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We propose a method of investigation of highly dissipative systems, which is based on an approx-
imation of the attractor by some manifold. The projection dynamic equations for the general form
of such a manifold of the dissipative dynamic system are obtained. The dynamics of the dissipative
structures in a concrete reaction difFusion system is considered.
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I. INTRODUCTION

For the last few years there has been great interest
in self-organization phenomena arising in nonequilibrium
distributed dissipative systems. A wide variety of such
phenomena can be theorized as the origination, develop-
ment, and evolution of complex spatial structures. The
characteristic properties of such stationary stable struc-
tures have been partly investigated (for a review see, e.g. ,

[1—3]). However, at the present time dynamics of nonsta-
tionary spatial structures especially complex in geometry
is actually an unresolved challenging problem. The latter
is caused by the lack of well developed general analytical
mathematical methods for studying nonlinear dynamics
of substantially nonuniform fields in dissipative systems.
The available methods are specially designed for certain
particular models only and, thus, nonstationary spatial
structures arising in dissipative systems are usually in-
vestigated by numerical simulation.

In the present paper we develop a general approach
to investigating dynamics of nonlinear distributed dis-
sipative systems. In order to state the problem under
consideration we represent the evolution of dissipative
distributed systems in terms of the following nonlinear
equations:

mental data and results obtained by numerical modeling
that allow one to approximately imagine the general form
of the attractors beforehand. In more exact terms, these
results show the general form of the fields (@;(r,t) j be-
ing the asymptotic solution of Eqs. (1.1) as t m oo and,
thereby, enable one to construct some manifold 0 in the
space 4 that characterizes such solutions (Fig. 1). There-
fore, for this system we can specify its attractor by paths
in the space 4 that go in a small neighborhood of the
manifold Q. The given manifold may be of finite dimen-
sion p and in this case it is possible to describe it in terms
of

(1.2a)

where 4;(r, uq, . . . , uz) are certain functions of the spa-
tial coordinates r" and the collection of real variables
(uq, . . . , u„). The system (4;j, as a vector function of
r, gives the position of the physical system in the space
@ and, as a vector function of (uq, . . . , u„), determines
the geometry of the manifold O. The time dependence
of the variables (uq, . . . , u~) approximately describes the
physical system motion along the attractor O'. Besides,
there are cases where the manifold 0 is of infinite dimen-

8$; = F'jWi,Bt

Here i = 1, 2, 3, . . . , N where N is a given integer num-
ber, (@;(r, t) j are certain fields specifying a state of this
system and are regarded as real functions of the time t
and the spatial coordinates r, (E,j are the components of
a nonlinear evolution operator I' which depends on both
the fields (g;j and the external parameters Aq, . . . , AM(I is also an integer number). Due to dissipation, the
system tends to a certain state in the space 4 of the
functions {@,j as t -+ oo. This state is conventionally
treated as a certain set 0' called the attractor of the
dissipative system. Therefore one of the main problems
in the description of dissipative systems is analysis of the
attractor geometry and the system motion in the vicinity
of the corresponding attractor. In the following we shall
confine ourselves to this problem.

For certain systems there are a large number of experi-
FIG. 1. The schematic view of the attractor 0 and the

considered manifold O.
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sion and can be determined by the collection of nonlinear
operators

0 = {vj,(r) = 4;(r, ui, . . . , u„,vi(r), . . . , vq(r))}.

(1.2b)

Here the operator 4; depends on the real functions
vi(i".), . . . , vq(r) as well as on the spatial coordinates r"

and the real variables (ui, . . . , u„).
The basic idea of the approach to be developed in the

present paper is to reduce the system of equations (1.1)
to some evolution equations that contain solely the vari-
ables (ui, . . . , uz) and may be v; (r), . . . , vq(r), whose time
dependence characterizes the motion of the system along
the attractor. For some systems solving such evolution
equations can be found to be more simple than solving
the system of equations (1.1).

We note that a similar idea has been much used in de-
scribing the evolution of quasiconservative systems (see,
e.g. , [4]). Nevertheless the general procedure has been de-
veloped for the first order perturbation technique only.
In order to obtain an approximation at the next order
individua} analysis is required for each particular sys-
tem. The aim of the present paper is to develop such
a procedure for dissipative systems that enables one to
6nd approximations to any order in a small parameter
in a regular way. For dynamical systems described by
ordinary dHFerential equations a similar technique has al-
ready been designed [5].

II. PERTURBATION TECHNIQUE

Let us analyze the motion of a dissipative system where
the evolution operator F = (Fi, . . . , F~) involves two
parts. The first one (Fo) determines the fast motion to-
wards a manifold 0 and the second one (eF~) gives rise to
the slow motion along the manifold 0 (Fig. 1). In math-
ematical terms the motion of this system is described by
the equation

(2.1)

motion along the manifold O. The second one is the
small deviation of the system from the manifold O. Ex-
pression (2.4) enables us to expand the operators Fo{@}
and E„{@)into the Taylor series of 4:

F.{~}= F.'"«[»+ —,
'F."«

I »+

F' —'(&)&+ F.' -'(4)(» &) +0 (2 5)

F„{y)—F (y) + F( )(y)~+ F( )(y)(~ ~) +. . .

F"(4)(~~, , ~~) = ~"F"(~)(~, , ~)

It should be pointed out that the term F~ l(P) is a lin-
ear operator with respect to 6 and conventionally repre-
sented as

F"'(&)&= L(&)» (2.7)

where I(P) is the Frisher derivative of the operator
F{Q}at the point Q = 4t. The term F~2&($)(b, , b) is
a symmetrical bilinear operator with respect to 6.

The Frisher derivative Is{/) = dFojdg [y—@ of the
operator Fs{g), given at the manifold 0, plays an im-
portant role in the perturbation technique. Thus we,
Grst, consider its properties in detail. We assume that
for any point P C 0 the eigenvectors {Qg(P)) of the
Frisher derivative Le{41) form a complete system of lin-

early independent vectors in the space @. In other words,
any vector of the space 4, in particular, 6, can be ex-
panded relative to the basis {@~(P));

(2.6)

Here the term Fl"&(P)(b„b,, . . . , A) denoted also as
F~"&{/

[ b ) is the nth order differential operator which
is a homogeneous operator of degree n with respect to b, ,
l.e.,

where @ = (Qi, . . . , @~),e is a small paraineter, and
the operator F0{/}becomes zero at the manifold 0, i.e.,

at any point P of the manifold O. The manifold 0 is
supposed to be specified in the space 4' by the expression

&(t) =) &.(~)&.(4)

and, thereby,

4 = 4+).A~(4)A(4)

(2.8)

(2.9)

f1={@=4()) (2.3)

where P = (4i, . . . , @iv) and the generalized coordi-
nates ~ of the manifold 0 Inay involve both the real vari-
ables ui, u2, . . . , u~ and the real functions vi (rQ, . . . , vq(t')
[see expressions (1.2a) and (1.2b)].

We represent the solution of Eq. (2.1) as the sum

where Ag are certain constants and the sum runs over all
the vectors {gq(P)}.The symbol A stands for the eigen-
value corresponding to a given eigenvector @p. In the
general case the eigenvalues, as well as the eigenvectors,
depend on the point P of the manifold O. Considering
an infinitely small displacement hvP = (d4/W) .hw along
the manifold 0 from condition (2.2) we find

~(t) = 4'( (t)) + &(t) (2.4)
(2.10)

where the first term on the right-hand side describes the
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For possible different values of 8~ the system
((dP/~)b~} can form the basis of the plane T~ tan-
gent to the manifold 0 at the point P in the space 4.
Therefore, as follows from (2.10), any vector belonging
to the tangent plane T~ is an eigenvector of the Frisher
derivative Lo which matches the zero eigenvalue.

Since condition (2.2) practically defines the manifold
0 any eigenvector of the Frisher derivative Lo(P) corre-
sponding to the zero eigenvalue belongs to the plane Ty.
I et us single out a region O„on the manifold 0 that is
characterized by the condition A & 0 for all the eigenval-
ues of the operator Lo($j at any point P belonging to 0„.
It is near this part of the manifold 0 that the system will

go practically along it because at these points the evolu-
tion operator Fo causes the system motion towards the
manifold O. When the system leaves the region 0„ the
evolution operator Fo must give rise to the fast motion
of the system away from the manifold O. So such motion
can be treated as a fast transition of the system between
different points of the region O„and be described by the
equation

d4 .~+). AiA(4)+Ai ~ =).&AiA+P
A

(2.ii)

Here

P= ) —)Fo Q ) A@p + &+p(Qj

(2.12)

dP/du and dgg/du are the corresponding Frisher deriva-
tives, and we have also taken into account that

A~A) = Io(4) ) Ai& = $ &Ax%.
J

Equation (2.11) is completed by the conditions

At this stage of motion the effect of the small operator
eF„(gj can be ignored. Analysis of the fast transitions
on the basis of this equation is a problem in its own right
and requires that the system be concretized. Therefore
in the following we shall consider the system motion near
the region O„only.

As follows from expansion (2.8) in the case under con-
sideration the motion of the system can be represented as
the motion of the point P (the shadow) on the manifold
0 and the time variation of the coefficients A~. At the
present stage the motion of the shadow is not uniquely
determined because the motion along the manifold 0 is
independently described by the motion of the point P and
the time variations of the coefficients Aq(t) ~p o Since- .
the evolution operator Fo(@j has no effect on the sys-
tem motion along the manifold 0 in the general case the
coefBcients Ag(t)~p o may increase beyond all bounds.
In order to analyze the system dynamics in terms of the
shadow motion, the distance between the point g, show-
ing the real system position in the space 4, and the point
P must be small. In other words, the last term in expres-
sion (2.9) must be small too. Therefore it is reasonable
to specify the shadow motion in such way that at every
instant of time all the coefficients A~(t) ~~ o be equal to
zero. This procedure is equivalent to eliminating singular
terms in the evolution equation for the coefficients Ap,
obtained by perturbation technique.

Keeping the latter in mind we note that the pro-
cedure developed in the present work, the Bogolubov-
Metropolskii method of averages [6], the perturbation
technique designed for ordinary differential equations [5],
as well as the perturbation technique for nonlinear waves
proposed in [7] are similar in eliminating singular terms.

We now proceed to formal construction of the pertur-
bation technique. Substituting (2.4)—(2.6) and (2.9) into
(2.1) we get

(2.13)

In order to 6nd the explicit expansion of the vector P
relative to the basis (@g(P)j we introduce the linear op-
erator Gg(gj defined by the formula

(2.i4)

'P=b lim Gg
8-++0

(2.i5)

and the operator, called the Green operator,

1
g = lim Gg — 'P—

b~+0 b
(2.16)

As follows from definition (2.14)—(2.16) the actions of
these operators on an arbitrary vector

of the space 4 are specified by the expressions

'P0 = ).bi%
A=O

(2.i7)

and

(2.16)

The operators 'P and g enable us to divide Eq. (2.11)
into two parts governing the motion of the system to-
wards and along the manifold 0.

where the regularization parameter b m +0 and E is the
unit operator. The operator Gg possesses the same set of
the eigenvectors (@pj and its eigenvalues are (—1/(A—
b) j, respectively. The second type of operator that we
need are the projection operator



174 I. A. LUSASHEVSKII AND V. V. GAFIYCHUK

& ). AiA(4) + Ai ~"~ = —) 'Ai@i + QP,

(2.19)

such a system can be classi6ed as a highly dissipative
systexn.

As follows from (2.17) for any eigenvector gp corre-
sponding to nonzero eigenvalue (A g 0)'PQp = 0 at each
point P = P(ip) of the manifold 0. Differentiating the
latter identity with respect to the tixne we get

~+ ) 'Aq'P ip = 'PP.
dm dtU

(2.20)
d@p . . d'P

Here the prime on the sums indicates that the terms
matching the zero eigenvalue are omitted and the fol-
lowing identities resulting from (2.13), (2.17), and (2.18)
have been taken into account:

This expression and (2.21) enable us to rewrite Eq. (2.20)
in the form

g ip:—0, g) AAp@p = —) dP . . d'P
(2.24)

'P 6 —= ip, 'P ) AApgg(P)
—= 0,

d4 . d4 .
dtU de

'P) AA), @g = 0.

Under conditions (2.13) the vector 6 takes the form

It should be pointed out that the vector 6 and the
point P of the manifold 0 directly determine the value of
'P. Indeed, according to (2.12)

P = ) —,Fp '(&
I &}+eF~(&}

& = ).'A~A(4). (2.21) +e ) —,F~ l(P
I
b}. (2.25)

Expression (2.21) allows us to rewrite Eq. (2.19) as

g —b, = —b, +gP.d

dt
(2.22)

d- —1

b, = 1+g-
dt.

—:gP —gm [gP] + gip gip (gP)
d . d

W

+0' ~d (gP) + (2.23)

We consider such systems, that will be called the
highly dissipative systems, for which the transient term in
Eq. (2.22) can be treated as a small perturbation. Phys-
ically, this means that from viewpoint of the fast motion
towards the manifold 0„ the system motion along it may
be regarded as quasistationary. In this case Eq. (2.22) de-
scribing evolution of the vector b, can be reduced to the
explicit relationship determining the vector 6 in terms
of projection dynamics, viz. ,

. d'P f. dLpi (.dIp)
ip = 'P ip + (2.26)

=PI ~ Ig —'PI ip Ig'
dip ( dip ) ( dip p

Therefore Eq. (2.24) along with expressions (2.23) and
(2.25) completely describe the projection dynamics of
the system under consideration. In the general case
Eq. (2.23) is of complex form and can contain all the
time derivatives of m.

We note that expression (2.23) and Eq. (2.24) contain
apart from the operators Fp(@},F„(@}and these deriva-
tives which are determined at all points of the space 4',
the operators g and T as well as their d.erivatives de-
termined at the manifold 0 only. Therefore it would
be desirable to find the derivatives of g and P along the
manifold as functions of this operator and certain deriva-
tives of the evolution operator Fp(@}.As shown in Ap-
pendix A such an expression for the 6rst derivatives of
the operators g and 'P along the manifold is of the form

In mathematical terms the highly dissipative systems
are characterized by convergence of the latter series. In
order to verify whether a given system belongs to this
class one should analyze in detail the spectr»m of the
Frisher operator. In particular, if there is a finite gap
separating the zero eigenvalue (A = 0) from other ones
(ReA ( 0 for 0„) then, as follows from (2.18), for an ar-
bitrary f the vector gg will be Suite. In this case due to
the system motion along the manifold 0 being caused by
the perturbation operator eF„ the time derivative db, /dt
according to (2.23) may be estimated as (dA jdt)
and thus the transient term in (2.22) is sinall in compar-
ison with the 6rst one on the right-hand side. Therefore

(2.27)

dP .
tU = PT. (2.28)

where

Successively differentiating expressions (2.26) and
(2.27) we can obtain the desired formulas for the higher
order derivatives of the operators g and 'P

In particular, substituting (2.26) into (2.24), taking
into account expression (2.23) and the identity Pg = 0,
we get
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P=ur gA+P. dLp

is the generalized evolution operator for the system mo-
tion along the xnanifold O. The explicit expressions for P
and b, as functionals of P can be obtained by successive
iteration of Eqs. (2.23), (2.25), (2.28), and at lower order
in e from (2.25) we get

y(i) —P(i) eF «} (2.29)

~(i) gP(i) = egF (y} (2.30)

and thus the shadow motion equation at first order in e

takes the form

m = PX(' —= euF„«}.d

To the next order in e from (2.25) and (2.28) we find

(2.31)

~ ~&
()d~

~

g~() PP()
d~) (2.33)

Substituting (2.30) and (2.31) into (2.32) and (2.33) we
obtain the shadow motion equation to second order in e

iii —p~(2) (2.34)
de)

where

&"'= eFp«} + e'F,"'(&)(g+p«})

+"-,'F."'(~)(gF.«};gF,«})
+"F."'(4)(&F.«} g'F.«}). (2.35)

In obtaining Eq. (2.34) we have taken into account the
relation

gb, = F,' )(P)
~

~;gA
~

dpi ( disci
'

and substituted (2.31) into the latter equality. It should
be noted that the term of second order in e can play an
essential part when the operator Ez is degenerate at the
manifold 0 and the first order approximation is inade-
quate to give the right results.

Equation (2.28) is actually of the vector form whose
components are specified by the coordinate system, given
initially in the space 4. Therefore the forrnal dixnension
of Eq. (2.28) coincides with the dimension of the space

However, in actual truth, the amount of the inde-
pendent equations as well as the independent variables is
determined by the dimension of the xnanifold 0 and can
be substantially less than the dimension of the space 4.
So concluding the present section we also obtain a pos-
sible form of such independent equations of the shadow
motion.

The plane Ty tangent to the xnanifold 0 at the point

Pt ~ = eP~igi+ e~P~'~ (gl ~

S~ ~) + Ilo—
(2.32)

and

Q = (t (~) can be specified by the set of vectors ((dP/the) .
hu} where the vector bu runs all the possible values. Let
the collection of vectors (e }form a basis in the space
(hu}, and thus the vector system ((dP jar)e }be a basis
of the plane Ty in the space 4'.

Since Eq. (2.28) contains solely the vectors lying in the
plane T@ it can be equivalently represented as the system
of equations

~

~

~

~ ~

~

~

m —PT e = 0.dP . dP
(2.36)

The convenience of the given equation system is that it
contains the complete collection of independent equations
explicitly describing the systexn motion in terms of time
variations of the parameters u only.

III. EXAMPLE OF THE PERTURBATION
TECHNIQUE APPLICATION: THEORY

OF DISSIPATIVE STRUCTURE OSCILLATION

In this section, as an example of the developed method
application, we analyze nonlinear dynamics of spatial
structures in a highly dissipative system described by
the following one-dimensional reaction-difFusion equa-
tions [8]:

«8 =l V 8+8 —8 +g, (3.1)

~„i) = I V r) —gal —(0 —A). (3.2)

l (& l:((L (3.3)

FIG. 2. The solution of the reaction-diffusive system in
the form of periodical dissipative structures.

Here 8 and g are dimensionless order parameters, «, 7„,
and l, L are the characteristic scales of temporal and spa-
tial variations of these parameters, and g and A are given
constants. We assuxne that «(& r„and l && L. When
the uniform distribution of the fields 8, g becomes unsta-
ble, contrast spatial structures typically occur (Fig. 2) in
such systems.

From the viewpoint of the order parameter 8 these
structures involve two types of domains where the value
8 is about +1, which are separated by "walls, " i.e., by
thin regions inside which the field 8 varies abruptly [3].
As a rule spatial periods of these structures are equal to
(lL)i~2 in order. Under some conditions such a spatial
structure in turn can become unstable and in this case
spatially nonuniform oscillations develop in the system.
Qualitatively, these spatially nonuniform oscillations may
be treated as motion of the walls. Keeping the aforemen-
tioned in mind we consider the motion of a single wall
in the region shown in Fig. 3 whose size 2l: satisfies the
inequalities
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g(z) = g,

where g and —1 ( a & 1 are certain arbitrary constants.
Here by virtue of (3.3) we have ignored boundary condi-
tion (3.4), because at x = +8 the derivative

& H, q differs
from zero by a value of order exp{—l:/1). Therefore the
manifold 0 = {@:@ = P(r, to)) at which I"0 ——0 can be
speci6ed in the form

(3.ii)

FIG. 3. The fragment of the dissipative structure placed
in the interval [—8, 6].

and we may regard the variables o, , g as the generalized
coordinates of the manifold A.

Following the procedure developed in Sec. II we calcu-
late the Frisher derivative dFO/d@. From (3.7) we find

and at whose boundaries z = kZ the 6elds 8 and g are
subject to the conditions

Lo{&)=
d

%HI c =%HI g =0, (3 4)
~2~2 + y 3g2

0
0 (3»)

VgI — r. = Vi1
I =c = 0. (3 5)

(3.6)

This model practically describes characteristics of spa-
tially nonuniform oscillations of periodic structures.

As follows from Eq. (3.1) and (3.2) time variations of
the Beld 8, rl are characterized at least by three temporal
scales, viz. , 7s, x„, and 7„(Z/L) . The scale 7s is associ-
ated with the formation of the wall, the second one (7„)
characterizes time variations in the field g caused by gen-
eration or dissipative processes in the system and on the
third time scale 7„(Z/L)2 « r„ the ddfusion processes
control formation of nonuniform distribution of the vari-
able g.

The couple of equations (3.1),(3.2) may be regarded as
the motion equation of form (2.1) for the vector

g (
Bs,g)

0
0

ez ——
1 (3.i3)

as an orthogonal basis {e,e„) of the plane T~ tangent
to the manifold 0 at the point P. In these terms

The given operator Lo{P) is Hermitian, thus we may
omit the projection operator 'P in Eqs. (2.36) because
'P = 'P+ = 8 for the vectors of T~. Besides, as seen from
the Bnal results obtained below, in this case the evolution
operator eF{g) is degenerate. Therefore we have to use
the second order approximation (2.34) of the evolution
equation. Expression (3.11) specifying the manifold D
parametrization enables us to regard the vectors

w=e a+e„j
dQJ

(3.14)

Taking into account the time hierarchy mentioned above
[7s, r„(Z/L) « vz] we divide the total evolution op-
erator E{g) of this motion equation into two parts:
F = Fo+ eF„where

and starting, for example, &om the motion equation of
form (2.36) and omitting the projection operator 'P we
obtain the following equations governing the motion of
the parameters a and g:

(3.7) (3.15)

(e~ I en)~ = (e~ I
&"'). (3.16)

(3.8) From (3.9) and (3.13) we Bnd

and treat eE& as a small perturbation operator. The so-
lution of the equation Eo{g)= 0 is of the form (-I -)=, &'* ( I

)=2&.2v2
(3.17)

o.Z —x
8(x) = H, g(x, a) = tanh

21
By virtue of (3.7), (3.8), and (3.11) for the given system

expression (2.35) can be rewritten in terms of
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—(rl + brlz(z) —38,&(z){[b8&(z)] + 2b82(z)b8s(z)})
—' {—gal —[8,g (x, a) —A] —gbrlg(x) —b8g (x)} (3.18)

Here

N(x) F h8(x)
b.(*)

=' I" b (*)
N(x)=g eFpIn, b„( )

sentation are the functions G&(x, xo), G& (x, zo) (calcula-
tion of which is presented in Appendix B) obeying the
equations

—(l V + 1 —38„(x) ) G~(z, zo) —bG~(z, zo)
7g

= &eFp In

where by virtue of (3.8) and (3.11)

(3.19) = —b(x —zo), (3.21)

EFp I

LV—Gs(z, zo) —bGb(z, zo) = —b(z —zo), (3.22)

and g, 'P are the regular Green and projection operators.
According to definition (2.14), the total Green operator
Gh satisfies the relation (Lo[P] bE)Gg —= E for b —= +0,
thus, due to (3.12) it is of the form

subject to the boundary conditions

VG I-~c=o,

V G"
I gc =0.

(3.23a)

(3.23b)
G', 0

G~ 0 (3.20)

where the operators G& and G& in the coordinate repre-

Solving Eq. (3.22) under boundary conditions (3.23b)
and separating the regular part &om the obtained result
we get

„( )
&o (8+x) + (8 —zo)' —(4j3)E if z ( zo

4+L (8 z) + (8 + zo) —(4/3)Z if z ) zo. (3.24)

As follows from (3.21) the Green function G&~(z, xo) prac-
tically does not depend on the form of boundary condi-
tions (3.23a) because the characteristic scale on which
it varies significantly is about /. The solution of Eq.
(3.21), i.e., the total Green function G&~(z, zo) as well
as its regular part Gs(z, zo), (Gs)2(z, xo), and the pro-
jection operator 'P(z, xo) with full details are presented
in Appendix B.There, in particular, it is shown that the
functions b8q(z), h82(z), and h8s(x) [see (3.19)] must be
even functions about the point z = o.l.. Besides, we may
set

G' 0
0 G" (3.26)

into (3.19) we find the following expressions for briq(z):

bq, (z) = —J G"(x,xo)8., (xo)dzo (3.27)

and, in particular,

Substituting the obtained results for the regular Green
operator

G (x, zo) = exp —
I
x —xo I

rs v2
2 2l l

(3.25)
2 l'.2

brig(o. ) = ——a(1 —o. )3L2 (3.28)

except for the points belonging to a small neighborhood
of the point x = o.l'. whose radius is about l.

The analysis of the Green operator Gg and the Frisher
derivative Lo(P) also shows that there is a gap between
the zero eigenvalue and other negative eigenvalues. The
latter proves that the system under consideration can be
regarded as highly dissipative.

and for b8q (x)

=1-
b8g(z) = —g2

(3.29)

when the point x does not belong to a small neighborhood
ofx=a, .

Then from (3.13) and (3.18) we obtain

('- I
&")= "z&

I

— '
I {a+be(z) —38(*) ~{[b8~(z)l'+2b82(z)b8s(x)}).r- (3.3o)
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By virtue of (3.9) the function &" defers from zero at
a small neighborhood of the point x = o.. Keeping in
mind that the functions 88,~/Bx, 68i(x), 682(x), 68s(x)
are even functions about x = n whereas 8,q(x) is an odd
one, and, in addition, that the function br'(x) cannot vary
substantially on the scale L, from (3.30) we get

In this case the wall will be broken down.
Concluding this section we note that, as has been

demonstrated, the developed projection dynamic method
enables one not only to obtain some qualitative results
but also to study nonlinear dynamics of dissipative struc-
tures in sufhcient detail.

(..~~~'l) =r~&+6&( )j—1
70

and according to (3.28)

(3.31)

IV. CONCLUSION

(..
~

~i l) -=~ ~+ ——n(1 —n ) —.282 2 1.
3 L2 78

(3.32)

I

g+-
I ~+ I

2n ——
I2) i 2).

Expressions (3.17), (3.32), and (3.33) enable us to
rewrite Eqs. (3.15), (3.16) governing the motion of the
parameters o. and g in the desired form:

The behavior of the function 68i(x) in a small neighbor-
hood of the point z = a has practically no eKect on the
value of (e„~ EL l). So in order to obtain (e„~ Xl2))
expression (3.29) may be used. Then substituting this
expression together with (3.28) into (3.18) we find

We have considered a highly dissipative system whose
attractor 0' is located inside a small neighborhood of the
known manifold O. The motion of the system along the
attractor 0' has been described as motion of its projec-
tion (shadow) onto the manifold O. We have developed
the perturbation technique which enables us to find equa-
tions governing the shadow motion to a given accuracy.
These equations contain evolution operators determined
at the manifold 0 only. By way of example, dissipative
structure oscillations have been analyzed on the basis of
the developed method.
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1 3l
«n = — fJ+ — 2n(1 n )3L2

( 1) t'~~= —
I
g+- /n+12n ——

I

.2).

(3.34)

(3.35)

APPENDIX A: PROOF OF EXPRESSIONS
(2.28) AND (2.27)

First, we shall show that the operator Gg to first order
in b can be represented as

As follows from the stability linear analyses the sta-
tionary solution (n„rl, ) of the equation system (3.34),
(3.35) is unstable when

Gs = 'P+ g ——6g . (A1)

11 «1.'
1 —3n, ) v2~ g+ —

~

——
2) 7.„LC

(3.36)

and the unstability in the wall attitude occurs through
oscillations with the frequency

Indeed, according to definition (2.14) the operator Gs
and the Frisher derivative Ls(4} possess the same set of
eigenvectors (@g}which match the eigenvalues (1/(6—
A) }and (A}, respectively. Therefore the action of the op-
erator Gs on an arbitrary vector vP = P n~Qp is specified
by the formula

3 i

~g r. 7„«
(3.37) Gs4' = —).niA + ) .'6 (A2)

The conventional bifurcation analysis of Eqs. (3.34)
and (3.35) shows that in the given system the supercrit-
ical bifurcation takes place. For example, when A = 0
and, thus, a, = 0, g, = 0, i.e., the stationary position
of the wall is the middle point, the amplitude o.~ of the
appearing oscillations is

For A g 0 to first order in 6

1 b

A2

Thus, to the same order in b

1 —v2~ g+ —
~

——
v3 0 2)r Ld

(3.38)
1 , t' l1

Gsg= —) ng@z+). '
~

——
~
n~Ab„- Ap

It should be pointed out that according to (3.38) the
oscillation amplitude attains the value n~ ——1 when

., 1—6) A2
(A3)

(
v2/ g+ —

I2) ~„Ll: 4
(3.39) Comparing (2.17), (2.18), and (A3) we get expression

(Al). DifFerentiating (2.14) with respect to ~ we find
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and, thereby,

dGg dLp

de dtU
= Gg Gg

(A4)

(As)

In this way the eigenvalue problem for the operator
H is reduced to solving the equation Mp ——kHI, where
k is such a constant that the solution of this equation
is bounded as Z ~ +oo. Using the conventional trans-
formations [10] we convert from Z to g = sinhZ and
represent 8 as

because, by definition, (Lp —bE)Gs = E.—Substitution
of (Al) into (AS) to zeroth order in b yields

1 dP dg 1 dLp 1 ( dLp dLp+ + +be dw b2 dm b ( dm dm )

8 = (coshZ) —
i y = fy,3 I

~d$

where

(B4)

~dLp~ &dLp~2 ~2dLp&
dtU dtU de (A6)

d sinhZ d 3 d—3 +
dZ coshZ dZ (coshZ) dZ

(Bs)

The identity Lp'P = 'PLp = 0 leads to the expression Then, &om the latter equation we obtain

dLp d'P

de) de)
d' d'
d(3 dZ2 ~ (B6)

d'P dLp dLp+
dm du& dm

(A7)

and

dg dLp dLp 2 2 dLp

du& dm dm dm
(AS)

and, thus, the 6rst term on the right-hand side of ex-
pression (A6) is equal to zero. Equating the terms of the
same order in b from (A6) we obtain

In the present work we assume that l &( L and consider
the wall being far (in unit l) from the boundaries x = +Z.
In this case boundary condition (3.4) or (3.23a) is not
the factor and we may choose any boundary conditions
for convenience. In particular, we shall assume that the
function y meets the Born—von Karman conditions at
Z = +Z where Z ++oo.

For every k ( 0 there are two bounded solutions of Eq.
(B6) of the form

Formulas (2.26) and (2.27) immediately result from (A7)
and (A8).

g~(Z) = cos(g( k (Z),

(Z) = sin(Q) k ~Z),

(B7)

APPENDIX B:THE GREEN FUNCTION
AND THE PROJECTION OPERATOR

In order to solve Eq. (3.21) we, first, consider the
eigenvalue problem for the operator [9]

which meet the Born—von Karman boundary conditions
for

k„= —
i i

n,(el
&Z-)

H = —(l V + 1 —38„)—b
Te

where n = 1,2, . . . . Thus the eigenfunctions of the op-
erator h corresponding to the eigenvalue k (B8) and
normalized to unity can be written as

for a = 0. Substituting (3.9) into (Bl) and converting to
the new variable Z = x/(~2l) we represent the operator
II as

where

1
& fx+,2Z

(B9)

H = h —2(2+ b~s)
278

where

(B2)

2
9k2 —k„(k„+ 2)'

d2 6h=
dZ2 cosh2Z (B3) As results from analysis of Eq. (B6) the operator h also

possesses the following three eigenfunctions:
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8 Z=~
2 (coshZ) 2 '

In particular, as it results from (814), the operator (g )
can be represented in terms of

i/2

(81O) ( 27-g z —al:

),Ig4 &

1"( ) =
g2z„

31—
2(coshz) 2

('zo —aZ&
(815)

which match the eigenvalues k = 4, 2, 0, respectively. The
operator H possesses the same collection of eigenfunc-
tions (8s = 8p} and the corresponding eigenvalues are

( ]k —2 (2 + bee)] ) .
1

27@

Besides, when x—nE. , zp —AZ p) l ol o,d —x, AZ —xp pp l

in formula (814) we may take into account solely the
terms corresponding to k = k„and summing over all
n = 1,2, . . . we obtain

Due to the collection of eigenfunctions (8s} being or-
thonormal we may write

g ~g V&
G (**0)= exp — ]T To ~).2 2l

b(z —Zp) = ) 8s (Z)8s (Zp) (811)
It should be pointed out that expressions of the type

and, thereby, the solution of Eq. (3.21) can be repre-
sented as

dzpG (z, xp),

2~g (x —aZ )
~2l [2(2 + b ) —k] 0 &2l )

dxp(G )'(x, *o),

(zp —a&I
x8),

i 2l
(812)

dzpP (z, zp)

For b = 0 all the eigenvalues A =
2 [k —4] differ from

zero except for the eigenvalue corresponding to the eigen-
function 8i(Z). Thus, from (812) and the definitions of
the operators g and P it follows that

that we meet in finding functions (3.1S) are practically
reduced to the series of form

1 (x —aZ) (xo —aZ)
~2l L, v 2l ( v)2l )

(813) ) As8s
i i

dz8), (z),
i)) 2l

(818)

and

1 . 2~g (x —aZ ']

~n )- (4 —k]

(xo —aZ ')
x8), (814)

where Ag is a certain function of k. Since the given col-
lection of the eigenfunctions (8s(z)} contains odd and
even functions of Z, series (818) actually contains the
even eigenfunctions only. Whence it follows that the
functions b8i(x —aZ), b82(x —aL), and b8s(x —aZ)
are even functions with regard to the transformation
(x —al:) m -(x —aZ).
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