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Estimating the density of data generated by Gaussian mixtures, using the maximum-likelihood
criterion, is investigated. Solving the statistical mechanics of this problem we evaluate the quality
of the estimation as a function of the number of data points, P = o,N, N being the dimensionality
of the points, in the limit of large ¹ Below a critical value of n, the estimated density consists of
Gaussian centers that have zero overlap with the structure of the true mixture. We show numerically
that estimating the centers by slowly reducing the estimated Gaussian width yields a good agreement
with the theory even in the presence of many local minima.
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This paper investigates the problem of estimating the
parameters of a probability density function from a 6-
nite number of sampled data. This problem has diverse
applications in science and technology, including statis-
tics, pattern recognition, classification and clustering,
and neural information processing [1]. One of the most
widely used methods is the maximum-likelihood (ML)
estimate [1,2], which chooses the parameter values that
maximize the probability of the sampled data. This and
related estimation methods encounter two major difBcul-
ties. One is concerned with the quality of the estimate
if the sample size is not sufBciently big. Despite intense
research, relatively little progress has been made in the
theoretical understanding of the performance of the ML
estimate except for the asymptotic limit of large sample
size. The second is the presence of many local minima
of the log-likelihood function, which often renders simple
gradient descent methods for maximizing this function
inadequate [1]. These problems are particularly severe
in the case of high-dimensional data, which is of a ma-
jor interest, as many applications of the ML method deal
with dimensionalities ranging from several tens to a few
thousands.

An important special case is the problem of estimating
densities that are composed of several, relatively simple,
component densities. This case is relevant when the data
is naturally decomposed into several clusters [1,2]. A cen-
tral problem in this case is how to estimate the number of
difFerent components in the underlying density. Recent
studies [3—5] suggested the use of a smoothing parameter
0, analogous to "temperature, " that controls the resolu-
tion in which the data is scrutinized. In addition, clus-
tering algorithms have been recently proposed [3] that
are based on estimating the loci of the cluster centers by
local minimization of an efFective energy function which
depends on the smoothing parameter. First, the centers
are found at high cr and then one iterates the solution
to low cr by incremental reduction of 0.. This process is
known as deterministic annealing (DA). Similar DA al-
gorithms have been found useful in spin-glass models [6]
and a variety of optimization problems [7], but they still

lack an adequate theoretical underpinning. It is thus im-

portant to understand how smoothing parameters afFect
the surface of optimization cost functions.

We consider a stochastic source consisting of a mixture
of two Gaussians,

'Po(S) = —'P(siU„oo) + —'P(siU, &0),

where 8 is a vector in RN and

'P(siU, o) = t' 1

(2~o)&Is I, 2o
exp

(

——/S —U (2)

We assume for simplicity that the two Gaussian centers
U& are orthogonal and have equal magnitude, which we
denote by uo ——~Ut~ /o'o. Note that uo also measures
the normalized separation of the two Gaussians, since
/2o Duo —

~U~ —Uoz~. The ML estimator assumes that
the data are generated by the mixture

(sl(U, ), ~) = 2v (SIU„~) + 2v (SIU„~) . (3)
1 1

The parameters of this distribution are estimated using a
set of observed data points 8", p = 1, ..., P, generated at
random according to Eq. (1). Note that the labels of S",
namely, the identity of the component distribution that
generated them, are not provided. Hence the estimate
is an instance of unsupervised learning. The estimate is
performed by minimizing the log-likelihood energy func-
tion

P
z((U, ), &) = —)»P(s"I/U, ), ~). (4)

=1
We study this problem in the thermodynamic limit,

N -+ oo, keeping n = P/N, oo and uo Bnite. As we have
shown previously [8], in this limit the overlapping volu~e
between the density components is a finite fraction of the
total efFective volume. Note that in this limit, the width
of each of the Gaussians is bigger by a factor of y N than
their separation. Examining E in the thermodynamic
limit, we find the form
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NpE = Pe({U~);o) + [ln(2~o') + o'0/o'],
2

e(AU, U) = —U (U —2S) + —b,U
1 — — — 1

20' 2K

1——) ln cosh(AU S"/o'),
@=1

(6)

where S = P ~ g„S",i.e., the center of mass of the P
data points. Minimizing e with respect to U and AU
yields

U=S
for all 0 and a. The splitting vector obeys

P
b, U = —) S"tanh(b, U S"/o)p

p,=l
(8)

The vector LU is particularly important because it
determines the quality of classification of new inputs
based on the estimated mixture density. In our case,
a ML classifier classifies an arbitrary input S as +1 if
(S —Uq) ( (S —U2) and vice versa; see Ref. [8]. The
average classification error of this classifier is

where e is of order l. Since the last term is of the order
of N, it follows that the ML estimation of cr is always
0' = era, independent of the estimation of U~. This fea-
ture is an immediate consequence of the thermodynamic
limit. Nevertheless, we will consider here 0 as a control
parameter and evaluate the vectors Ug by minimizing E
for a fixed value of o. The reason for this is twofold.
First, for many applications, it is the quality of the cen-
ters' estimation that is of primary interest and, as we will
show, it is not necessarily optimal at rr = oe when o; is
finite. Second, it may be useful to use o as an annealing
parameter, in a DA procedure discussed above.

In order to determine the Gaussian centers it is conve-
nient to introduce the mean vector U —= (Uq+U2)/2 and
the splitting vector b,U = (Uq —U2)/2. It is straight-
forward to show that

where the energy is given by Eq. (4) and P ~ is the
temperature of the system. Note that in our formulation,

P ~ is not related to the width parameter o. Using the
replica method [9] we have solved the mean-field, replica-
symmetric theory of this system in the zero-temperature
limit, thereby determining q and r for all o' and a. The
results reveal three distinct phases, as shown in Fig. l.

(i) Unsplit phase, q = r = 0. For large o and large a
the solution with maxim»m likelihood is one with a single
center, i.e., Uq ——U2 ——U. The existence of this state
is guaranteed by the symmetry of E under the transfor-
mation Uq s m Us q. As o is lowered this state loses
its stability and the single center splits into two distinct
clusters. The occurrence of this bifurcation as o decreases
is in agreement with previous predictions. Here we find
that the nature of the split phase depends crucially on
the size of the sample, measured by a.

(ii) Split ordered phase, q, r g 0. For values of a above
n, = 4ue the single-center phase becomes unstable to
splitting at o'q(u) = (1+ues/2)(i+2m ~us ). Here and
in the following the values of cr are quoted in»~its of 00.
The two clusters that appear below this line are split in a
direction which has a finite projection on the direction of
splitting of the true centers, as signaled by the nonzero
value of r; see Eq. (10).

(iii) Split random phase, q g 0, r = 0. For o. (a„ the
splitting into two centers appears at o2(a) = (1+a *) .
Below this line, the direction of the splitting of the two
estimated Gaussians is determined almost exclusively by
the random chumpiness of the data. This means that r is
of the order of 1/N and vanishes in the thermodynamic
limit.

We discuss the impact of this phase diagram on the
quality of classification performed by the ML classifier,
defined above. First, let us discuss the nn~plit phase.
Since r = q = 0, it would seem that in this regime the
classifier will have a random performance. This, how-
ever, may not be the case. Equation (9) shows that,
in our case, the classification error does not depend on
the absolute magnitude of the splitting of the two clus-

9.0

(uo
&c = ~

I
cos8

2 ) (9)
7.5

6.0

where H(x) = f 2 e ~~ . The angle 8 is the an-
gle between AU and EUO = (Uo~ —U02)/2, i.e., 8 =
cos (/2@2/q), where

4.5

3.0

q = oo[AUJ, r = u LU-LU (10)
1.5

The order parameter q measures the separation between
the two estimated centers, whereas r measures the over-
lap between the true and the estimated centers.

We have calculated analytically the order parameters
r and q. This has been done by viewing the ML estimate
as a zero-temperature limit of a statistical mechanical
system with a Gibbs distribution

P~(W~)) ~ exp[—&E((U~))]

0.0
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FIG. 1. Phase diagram for maximum-likelihood estimation
of a ~ixture of two Gaussians for separation value uo ——1.
The vertical axis denotes the number of data points per di-
mension, cx. The horizontal axis denotes the width o of the
estimated Gaussians. The values of cr here and in the follow-
ing Sgures are in units of the true width, pro.
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FIG. 2. Classi6cation error as a function of cr for cr = 5,
uo ——1. Width cr = 2.1 is the point of transition to the
ordered phase (arrow). The error in the unsplit phase is ill

deSned (see text). Note that the error goes smoothly to 0.5
(random performance) at the crossing to the random phase
(~ = o.9o).

ters but only on the angle between the splitting vector
and LU~, the value of which is ill defined in the unsplit
phase, and is therefore dependent on the details of the
dynamics. In the split ordered. phase, r, q ) 0; hence,
e~ & 2 as expected, as shown in Fig. 2. Note that as the
transition to the iin~plit phase is approached, e~ remains
below 2. This is because, near the transition, q (x r . On
the other hand, e~ ——

2 throughout the random phase,
since cos 8 = 0. The results of Fig. 2 also show that the
classification error is not minimal at the "correct" value
of n, namely, ao, but at a higher value. In fact, for these
parameter values, the minimal error is achieved at the
transition point oi(a). For other values of a or uo the
minimum occurs at intermediate values of o..

The above theoretical results do not reveal directly the
existence of metastability in this system. To study this
issue, we have performed computer simulations of the
system by locally minimizing Eq. (4). The minimiza-
tion was performed by iterating the map EU(n+ 1) =
F(EU(n)) where the function F is given by the right-
hand side of Eq. (8). At each value of 0 and a, a set
of initial values of b,U was sampled at random from a
Gaussian distribution. %e have also studied the DA al-
gorithm, in which o' was decreased in small steps &om
high values. At each value of 0, the initial condition for
the iteration was the fixed point value of AU at the pre-
vious value of cr (plus a small amount of noise). In Fig.
3, the results for the order parameter r are plotted as a
function of u for P = N = 500 and uo ——2. Note that
for this value of uo, a = 1 is above 0, For high values
of o, all initial conditions converge to a unique solution,
which coincides with the DA solution. For a' ( 1.5 many
di8erent local minima appear. As seen in Fig. 3, the
value of r varies considerably across the spectrum of lo-
cal minima, especially for small 0. Note that the onset of
the metastability occurs well below the transition &om
the unsplit phase to the split ordered phase (at 0 = 4.5).
On the other hand, simulations at low n indicate that,
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FIG. 3. The order parameter r as a function of o for a = 1
and uo ——2. The solid line is the result of the theory. The
dashed line is the solution found by deterministic annealing
from the local minimum at high values of cr; the dots are the
solutions found for local minima generated numerically for
N = 500 and random choices of initial conditions, at each cr.

Note that for o. ) 1.5 all initial conditions converge to the
same solution.

for o. & a„metastability appears, for large N, already
for o near the onset of the split random phase. The ap-
pearance of strong metastability suggests that at low o.

and low n there appears a genuine thermodynamic spin-
glass phase, marked by replica-symmetry breaking [9].
This spin-glass behavior occurs throughout the split ran-
dom phase and in the low o regime of the ordered phase.
Testing this hypothesis requires evaluating the stability
of the replica symmetric theory, which has not yet been
done.

An interesting question is the relation between the DA
solution and the theoretical results. In Fig. 3 we present
the theoretical predictions for r together with the value
obtained by averaging the DA results over 20 randomly
sampled realizations of the sample points. The results re-

veal quite a reasonable agreement between the two. The
deviations near o. 4.5 are expected due to strong finite-
size effects near the transition to the ordered phase. The
deviations at low cr may re6ect the effects of neglecting
replica-symmetry breaking in the theory. Thus the re-
sults are consistent with the hypothesis that in this sys-
tem the DA solution is in fact the global minimum of E
or at least close to it. Further support for this hypothesis
is gained &om the fact that in our simulations of systems
with N ) 500 the DA solution was always lower in energy
than the other local minima.

Rather insight into the nature of the metastability
is revealed by studying the evolution of individual local
minima as o. is varied. This has been done by calculat-
ing local minima of E at some intermediate values of o
and following them by either decreasing or increasing o

incrementally. Vfe have found that every existing local
minima~ varies smoothly with cr as o decreases. On the
other hand, upon increasing cr individual solutions disap-
pear in a discontinuous fashion, and the system "jumps"
to a different solution. An example is shown in Fig. 4,
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FIG. 4. Variation of the energies of individual local minima
with o, for N = 500. Solid (dashed) lines are the result of
increasing (decreasing) a'. Only a few epochs of decreasing a
are shown. Upper line is the DA solution. Parameters are as
in Fig. 3.

in which the evolution of the energies of several local
minima is displayed. The solid lines are the result of
increasing cr. Each time a jump occurs it represents a
disappearance of a minimum and a transition to another
existing minim»m. This is demonstrated by dashed lines
which show the evolution of the energies of several "new"
minima upon reducing o. Remarkably, we have found
that, for N & 500, the energies of two existing minima
never cross as n decreases. This implies, in particular,
that the DA solution remains the lowest energy solution
for all 0, since when other local minima first appear they
must be higher in energy than the DA state.

It is interesting to compare our results with the de-
pendence of the local minima on temperature in spin
glasses. N»merically, it has been found that following
high temperature minima of the mean-field free energy of

the infinite-range spin glass to low temperatures does not
yield physical solutions at low temperature [10].Further-
more, it has been argued on theoretical grounds that the
correlations between spin-glass states at diferent tem-
peratures or fields vanish in the thermodynamic limit
[ll]. On the other hand, our results are similar to those
found for the naive mean-field equations for long- and
short-range spin glasses, in the presence of a nonzero field

[6]. Also, similar behavior has been found for a difFerent,
clustering cost function at low dimensions [4]. In our
case, significant metastability begins to appear only for
N &'20.

In conclusion, we have evaluated the phase diagram
of a model of high-dimensional ~ixture density estima-
tion by maximum likelihood. Below a critical (scaled)
sample size o., the splitting of the estimated density into
multiple difFerent components is completely dominated
by the random sampling and the components have negli-
gible overlap with the centers in the underlying density.
In addition, we find numerically that at low estimated
width of the component densities (o) or small a many
local minima of the log-likelihood energy appear, which
are reminiscent of a spin-glass phase. Our results indi-
cate that, as n is reduced, the surface of E roughens,
thereby creating new minima, but the old minima and
the order of their energies are not disrupted. This sug-
gests that deterministic annealing may indeed yield the
ground state of the system even in the presence of strong
metastability.

Note added. After the completion of this work, we
became aware of two recent papers which study»@su-
pervised learning using statistical mechanics [12,13].
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