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Failure of dimension analysis in a simyle five-dimensional system
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Dynamic systems may be characterized by their fractal dimension. The classical Grassberger-
Procaccia algorithm is widely used to analyze time series. However, if this method is used beyond its in-

trinsic limitations it may cause incorrect classification of systems. We found that a simple deterministic
five-dimensional system leads to erroneous dimension values around 5.5 if the following methods are
used uncritically: The classical Grassberger-Procaccia algorithm, a pointwise correlation dimension al-

gorithm, and an algorithm for calculation of the information dimension yielded this erroneous result for
a wide range of numbers of data points (X=30000-10 ) and various delay times. Estimates of dimen-
sions are only re1iable if long plateaus of the local slope of the correlation integrals exist for small dis-

tances; these were not found in our example. This example suggests that a correlation dimension of 5 is
too high to be recognized using even one million noise-free data points.

PACS number(s): 05.45.+b

I. Vi I'KODUC. IION

Since their introduction, correlation dimension values
that indicate deterministic chaos have been found every-
where (EKG, climate, cries of babies, search behavior of
ants, etc.). In human EEG's, correlation dimensions
from 2, in cases of epilepsy, up to 11, for P EEG, have
been published [1-4]. For a EEG's, values for the corre-
lation dimension between 4 and 7 are typically reported.
%'e failed to reproduce these endings in the a EEG of 14
subjects. In each case, we found insuScient scaling re-
gions to estimate a valid correlation dimension, consider-
ing the improvements and avoiding the pitfalls of dimen-
sion analysis [5-8]. Possibly the typical sample sizes of
EEG's (=4000-30000) are too small to make dimension
analysis feasible. Currently the minimal number of data
points (N} necessary to estimate the correlation dimen-
sion is under debate. Smith [9] suggested that the
minimum N is 42+. This bound is far more demanding
than has been realized in previous EEG analyses. Ruelle
[10] proposed a minimum N to estimate the slope from
correlation integrals of D & 2 log, o(N); this less demand-

ing criterion is met in some EEG analyses.
To test whether the demands on N are justi6ed and to

investigate further possible pitfalls of dimension analysis,
we studied a very simple Sve-dimensional system, the di-
mension of which is analytically known. %e will show
that data sizes of N =1000-10 used in dimension
analysis are prone to yield erroneous correlation dimen-
sions, which cannot even serve as approximations of the
correct values. Vfe will further present criteria to avoid
such pitfalls.

II. RECONSTRUC. IION PROCEDURE
AND SCALING BEHAVIOR

~«x;;x, }Iiix;—x, ii —r] (2)

This number is calculated via the correlation integral
Cd(r):

N —1 N

Cd(r):= g g e(r —
()x,.

—xj )(),N(N 1)

1 for a~0
with O(a):= '0 (3)

and the correlation dimension is obtained by

d in[Cd(r)]
r~ 0 d ln(r}

(4)

We use the well-known time delay reconstruction from
a scalar time series x (t) [11]sampled with a sampling in-
terval ht The ve. ctors in the phase space P are con-
structed via the delay time ~:

x, :=tx(t),x(t+r), . . . , x(t+(d —1)r] EP~.

The sampling time of the reconstructed trajectory x, in
the reconstructed phase space Pd is the same as in the

~ ~ 1orsglnal tsme senes: . . .,x, &„x„x,+z„.. . .
In the case of a low-dimensional system the recon-

structed trajectory x, does not intersect itself with in-

creasing embedding dimension d and occupies an invari-
ant set, a subset of the embedding space. According to
Grassberger and Procaccia [12] the correlation dimension

Dz is the number to characterize the scaling law of the
number JV of vector pairs (x;;x ) within a distance r:

'Author to whom correspondence should be addressed. Elec-
tronic address: bach sun l.ruf. uni-freiburg. de

As the reconstructed invariant set lies in a submanifold
of the embedding space, it does not 611 the whole embed-
ding space. Therefore, dimension analysis does work reli-
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ably for low-dimensional systems embedded in very
high-dimensional spaces.

In order to obtain a reliable reconstruction of the in-
variant set, it is necessary to include points from time in-
tervals which are long compared to typical time scales of
the process. Each region of the set should be passed
sufBciently often.

In the case of high-dimensional systems the density of
data points in the reconstructed phase space P is too
low. This effect may be responsible for the failure of di-
mension analysis. Neighboring vector pairs are rare and
the scaling behavior for r —+0 is not observable. We
stress the limit r ~0 in the formula above. Experimental
time series are sampled with discrete values in time and
in amplitude. Typically 12-bit analog-to-digital convert-
ers (ADC's) are used to digitize continuous time series.
Simulating a 12-bit ADC (0&r &4096} the limit r~O
means that the scaling region [r„r2]ought to start at
small distances r in comparison to the diameter of the at-
tractor, e.g., r1(0.05r,„and should exhibit one order
of magnitude in length.

III. THREE METHODS
TO CALCULATE DIMENSIONS

ln(N)
D, :=—lim with N —+Co .

i (ln[r(k)]) (5)

Here we use the method of Termonia and Alexandrowicz
[14] to determine D, with a Sxed number of data points
N from the scaling behavior of the averaged logarithmic
distances ( ln[r (k) ]) of the k nearest neighbors.

We tested two fixed-size and one fixed-mass method to
estimate dimension values. The pointwise correlation di-
mensions [15],calculated with a Sxed-size method, might
be of interest to analyse the local structure of an attractor
and the whole spectrum of dimensions [16].

First we propose the basic concepts of dimension cal-
culations and discuss computational details of the calcu-
lation procedures afterwards. There are several algo-
rithms for dimension analysis. Basically, the algorithms
may be subdivided in fixed-mass and fixed-state algo-
rithms.

Fixed-size methods keeps the distances r fixed while
counting the number of pairs (x;;x.) closer than r. The
frequency of distances r is calculated for a predefined set
(for a 12-bit ADC, the set of possible distances using the
maximum norm is [r lO& r &4096 and r integer)). Esti-
mates for the correlation integrals for these distances r
are Cs(r). The correlation integral is a function of the
distance r and depends on the embedding dimension.

On the other hand, one can keep the mass k (number of
points) constant and ask for the distance r, which is
necessary to cover the nearest k points around a refer-
ence point r, (k). The average of the distances r, (k) of a
set of L reference points yields (r(k) ):
=g;=~ r;(k)/ L. The result i—s a function (r(k)) of the
mass k. Following Badii and Politi [13], the information
dimension D1 is defined by

IV. COMPUTATIONAL DETAILS
OF THE CALCULATION PROCEDURES

x g g e(r —
llx,

—
x~ ll),

i =1 j =i+p, +1

since the normalizing factor is of no interest:

N —8—1 N
C~(r):= g g 8(r —

llx;
—x, ll) .

i =1 j =i+@+1

(6)

(7)

As the values of the time series are integers, we used a
standard technique to fill the histograms Hd(r) where
0&r &4096 for d =1, . . . , 30: for the maximum norm

ll ll „ofthe distances of (x;;xi ) the maximal value is 4096.
For each pair (x;;x ) the distances for every d, using the
result of ll ll„d for ll ll„z,d'&d", can be calculated for
every d =1, . . . , 30 nearly as fast as calculating the dis-
tance for the greatest d =30 only,

N —8—1 N
Hd(r):= g g 5(r —

llx;
—xj ll),

(8)
i =1 j =i+@+1

Cd(r):= g Hz(r') .
r'=0

The most time consuming task is filling the histograms
Hd(r). The most critical task is to derive the slope of the
correlation integral in a double logarithmic plot of
log, o[Cd(r)] vs log, o(r). Often scaling regions are select-
ed manually. If the scaling regions are made very short,
the final choice of the slopes may be in8uenced by the
experimenter's expectation. Selecting the scaling region
manually may be done in correlation integrals of low-
dimensional systems, where it is no problem to find large
scaling regions (e.g., log&o(rz )—log, o(r, ) & 1 in our case).
Only local slopes s(r) calculated over small ranges of r
show variations or plateaus of the slope. The local slope
can be derived by linear regression from a fixed number
of successive values of the correlation integral (linear re-
gression [([log&o(rj); log&o[Cd(rj)])lrj=r+j and

j=1, . . . , 50)]~sd(r) ) or a small range of the distance r,
linear regression

[([logio(rj»logxo[C, (r, }]]I llr,
—r ll

& a logio(r}
=0.25 )]~ss(r) .

We applied both techniques here: manual selection of the
scaling region and calculation of local slopes.

B. Pointwise correlation dimension

In general the correlation dimension depends on the
position xi in phase space. A small subset of reference

A. Classical Grassberger-Procaccia method

The classical Grassberger-Procaccia method uses all
pairs (x, ;xj) with i &j [12,17]. A modiScation of the
correlation integral Cd(r) by introducing a minimal time
distance p (p ~ ~) as suggested by Theiler [18] avoids the
inhuence of temporal neighbors of the vectors x„

2
C~(r):=

(N p, }(N— Is —1}—
N —p —1 N
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2C;d(r):=
N —2p —1 .

q~,
.~.

~

8(r —
f/x;

—xj // ) .

Actually, we have used the histogram techniques men-
tioned above and discarded the normalization factors

points x; (=200-1000 out of 10 —10 possible vectors xj.)
was used to calculate the pointwise correlation dimen-
sions. The correlation integral for a single reference
point x; is defined by

The pointwise correlation dimension is a powerful tool
to find interesting phase space points and the fine struc-
ture of the attractor in long time series and in homogene-
ous attractors. Another advantage of the pointwise cal-
culation is avoiding possible averaging of correlation in-
tegrals from difi'erent (reference) points. This averaging
might destroy the scahng region of the averaged correla-
tion integral if the (reference} points start their scaling re-
gions at diferent distances r, as discussed in Holzfuss and
Mayer-Kress [3].

H; ~(r):=
Jn, li —J)&p

and get

5(r —
//x;

—x //)

(10)

C. D
& calculation vriih a Sxed-mass method

The information dimension D
&

is defined according to

ln(k/N)
D, :=—lim

~ )
with N~JNJ . (15)

the slopes s; z must saturate as d increases. Only in this
case can one assign a pointwise correlation dimension
value at the point x;. The values of the slopes s;d may
fiuctuate around a mean value (s, ) for the d G [d„'d,„]
in the saturation region,

1 max

d —d +1max s
(12)

If the reconstructed attractor of the trajectory x(t) is
homogeneous in P, all the reference points will show the
same value for the correlation dimension theoretically.
But due to the fitting procedure and the finite data set a
histogram of the pointwise correlation dimension values
is obtained. The reference points need not be chosen at
random. Walking along the trajectory with equidistant
time distances between reference points, the new "time
series" of pointwise correlation dimension should be con-
stant if the attractor is homogeneous. For high-
dimensional systems embedded in relatively low embed-
ding dimensions, intersections of the trajectories in phase
space P might be seen. These intersections produce ar-
tifacts in the correlation dimension estimates. For high
embedding dimensions they will disappear.

Only for homogeneous attractors the slopes s; d may be
averaged over the reference points i and the standard de-
viation of s;d may give an idea of the variation of the
slope estimates (sd ) for embedding dimension d:

For each reference point x; slopes s, d were automati-
cally fitted to the d correlation integrals C; d(r), as dis-
cussed in Holzfuss and Mayer-Kress [3]. To determine
pointwise correlation dimensions Dz;.=Dz(x; ),

d ln[C, d(r)]
din( )

Again the histogram technique was applied to determine
the distances of all points from a reference point x;. 100
reference points are sufiicient to estimate the mean dis-
tance (r(k}). The maximal embedding dimension was1,„=50.Based on the histogram H; z(r}, it is easy to
derive r, d(k), the distance of the kth nearest neighbor of
reference point x; embedded in d dimensions.

Although the values of interest are those of small k, the
distances of k nearest neighbors with k = 1,2, . . . ,
100, 110, . . . , 1000, 1100, . . . , 10s have been stored to an-
alyze the scaling behavior when getting close to the diam-
eter of the attractor. Averaging the logarithms of the
distances log, e[r, d(k)] over the reference points x; for
every embedding dimension d yields the mean distance
(logio[rd(k)] ) of the kth nearest neighbor.

The problems of determining the slopes are the same as
those of the classical Grassberger-Procaccia method.
Calculating the local slopes sd(r) is the only way to
demonstrate the existence of a scaling region.

V. SIMPLE rrVE-DIMENSIONAL SYSrxM

The following very simple five-dimensional system
avoids numerical complications and shows that dimen-
sion analysis fails for high system dimensions. If one uses
complicated chaotic systems, e.g., the Mackey-Glass sys-
tem, the true dimension values are not known analytical-
ly and the argumentation may be circular.

The simple five-dimensional system is built by sum-
ming five sine functions with incommensurable frequen-
cies. The invariant set in phase space of this quasiperiod-
ic process is a 5 torus. %e used various frequencies and
amplitudes with similar results. Here we discuss

ref

&s~):= g s, d,
ref g =]

1 max

bz=
d „g(sd),

IHsx s d =d
S

ref1
og q=var[5z„]:= g (s, d

—(sd))
ref g =&

(13)

(14)

with the relative amplitudes A, :=10, A&..=5, A3.=3,
A4. =4, A ~ =6, and the frequencies tot. =~2, c0z. =~3,
co,:=~5, tJi4. =~7, co,:=v 11, with corresponding
periods T', :=4.442. . ., Tz..=3.627. . ., T, :=2.809. . .,
T4..=2.374. . ., T,:=1.894. . .. %'e chose a sampling
time At=0. 2. This sampling frequency is high, as the
Nyquist rule would allow a sampling rate at
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C„„(t)
10"

0.5-

0.0

-0.5

-1.0

FIG. 1. Autocorrelation function of a simple five-
dimensional system. The Srst zero crossing of the autocorrela-
tion function is at T=42!t =0.8. The autocorrelation function
has no statistical meaning here, but is widely used to determine
the delay time ~ for dimension analysis.

ht ~ Ts /2=0. 94, but one should stay well below that. In
the dimension analysis the data points can be selected in
multiples of the sampling rate. Therefore, a Sne sampling
rate is useful as it allows various delay times r The.
minimal time distance p was 19r. To make these
artiScial time series comparable to experimental time
series, expansion and discretization of the time series x (t)
according to a 12-bit analog-digital-conversion were ap-
plied. The new range of the integers x ( t) was—2048~x(t) &2047. There was no extra noise in the
time series except discretization noise.

VI. RESULTS

One of the difBculties in dimension analysis is choosing
the delay time ~. The maximal volume expansion of the
reconstructed attractor seems to be a good criterion for
the choice of s. In our case of oscillations, the Srst zero
crossing of the autocorrelation function is a reasonable
choice for ~. The autocorrelation function of our time
series shows a Srst zero crossing at T=0.8=46,t (Fig. 1).
The phase space portrait gives an impression of the com-
plicated structure of the time series (Fig. 2). As the phase
space portrait looks very complicated, it cannot be decid-
ed whether the time series is chaotic, regular, or stochas-
tic.

Variation of the delay time
ti=0. 1;0.2;0.4;0.6;0.8;1.0I ensured that our dimension
analysis did not suffer from delay time artifacts. The lo-
cal slopes are very similar for all delay times r. As the re-
sults are not sensitive to variation of the delay time, we
here present only the results for v=0 8. .

Our simple Sve-dimensional system is stationary,
which means that its dynamical properties do not change
in time. Hence, an increase in N used for reconstruction
of the invariant set in the phase space should improve the

log&0[C(r)]

9-

X(t+

FIG. 2. Three-dimensional projection of a reconstructed tra-
jectory of the five-dimensional system by means of delay coordi-
nates x(t), x(t+~), x(t+2~). The projection onto the x(t)-
x(t+~) plane looks complicated and the projection onto the
x(t)-x(t+2v) plane looks even "chaotic." The information
content of those pictures is rather poor and one gets no idea of
the dynamics of the process underlying the time series. Here
1000 data points of the time series of the five-dimensional sys-
tem are plotted with ~=4ht =0.8.

I I I I I IIII I I I I IIIII
10 100

I I I 1 I IIII

1000

FIG. 3. Correlation integrals Cz(r) of our five-dimensional
system for embedding dimension d = 1, . . . , 30. The number of
data points was N=32000. For high embedding dimensions
further increase of embedding dimensions does not change the
correlation integrals Cz(r) and saturation can be expected.
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Histograms Hd(r)

log tp(H(r)l
'

embedding dimension d=11
', N=32 000

5
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FIG. 4. Typical double loga-
rithmic plots of correlation in-

tegrals and histograms for our
five-dimensional system. The
slopes of the manually selected
scaling regions are all higher
than s =5.0 and saturate around
s =5.7.

(c)
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(d) 0
200 500 1000

n:

(e)
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estimates of the correlation integrals and therefore those
of the correlation dimension. As the system is not chaot-
ic but regular, the scaling regions of the correlation in-
tegrals start at C&(r)=O(N). This agrees with Theiler's
results except for differing normalization [19].

local slope s(r)

9 I I I I

A. Classical Grassberger-Procaccia method

For the classical Grassberger-Procaccia algorithm, we
limited to 1V=32000. To test the infiuence of N, it was
varied: N =1000, 2000, 4000, 8000, 16000, and 32000.
We show the results for N =32 000 data points.

Figure 3 depicts the double logarithmic plot of the
correlation integrals for embedding dimension d =1—30.
One might see a clear saturation of the slopes with in-
creasing embedding dimension. A selection of several
typical double logarithmic plots of correlation integrals
[Figs. 4(a)-4(f)] shows the difficulties in selecting scaling
regions for Stting a straight line in the double logarithmic
plot of the correlation integral. In Fig. 4(b) it seems
unproblematic for the embedding dimension d =11. But
the slope s&& =5.5 is higher than the correct value of 5.
For the embedding dimension d =20 and 8 =30 we
found similar slopes near s =5.7.

In addition to the correlation integrals Cz(r}, one can
examine the histograms H&(r) directly. In double loga-
rithmic plots of the histograms log&p[H&(r)] vs log, p(r}
the Suctuations of the density of the points of the recon-
structed invariant set at the distance r [Fig. 4(a}, 4(c), and
4(e)] are more pronounced. The manual selection of the
scaling region is easier than in the log, p[C&(r) ] vs log, p(r)
plots because ffuctuations of Hz(r) are larger than in the
correlation integrals Cz(r) and the maximutn of Hz(r) in-
dicates that r is close to the diameter of the attractor.
Here the results are very similar to those of the correla-
tion integrals (Fig. 5}.

To avoid manual selection of the scaling region, local
slopes s(r) can be calculated for short ranges of r and
plotted against log&p(r). If they exhibit a plateau then
there exists a scaling region. For the whole set of embed-
ding dimensions d =1, . . . , 30 the plot of the local slope
s (r) vs log, p(r) indicates "evidence" of a chaotic system
(Fig. 6). Obviously there is saturation but the "correla-
tion dimension" is too high. The "scaling region"
(=[700;900]),where the slopes sz(r) are nearly constant,

3—

0
200 500

I I I I

FIG. 6. The local slopes sz(r) show a plateau around 5.7.
The length of the scaling region log 1p(900)—log10(700)
=0.11 & 1 is rather short and starts at large distances r. The lo-
cal slopes $&(r) have been calculated from the correlation in-
tegrals in Fig. 3 by linear regression over 50 successive distance
r, :linear reg. ression [([logIp(r;); logIp[C~(r, )]]~r, =r+j and

j = 1, . . ., 50)]~sz(r).

is smaller than one order of magnitude:
log, p(r2) —log, p(r, )=0.11. The plateau is constant for
15 embedding dimensions (d =15, . . . , 30). Frequently,
scaling regions comparable to ours are accepted
[3,20-26].

B. Pointwise correlation dimension

For the estimation of pointwise correlation dimension
only a few hundred reference points x,. (selected random-
ly or equitemporal on the reconstructed trajectory) with
up to N=10 other data points entered the calculations.
For each reference point x; the slopes s;& for each
embedding dimension d were fftted according to Holzfuss
and Mayer-Kress [3]. If these slopes s; z do show satura-
tion (typical example in Fig. 7), the average of the slopes
over the embedding dimensions d, where saturation is
reached, is an estimate of pointwise correlation dimen-
sion. This average value (s; ) of the slopes s; z is the esti-
mate for the pointwise correlation dimension of the refer-

'e
CA 4

3

Q 0
~ 8

I
O

4 4 a a 4 4 a av v v v v v v v J.7

~ slopes fmm Cd(r)

o slopes from Hd(r)

cotrect
value

:5

3-

2-

~ ~

~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ + ~ ~ ~ ~ ~ +W5.3

0
0

I

10 15 20
embedding dimension d

I

25
I

30

I I I

10 15 20
embedding dimension d

I

25
I

30

FIG. 5. The Stted slopes sz of the manually selected scaling
regions (several are shown in Fig. 4) saturate with increasing
embedding dimension d. The estimate for the correlation di-
mension is D2 =5.7.

FIG. 7. Example of automatically Stted slopes $3$ gf vs
embedding dimension d for a typical reference point (i =32).
From embedding dimension d =18-30 the values of the slopes
$32 Q show saturation and the average of the slopes s32 18 S32 30
yields (s~, ) =5.3 as an estimate for the pointwisc correlation
dimension.
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120

100 '

cln[r(k)]&
-30 -25 -20 -15

I I I

embedding dimensions: 40, ..., 50

-1.0
I

-0.5
I

80 '

-1.0

60 -2.0-
—-5.0

Correct
value

20
-4.0-

75 ~

C

—-10.0

4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0

(sj) -5.0-

FIG. 8. Distribution of "pointwise correlation dimensions

D2(x;)." The (s;) values are the averages of automatically
Stted slopes s; z of 1000 reference points x; and 10 data points
over embedding dimensions d =15, . . . , 30. None of the (s; )
values reach 5.0, the correct value of the correlation dimension
of the SveWmensional system. The mean value is 5.4.

-6.0-

I

-1.25
I I

-1.0 -0.75

(log&0[r(k) j&

I

-0.5 -0.25

ence point x, A histogram of these (s; ) values is shown
in Fig. 8. None of the 1000 reference points shows a
pointwise correlation dimension of 5 and all the values
(s; ) are higher than 5.1. The mean value of the point-
wise correlation dimension Dz for our simple homo-
genous Sve&imensional system is 5.4 and therefore too
high.

FIG. 9. The mean log distance (log»[r(k)]) is almost the
same for the embedding d~mensions d =30, . . . , 50. The scaling
region is smaller than one order of magnitude and the difference
between the slopes Stted by linear regression and the expected
slope seems negligible but may tempt one to classify the system
as a deterministic-chaotic one. Linear regression for the region

[—1;—0.5] of ( log, o[r(k) ] ) yields 5.48 for the slope s~.

C. Information 4&~ension

Similar to the calculation of the pointwise-dimension
values, K=10 data points and 100 reference points en-
tered the calculation. The maximal embedding dimen-
sion was d =50.

Determining the linear scaling region poses the same
problems as in the case of the classical Grassberger-
Procaccia method. Figure 9 shows the mean distance
(r(k}) for the mass k in the typical double logarithmic
plot log&c(k) vs (log,c[r(k)]). Although there is no
problem Stting straight lines to determine the slopes sd,
the local slope sd(r) is depicted in Fig. 10. Each plateau
is shorter than one order of magnitude of the distance r
for the local slopes sd(r) in Fig. 10 and, especially, there
is no plateau at the correct value 5.0. For embedding di-
mensions as high as d =40, . . . , 50 an information di-
mension of 5.56 may be claimed.

VH. DISCUSSION

Our very simple example of a Sve-dimensional system
is easy to reproduce and the result is analytically known.

Its dimension analysis can show dimension values higher
than 5.0 if the methods are used uncritically. The num-
bers of data points are comparable to numbers in many
published dimension analyses of experimental time series
(N =32 000) or even higher (%=10 ). The samplirig rate
for discretization (12-bit ADC} is comparable as well and
the delay time ~ is reasonable. %'e found a correlation di-
mension Dz =5.7 (classical Grassberger-Procaccia}, a
pointwise correlation dimensions Dz =5.4, and an infor-
mation dimension D& =5.56. The results look very con-
sistent and would strongly suggest that the system under
consideration is of a chaotic nature. Our Sndings demon-
strate that dimension analysis can fail for high-
dimensional systems. Therefore these methods are not
suitable to distinguish reliably high-dimensional systems
from stochastic processes.

A. %Phd the fa8meT

The failure might have been ex~ted because our N
was too low. If indeed N ~42 data points [9] are
necessary to calculate correlation dimensions, at least
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42 =130X10 data points would have been necessary to
adequately reconstruct the five-dimensional system. Our
counterexample shows that the demands for dimension
analysis of high-dimensional systems must be met by a
suScient N and suNIciently long scaling regions for small
distances. Otherwise, even if the estimates of dimensions
look very stable (independent of delay time r and saturat-
ing for increasing embedding dimensions), the results
may be wrong. This striking simple counterexample may
be more convincing for many experimental research
groups than the theoretical reasoning about N. If N is
low, scaling regions at small distances cannot be found.

I

Apparent scaling regions that depend on the global struc-
ture tend to be accepted. Instead of rejecting the ex-
istence of a scaling region and therefore considering the
limitations of the method, the apparent scaling regions
for large distances are erroneously taken as evidence that
the methods are successful.

The scaling regions [r&,r2] start for all three methods
at distances r, =O.lr, at 10% of the diameter of the
attractor. 10% (0.1X4.096=410) of the diameter of an
attractor may look moderate, but it is larger than three of
the amplitudes A; in the five-dimensional example:

5

g A;=28 =A1.=731:A2. =366: A3.=219;A4. =293; A5. =439 .
12-bit

(17)

This means that our estimated dimensions, ranging from
5.4-5.7, are not even approximations for the true dimen-
sion re6ecting local properties of the invariant set, but re-
sult (quasi by accident) from the complicated global
structure. The example of our five-dimensional system
shows that the limit r ~0 has to be taken seriously and
that N = 10 is too low in the case of our high-
dimensional system.

local slope sd(r)

embedding dimensions: d = 30, ..., 50

B. How to avoid erroneous 4~~ension analysis

The evidence for deterministic chaos is often based on
rather short experimental time series [1-4,27, 28]. To
check the validity of the algorithms for high-dimensional
systems by simulations one may increase N until the re-
sult of the dimension analysis is in agreement with the ex-
pected values. The conclusion that N is suScient to
reconstruct a five-dimensional system is not correct. In-
creasing N from 1000, 2000, 4000, 8000, 16000, up to 10
increases the correlation dimension for the pointwise
correlation dimension for N = 1000: D2 =4.6+0.4;
N =2000: D2=4. 8+0.3; N=4000: D2=5.0+0.2 (Fig.
11). As the result for N =4000 seems to be in the best
agreement with the analytically expected value of 5.0,

55-

5.0

5.56
correct
value

A

97
V

N 8000
N 1000000

N 2000

[ N-ceo ]

N 16000

—5.(80.2
~4.8S.2
~4.ooo'.4

I N-oooo )

4.5—

10 15 20

embedding dimension d

25 30

4.0
I

-1.1 -1.2
I I I I

-1.0 -0.9 -0.8 -0.7

clog&0[r(k)]&

I

-0.6
I

-0.5

FI(x. 10. The local slopes sq(r) of our five-dimensional sys-

tem do not show plateaus with one order of magnitude in
length. As the changes for embedding dimensions
d =30, . . . , 50 are very small one might attribute this to satura-
tion sects and accept the second line in the plot with a slope
around s =5.56. The local slopes were calculated by linear re-
gression over a region of 5 log&0(r) =0.25 in length: linear re-
gression [([log,o(r~); log, &&[Cd(rj )]]) )~r;

—r)) ~ 0.25)]~ss(r).

FIG. 11. We used several numbers of data points N
(N = 1000; 2000; 4000; 8000; 16000; 10 ) to calculate the point-
wise dimensions 8, ;:=8,(x,. ). Here we averaged the automati-
cally Stted slopes s; d over the reference points i and got (sz )
according to Eq. (12) for each N. For each N there is clear satu-
ration of (sz },but the value of saturation is depending on N.
For small N the estimate of the correlation dimension is low
(N =1000~D2 =4.6+0.4), for N =4000 it is apparently "best"
(Dz =5.0+0.2), and for larger N it reaches D2 =5.4+0.07. The
numbers to the right of the plot are the average values
of the distribution of pointwise correlation dimension:

(8,}:=g,. ",(s;}/N f [Eq. (13)].
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N =4000 data points might seem to be suSlcient to recon-
struct the Sve~imensional system and further increase of
N might be stopped.

The results above show that this procedure is fallible.
The usage of far too low numbers of data points N in di-
mension analysis forces one to select apparent scaling re-
gions starting at large values of r. The pitfall of apparent
scaling regions can be avoided if the limit r~0 in the
definition of dimension values is considered. Plotting the
local slopes of our simple Sve-dimensional example (Fig
12}for the first 20 embedding dimensions yields nice pla-
teaus for the Srst three embedding dimensions. If the sys-
tem dimension would have been 3 or less, it could have
been possible to identify the correct dimension
(N, =42 =74088~10 =N data points used for dimen-
sion analysis). The length of the plateaus for an embed-
ding dimension less than 3 is one order of magnitude and
can be found for small distances r. In case of embedding
dimension d =4 the expected plateau does not appear,
which is an indication of a lack of data points for analyz-
ing four-dimensional systems.

For high embedding dimensions (d & 10), only pseudo-

local sloPe sd(r)

"plateau" for d=20-50

5.0 —;:

embedding dimensions: d=1, . . . , 20

4.0—

3.0—
plateau for d=3

2.0
plateau for d=2

1.0—
plateau for d=1

'
~ . ,r&

~ ~
~

q
~

0
-3.5

oscillations

I

-3.Q
I

-2.5
I

-2.Q
I

-1.5
I

-0.5

&lOg10[l'(k) j&

FIG. 12. The local slopes (hlogto(r)=0. 25) show only for
low embedding dimensions plateaus of meaningful length. As
the embedding dimensions increase, the number of vector pairs
with distances smHer than r =0.1r decreases and estimation
of the sea&&ng behavior of correlation integrals and mean dis-
tances in the limit r ~0 is not possible. The plateau of the local
slope at large distances r can hardly be taken seriously and is
caused by the comphcated structure of our five-dimensional set
in high~imensional spaces. As there are only plateaus for low
embedding dimensions only low-dimensional systems ( ~ 3) can
be estimated accurately using 10 data points.

plateaus at larger distances r, & {log&o[r(k)])= —1.0
arise (see Fig. 10). The plateaus start at about 10% of the
diameter of the reconstructed invariant set. If an algo-
rithm under consideration is able to work for low-
dimensional systems, the conclusion that it wiB work suc-
cessfully for high-dimensional systems (e.g., & 5) may not
hold. To avoid the pitfalls mentioned above, simulations
of very simple high-dimensional systems (quasiperiodic
processes} with analytically known results ought to be
recovered before high dimensions from experimental time
series are acceptable. This is a first and minor require-
ment.

AH three methods seem to fail in the case of our five-
dimensional system. The main reason is that short scal-
ing regions or short "plateaus" have been selected. If the
slopes of the correlation integrals are estimated with only
a single straight line, variations will not be detected. The
manual selection or the corresponding automatic selec-
tion of scaling regions and the following Stting of a
straight line may yield slopes for any correlation integral
even if no scaling region exists. From this point of view
the dimensions derived from Figs. 4, 6, 9, and 10 and the
dimension derived by fitting the slopes automatically are
victims of the pseudoplateaus resulting from the compli-
cated structure of the embedded invariant set for large
distances r. These slopes are artifactual and do not de-
scribe the local properties of our system. Thus, if the lo-
cal slopes do not exhibit suSicient scaling regions (as for
d & 3 in Fig. 12), respective data points in plots of slope
vs embedding d (Figs. 5 and 7) are meaningless and
misleading.

Gershenfeld [23] used up to 107 data points to recon-
struct a 12-dimensional system. The scaling regions or
plateaus of local slopes were rather small
[logio(r2) —log, p(p, )=0.3] but increased with N and the
hope is that a further increase would build up plateaus
for small distances r of sucient length. He also showed
that noisy data behave in a different way: Even for 10
data points, no plateau arises in a 20-dimensional embed-
ding space for the slopes of the correlation integrals. So
to make sure that a deterministic-chaotic system has been
found, one should follow Theiler et al. [29] and produce
"surrogate data" (same power spectrum but randomized
phase) of the experimental time series in question. Then
dimension analysis can be repeated for the surrogate
data. If the local slopes of the surrogate data show pla-
teaus up to embedding dimension d, ,z„,and the local
slopes of experimental time series show plateaus at D1 sa-
turating with increasing embedding dimension and, fur-
thermore, D, & d, , ~, one is able to distinguish the re-
sults of dimension analysis of the experimental time series
from corresponding noise data. If the plateaus of the lo-
cal slopes are too short or if the slopes are calculated sim-

ply by linear regression from scaling regions of the corre-
lation integrals, filtered noise can mimic low-dimensional
chaotic attractors [30].

As an example of the proposed procedure, Fig. 13 de-
picts the results in the case of the Lorenz attractor with
10 data points. Because of its low dimensionality, the lo-
cal slopes do not increase with the embedding dimension.
On the other hand, the local slopes of the surrogate data
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FIG. 13. (a) Local slopes of D& integrals for embedding dimension d =1, . . . , 20 of the Lorenz attractor [6log, o(r) =0.2]. Pla-

teaus of one order of magnitude in length exist for small distances r even for high embedding dimensions. (b) Local slopes of the cor-
responding surrogate data show plateaus for embedding dimensions d = 1,2, 3. For embedding dimensions d & 3 it is not possible to
find plateaus of appropriate length and thus it is impossible to assign a dimension. As the height of the plateaus of the Lorenz time

series saturate for high embedding dimensions near Dl =2 and a plateau exists for the corresponding surrogate data at embedding di-

mension d =3, there is evidence of a finite information dimension.

increase with the embedding dimension and exhibit pla-
teaus up to embedding dimension 3. Consequently, in
this case, dimension analysis based on 10 data points is
sufficient to detect the correct dimension of d =2.06 but
would have been unable to detect dimensions of 3 or
higher.

VIH. CONCLUSION

Straightforward uncritical application of dimension
analysis may lead to incorrect conclusions. Proceeding
this way, our example of %=10 data points taken from
a very simple Sve-dimensional system yielded dimensions
of 5.4-5.7.

Searching for the reasons of this failure we found that
our results do not reflect, as required, the local structure
determining the dimension of the system, rather they
reflect some global structure of the reconstructed set.
Thus these dimension values cannot even be taken as an
approximation to the true value.

To obtain a meaningful estimation of the dimension
one has to consider the local slopes of the logarithms of
the correlation integrals in the limit r ~0, which have to
exhibit plateaus of sufBcient length. This i~plies the re-

quirement for huge values of¹ In our example a dimen-
sion of 5 has been found to be "high" in the sense that it
is not possible to detect it with 10 data points.

If data are derived from a low-dimensional system, pla-
teaus have to appear even for high-dimensional embed-
dings. Thus embedding dimensions of at least 20 should
be considered. If plateaus appear even for high-
dimensional embedding dimensions, surrogate data can
con5rm the existence of a low-dimensional system. The
example of the Lorenz attractor shows that low-
dimensional systems are reliably detected by this pro-
cedure. We suggest that current results of dimension
analysis concerning systems as complicated as human
brains are far too optimistic and ought to be tested inten-
sively before being applied as diagnostic tools [31-33].
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