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Nonlocal electron transport in the presence of high-intensity laser irradiation
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We investigate electron transport in a plasma heated by spatially modulated laser irradiation. When
the heating rate is greater than the electron-electron collision rate, the thermal conductivity is reduced

by a factor of 3 to 4 from the Spitzer-Hiirm [Phys. Rev. 89, 977 (1953)] value for EA., & 0.01 and is less

affected by nonlocal heat-transport effects for kA., &) 1, where A,, is the electron mean free path and k is
the perturbation wave number. Implications for thermal filamentation will be discussed.

PACS number(s): 52.40.Nk, 51.10.+y

It is well known that inverse-bremsstrahlung (IB) ab-
sorption of laser light in plasma can lead to significant
departures from a Maxwellian electron distribution func-
tion when the heating rate becomes comparable to the
electron thermalization rate through self-collisions [1].
The transition is characterized by the parameter a=
(heating rate)/(thermalization rate) =Z'(uo/u, ) & 1,
where vo is the peak electron oscillatory velocity in the
laser field, u, =(T/m)'~ is the thermal velocity, T is the
electron temperature (in ergs), m is the electron mass,
and Z =(Z )/(Z) (where ( ) denotes an average over
the ion species). In this limit, and in the absence of heat
sinks, the plasma continuously heats up and attains a
self-similar distribution function of the form

f;t, cc exp[ —[u/V(t)] I. Mora and Yahi [2] have calcu-
lated the corresponding electron thermal conductivity a
for a collisional plasma and found a reduction of about
3—4 from the Spitzer-Harm [3] (SH) value. If on the oth-
er hand the IB heating is weak yet spatially modulated
with a wave number k, the effective thermal conductivity
is found to fall significantly below the SH value for
kA, , & 0.01, where A,, is an electron mean free path [4—6].
This occurs when the heat-carrying electrons, with ener-
gies of about 7T, become effectively delocalized in space
and cannot collide fast enough with the background
thermal electrons to establish a Maxwellian distribution.
Thus we have two distinct mechanisms for conductivity
reduction: one is due to the f;b form of the background
distribution function in the limit where a ))1 and
kA, , «1, and another is due nonlocal heat-transport
effects in the limit where a « 1 and k A,, && 1.

In this paper we investigate the effective value of ~ for
arbitrary a and kA, , (assuming uo & u, ). We are particu-
larly interested in answering the question of whether the
reduction in ~ relative to ~sH for kA, , &&1 will be less or
more severe as a becomes larger than 1. This can be im-
portant for laser-fusion applications, where the thermal
filamentation growth rate is intrinsically dependent on
the value of tc [4].

The approach we use here is similar to the one adopted
in Ref. [4]. The electron distribution function is numeri-
cally calculated using the electron Fokker-Planck (FP)
code spARK, assuxning no ion motion. Although the code
is fully nonlinear, the physical processes become more

55f,
+iku5f, =D„(5fo)+D b(5fo)+5D;t,(fo),at

(2)

e5E t)fo—v„5f, =iku5fo (3)

where 5E is the perturbed electric field (calculated assum-
ing quasineutrality), v„=4m ne Z *lnA/u is the
electron-ion (e i) coll-ision frequency, n is the electron
number density, e is the magnitude of the electric charge,
and lnA is the Coulomb logarithm. These coupled equa-
tions are derived from the diffusive form of the FP equa-
tion, in the Lorentz limit. The diffusive approximation
assumes that f=fo+f, u„/~u~ and 8/Bt &&v„, which
has been shown to be accurate for our type of problem,
and the Lorentz limit assumes that Z »1 (though ap-
proximate corrections for low Z may be easily incor-
porated) [5].

The e-e collision operator D„and the IB heating
operator D b are described in detail in Ref. [1]. For our
purposes it suffices to know that D,b/D„-a. The other
important scaling parameter can be obtained by compar-
ing the heat-transport term with the e-e coBision term,
i.e., iku5f, /D„5fo-(kA, , ), where A,,=T /
4nne (Z')'~ lnA. The significance of these two parame-
ters can be explained as follows: By considering first Eq.
(1), which describes the evolution of the homogeneous
background plasma, we can see that the parameter a
represents the ratio of IB heating to electron thermaliza-
tion through e-e collisions. When a «1, the D„opera-
tor drives the distribution function toward a Maxwellian,
fst ~exp( —u /2u, ). However, when a&&1, the distribu-
tion function evolves (after a brief transient period) to a
self-similar state of the form f;b. The significance of pa-
rameter kA, , lies in the fact that when kk, , «1 (and as-
suming a«1), e ecollisions are ab-le to maintain 5fo
c1ose to a perturbed Maxwellian

transparent if we refer to the linearized form of the FP
equation, assuming a perturbation (denoted by 5) with
spatial dependence exp(ikx),

~fo
(fo)+Dt's(fo) yBt
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5T uBf —,—3 f
v,

(4)

This represents the so-called collisional limit assumed by
fluid theory, which leads to the SH thermal conductivity.
In the opposite limit (kA, , »1) the high-velocity elec-
trons in the tail of the distribution function diffuse in x
faster than they are able to diffuse in v, thus leading to a
departure from a Maxwellian. The resultant breakdown
of the fluid approximation is manifested by a severe
reduction in the effective ~.

Before calculating the general dependence of ~ on n
and kk,„let us first review the results based on the fol-
lowing two limits: First, we consider the case of kA. , &(1
but arbitrary a. Mora and Yahi proposed a test isotropic
distribution of the form

fo„= exp[ —(u/V)" ]

to analyze the transport under these conditions. Here
V=v, [31'(3/p)/I'(5/p)]' and p is a coefficient such
that f0„2=fl and fo„s=f;b. The heat fiow can be
calculated by linearizing Eq. (5} and substituting the re-
sult in Eq. (3}. The effective conductivities, defined by

5q= m 5f u du= ik«5T—ikT«—5n/n,2'
1 n (6)

are then given by

«(p, ) a(7b —Sc )

~4

and (7)

«n P a(b —c) &
sH 32

where a =[I (3/p)]'~~[3/I (5/p)] ~, b =I (10/p)/12,
and c=[l'(8/p, )] /9I (6/p). We note that for p&2
there is a heat flow arising from a density gradient,
though for 5T/T = 5n /n a—nd p= 5 its contribution is
only about 25% of the total heat fiux. In this paper we
consider the case of 5n =0 only.

The two important limits of Eq. (7) are «(p, =2)=«s„
and «(@=5)=0.25«sH. As shown by Mora and Yahi the
reduction in conductivity may be explained by plotting
(see Fig. 2 ) Q (v) =v 5f ~

as a function of u/u, for p=2
(dashed curve) and p=5 (solid curve). Since the max-
imum value of Q shifts to a lower velocity for p=5, the
heat-carrying electrons become more collisional and thus
less effective at transporting heat.

To obtain a relationship between p and a, Matte et al.
[7] numerically solved Eq. (1) and fitted their results with
the formula p(a)=2+3/(1+1. 66/a ). Based on this
result we now propose the following a-dependent con-
ductivities:

«(a ) 0.751

[1+(0.25/a) '
]

where ~/~sH is plotted in Fig. 1. In terms of useful pa-
rameters we have a=0.042Ii4A, Z*/e[T(keV)], where
I,4 is the laser intensity in units of 10' W/em, k is the
laser wavelength in pm, c, = (1 —n ln, )', and n, is elec-
tron critical number density. As expected, other electron
transport processes, such as viscosity and resistivity, are
also affected by the change in fo. These have been dis-
cussed in great detail by Dum [8].

Now we consider the case of a &&1 and arbitrary kk, .
This was done in Ref. [4] and corresponds to situation
where Eq. (1) yields the results f0=f~, and Eqs. (2) and
(3) are solved self-consistently. Naturally the background
distribution is not a true equilibrium (since there are no
energy sinks), but its temporal variation rate is assumed
slower than the rate it takes for 5fo to reach equilibrium.
In other words the IB heating rate has to be less than the
thermal conduction rate across k '. The resultant
values of «/«sH are plotted in Fig. 3 as functions of kk, .

The results for the general case of arbitrary ki,, and o,

are shown in Fig. 3. Since for a finite a the distribution
function is not in a steady state, the curves essentially
show the instantaneous value of «/«sH as a function of
kA, , and a. In practice, to keep the value of a constant
during a SPARK simulation the laser intensity had to be
increased in time at the same rate as the fractional in-
crease in the background temperature. From Fig. 3 we
see that for kA, , (0.01, «/«sH displays the behavior
shown in Fig. 1. The main results, however, are that for
a given kk, &)1,~/asH actually increases with a, and
that for given a the reduction with ki,, starts at larger
values of kA, Part of the explanation for this can be
traced back to Fig. 2. Since the velocity of the heat-
carrying electrons of an IB-heated plasma is reduced
from the classical value, these more collisional electrons
have an effectively smaller mean free path and are hence
less susceptible to nonlocal transport effects. A similar
physical argument has also been put forward by Yahi and
Mora for the case of a plasma driven with a strong heat
flow. A complementary explanation is based on the fact

1.0
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and

«„(a) 0.0658
[1+(0.153/a) '

]

FIG. &. Plot ~lasH as a function of cx, for kX, && 1, where k is
the perturbation wave number and A,, is the electron mean free
path.
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FIG. 2. Plots of Q (in arbitrary units) as functions of u/u, .
The dashed curve refers to the classical fluid result, and the
solid curve refers to the case where a &&1. Note that the area
under the curve is proportional to the heat flow.

where S;b is the IB heating and R is the Langdon correc-
tion factor [R (a«1)=1,R(a»1)=0.5]. Assuming
pressure balance, the density response may be written as

5n 5I
n I r+—7

2

where y=k aT/SbR =384(a/asH)(1/R)(kA, , ) /a, for
Z »1. In the limit as a »1 and kA, , &&0.01,y is negli-
gible and I5n/n I becomes insensitive to both x/asH and
R. For kA, , »1, however, y is large and ~5n/n

~

be-
comes proportional to R(asH/a). Hence, for a given
ki.„the finite-a transport corrections wi11 act to reduce

that for a »1 the relative importance of nonlocal trans-
port efFects can be estimated from
ikv5f, /Db5fo-(kA, , ) /a. Thus as a increases so does
the value of ki,, at which nonlocal transport efFects start
to dominate.

To assess the importance of these results for the
growth rate of thermal filamentation [4—6] we recall the
fact that for a given amplitude of laser intensity modula-
tion 5I the thermal response 5T is inversely proportional
to ~. This is demonstrated by the steady-state energy bal-
ance equation

k2 T5T R 5I+ 5n 3 5T
T ' I n 2 T

FIG. 3. Plots of sc/a» as functions of ki,„for a &&1, and
a=0. 1, 1, 10, and 100.

the value of ~5n /n ~.

Therefore, we reach the conclusion that in the col-
lisional limit the a corrections to the transport are likely
to have a negligible effect on thermal filamentation,
whereas in the weakly collisional limit the a corrections
are likely to reduce the level of thermal filamentation.
However, to accurately assess the overall efFectiveness of
laser filamentation one should also investigate the contri-
bution from the ponderomotive force.

The results presented in this report refer specifically to
sinusoidal perturbations in laser irradiation. To apply
them to spatially isolated hot spots in the laser profile re-
quires the use of Fourier decomposition followed by the
transport corrections as shown in Fig. 3 (assuming that
the transport is still reasonably linear).

In summary, we have discussed the transport proper-
ties of a plasma heated by spatially nonuniform high-
intensity laser irradiation. When the heating rate is
greater than the electron-electron thermalization rate,
the thermal conductivity is reduced by a factor of 3—4
from the Spitzer-Harm value of kA, , &0.01 and is less
affected by nonlocal heat-transport efFects for ki, , »1.

This work was supported by the U.S. Department of
Energy OSce of Inertial Confinement Fusion under
Cooperative Agreement No. DE-FC03-92SF19460, the
University of Rochester, and the New York State Energy
Research and Development Authority.

[1]A. B. Langdon, Phys. Rev. Lett. 44, 575 (1980); R. D.
Jones and K. Lee, Phys. Fluids 25, 2307 (1982); R. Bales-
cu, J. Plasma Phys. 23, 553 (1982); B. N. Chickov, S. A.
Shumsky, and S. A. Uryupin, Phys. Rev. A 45, 7475
(1992).

[2) P. Mora and H. Yahi, Phys. Rev. A 26, 2259 (1982).
[3] L. Spitzer, Jr. and R. Hiirm, Phys. Rev. 89, 977 (1953).
[4] E. M. Epperlein, Phys. Rev. Lett. 65, 2145 (1990).

[5] E. M. Epperlein and R. W. Short, Phys. Fluids B 4, 2211
(1992).

[6] A. V. Maximov and V. P. Silin, Phys. Lett. A 173, 83
(1993).

[7]J. P. Matte, M. Lamoureux, C. Moiler, R. Y. Yin, J.
Delettrez, J. Virmont, and T. W. Johnston, Plasma Phys.
Control. Fusion 30, 1665 (1988).

[8] C. T. Dum, Phys. Fluids 21, 956 (1978).


