1~.,8,)=. ",
(G3c)

(G3d)

(G3e}

(80,P (8,")IP,,8,}= I+tan (G3f)

(8,PoI , "'IP,,8, )=0,
(1)

(8„Ale,"'Ip, ,8,)=. ',
(&,Ip())+c,")Ipo,p, )=(&,Ii,p("),

(G3g)

(G3h)

(G3i)
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(&, I C,'"IP&,go) =—t tan [(B,I 1, 1)—(a,B, Ip, , 1)]
1.

T

+—' 1+2 tan
1 %$

2 L

r

(&~8, Il, w, ~ ) ——i tan (t) B,Il, w, „)
1.+—i tan
4

ITS
[(t)&B,IP~ —w, ~+w, ~ ) ——'(B&B,I1, ——'w, „+w,„)]

I

1 q
m.s+—tan
L (~,&, IPg, w „„,) — i tan (8 B, Il, w, , )+-,'(a,B,Il, w,

„

~s——i tan
8 L

1+tan ITS

L (BsB,Il, w',
& ), (G3j)

(H, PoIP,"'+D,"'I A, ) =(y,"', lI A, ), (G3k)

(Ho, P)ID,"'I A, )=—i tan [(1 ll A, ) —(I,P)l~. A, )]

+—1+2 tan2
1 ITS

2 L (w, z, 1It)„A,) — i ta—n (w, &, 1IB„A,)

1 2 7TS+—tan
4 L (w. . .P, IB„A,)— i tan (w„1IB„A,)+—,'(w,„,IIB„A,)

1 . m.s——i tan
8 L

~ 1+tan (w', g, , lie. A, ) . (G31)

[I] I. Prigogine, From Being to Becoming (Freeman, San Fran-
cisco, 1980).

[2] H. H. Hasegawa and W. C. Saphir, Phys. Rev. A 46, 7401
(1992).

[3]P. Gaspard, J. Phys. A 25, IA83 (1992).
[4] I.Antoniou and S. Tasaki, J.Phys. A 26, 73 (1992).
[5]D. Ruelle, Phys. Rev. Lett. 56, 405 (1986).
[6]M. Pollicott, Ann. Math. 131,331 (1990).
[7] In this paper we will not consider the cases of intermitten-

cy or anomalous diffusion, which display power law decay.
[8]V. Baladi and G. Keller, Commun. Math. Phys. 127, 459

(1990).
[9]H. Rugh, Nonlinearity 5, 1237 (1992).

[10]C. George, Physics 37, 182 (1967); I. Progogine, C.
George, F. Henin, and L. Rosenfeld, Chem. Scr. 45, 5
(1973).

[11]A. Lasota and M. Mackey, Probabilistic Properties of
Deterministic Systems (Cambridge University Press, Cam-
bridge, England, 1985).

[12]H. Mori, B. So, and T. Ose, Prog. Theor. Phys. 66, 1266
(1981).

[13]M. Dor5e, J. Stat. Phys. 40, 92 (1985).
[14]G. Roepstorlf {unpublished).
[15]I. Dana, Physica D 39, 205 (1989).
[16]F. Christiansen, G. Paladin, and H. H. Rugh, Phys. Rev.

Lett. 65, 2087 (1990).

[17]R. Artuso, Phys. Lett. A 160, 528 (1991).
[18]P. Gaspard, J. Stat. Phys. 68, 673 (1992).
[19]W. C. Saphir and H. H. Hasegawa, Phys. Lett. A 171, 317

(1992).
[20] H. H. Hasegawa and D. J. Driebe, Phys. Lett. A 168, 18

(1992);P. Gaspard, ibid. 16$, 13 (1992).
[21]H. H. Hasegawa and D. J. Driebe, Phys. Lett. A 176, 193

(1993).
[22] D. J. Driebe, Ph.D. dissertation, University of Texas at

Austin, 1993.
[23] D. Ruelle, Chaotic Evolution and Strange Attractors {Cam-

bridge University Press, Cambridge, England, 1989).
[24] M. Hats, J.Math. Kyoto Univ. 25, 357 {1985).
[25] E. C. G. Sudarshan, Phys. Rev. Lett. 10, 277 {1963).
[26] M. Reed and B. Simon, Methods of Modern Mathematical

Physics (Academic, Orlando, 1980), Vol. 1.
[27] P. Halmos, A Hilbert Space Problem Book {Van Nostrand,

Princeton, 1967).
[28] S. Isola, Commun. Math. Phys. 116,343 {1988).
[29] A. Erdelyi, Higher Transcendental Functions {McGraw-

Hill, New York, 1953},Vol. 1.
[30]J. Mikusinski and T. Boehme, Opetrttional Calculus {Per-

gamon, Oxford, 1987}.
[31]I. Gelfand and G. Shilov, Generalised Functions {Academ-

ic, New York, 1968).
[32] I. Antoniou and I. Prigogine, Nuovo Cimento 219, 93



50 INTRINSIC IRREVERSIBILITY AND THE VALIDITY OF. . .

(1992).
[33]G. H. Hardy, Divergent Series (Oxford Univeristy, New

York, 1949).
[34] S. Grossmann and H. Fujisaka, Phys. Rev. A 26, 1779

(1982); S. Thomae, in Statics and Dynamics of Nonlinear
Systems, edited by G. Benedek et al. (Springer, Berlin,
1983).

[35]T. Takagi, Proc. Phys. Math. Soc. Jpn. 1, 176 (1903).
[36] M. Hata and M. Yamaguti, Jpn. J. Appl. Math. 1, 183

(1984).
[37]T. Tel, Phys. Lett. A 119,65 (1986).
[38] I. Antoniou and S. Tasaki, Physica A 190, 303 (1992).
[39]C. Obcema and E. Brandas, Ann. Phys. (N.Y.) 151, 383

(1983).
[40] S. Tasaki, I. Antoniou, and Z. Suchanecki, Phys. Lett. A

179, 97 (1993).
[41]V. I. Arnold, Ergodic Problems of Classical Mechanics

(translated by A. Avez) (Benjamin, New York, 1968).
[42] W. C. Saphir (private communication).
[43]P. Billingsley, Ergodic Theory and Information (Wiley,

New York, 1965).
[44] R. Artuso, G. Casati, and R. Lombardi, Phys. Rev. Lett.

71, 62 (1993).
[45] X.-J. Wang and C.-K. Hu, Phys. Rev. E 48, 728 (1993),

and references therein.
[46] Y. Aizawa, Y. Kikuchi, T. Harayama, K. Yamamoto, M.

Ota, and K. Tanaka, Prog. Theor. Phys. Suppl. 98, 36
(1989).

[47] H. H. Hasegawa and E. Luschei, Phys. Lett. A 186, 193
(1994).




