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Stationary convection in a cylindrical plasma
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It is shown that in a current-carrying cylindrical plasma with a free boundary, viscosity and thermal
conductivity can lead to large scale steady convection. The physical situation is identical to the case
when the plasma column is limited by perfectly conducting walls, in spite of the fact that the boundary
conditions are different.

PACS number(s): 52.20.—j, 52.25.—b, 52.35.Py, 52.30.—q

Large scale stationary convection in a current-carrying
cylindrical plasma has been the subject of several studies
during the past years. Thus, it has been shown that for
magnetic fields satisfying (Bs/B, ) »1, nonideal effects,
such as viscosity and thermal conductivity lead to a phys-
ical mode characterized by k~~=0 which, for a given
value of thermal conductivity and perpendicular viscosi-
ty, triggers large scale steady convection in the plasma
[1]. It has also been shown that the combined effect of
resistivity and thermal conductivity can also lead to
steady convection. In this case, convection occurs when
either (Bs/B, )»1 or when (Bs/B, )«1. Otherwise,
convection takes place for large azimuthal wave numbers
[2]. When all three nonideal effects are considered, name-

ly, thermal conductivity, resistivity, and viscosity, there
are four states which can lead to large scale steady con-
vection [3]. It has also been shown that when Hall
currents are taken into account, the stability properties
are drastically changed and convection is still possible
under some conditions [4,5]. In these studies, the system
was assumed to consist of a cylindrical plasma column
limited by perfectly conducting walls.

Recently, with the purpose of studying more realistic
systems, like a 8 or a z pinch, or a screw pinch with uni-
form longitudinal magnetic field, where the obtained
magnetic and density profiles are more similar to those of
the present model, a cylindrical plasma column with a
free boundary was considered. It was shown that thermal
conductivity and resistivity also lead to convection [6]. If
convection can be achieved, it can lead to stable
configurations which, in the context of nonlinear theory,
are usually thought to give rise to turbulence. Moreover,
it is clear that stationary convection can lead to anoma-
lous transport effects.

Here we shall show that the combined effect of thermal
conductivity and viscosity can also lead to convection
when the plasma column is surrounded by vacuum. The
conditions for convection are identical to the case when
the plasma is bounded by conducting walls, even though
the boundary conditions are different.

The basic equations are
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where p~ is the perpendicular viscosity [7], a is the
thermal conductivity, and So is a constant heat source
which maintains the equilibrium pressure profile.

The system consists of a cylindrical current-carrying
plasma of radius a surrounded by vacuum. The equilibri-
um is characterized by a magnetic field given by
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where po is a constant.
The rotational transform q is constant and, therefore,

the magnetic field is shearless:
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~here I. is the length of the cylinder.
Assuming the density to be nearly constant, p =po, the

motion incompressible, and that all perturbed quantities
behave like

f ' "(r,8,z) =f ' "(r)exp(im 8+ikz+Qr },
the following equation for the perturbed velocity is ob-

where p and U stand for plasma and vacuum, respectively,
and BI and Bo are constants.

The equilibrium velocity is zero, and the equilibrium
pressure is given by

p' '=po (BI/4n)(r!a)—
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tained:

Q +OPS a +(m —nq) ]g
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where

Q =(4napo. /BI )' Q,
g'= ( 1/Q )v' ",
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is the total pressure in the plasma.
From Eq. (21) it follows that
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Using Eqs. (8) and (9), the last equation reduces to
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P"'=(4m/B )[p'"+(B B)"'/8n]

is the total perturbed pressure.
Taking the divergence of g' by using its components,

and setting it equal to zero yields:

Since the tangential components of the electric field at
the plasma boundary must be equal, i.e.,

Efg=F.,"gI„

from Eqs. (4) and (17), it follows that

pe (1)+k 2 2 (1) 0 (13)

P'"=crJ [k(o —1)' r],
where

cr=2(m nq}/[Q +—QP)P a +(m nq) ]—,
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(15}

n = kL/2n, an—d P=.kcr
The perturbed magnetic field in the plasma is given by

where a is a constant.
This is Bessel's equation whose regular solution at the

axis of the cylinder, r =0, is

iBIB„"'I"= (m nq)g„—.

Therefore, Eq. (23) reduces to
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and using Eqs. (12) and (14), Eq. (27) reduces to
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The value of P can be obtained by taking the curl of Eq.
(12) and using the last equation. The result is p=kcr.

On the other hand, the perturbed magnetic field in the
vacuum region is given by [6]
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where J' is the first derivatives of J .
Equation (28) is the boundary condition to be satisfied

at the plasma-vacuum boundary. In general, the last
equation is satisfied for some cr=oo. For such value,
ka(cro —1)'~ =xo. Before solving for cro, we shall dis-
cuss the dispersion relation.

By setting cr =oo in Eq. (15), it follows that the disper-
sion relation is given by

where A is a constant, K are Bessel's functions of the
second kind, and K' is the first derivative of K

At the plasma-vacuum boundary, the following condi-
tion must be satisfied [6]:
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Note that the dispersion relation reduces to the well
known ideal magnetohydrodynamics dispersion relation
when)M) =0 [1,8—11].

From the last equation it follows that there are three
states for which 0=0. These states satisfy

+ B.B
Sm

(21)

m =nq, (30)
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From the condition that ka (tr t)
—I )'~ be equal to some

fixed value, xp, it follows that

2
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which for large wave numbers reduces to O.p~ l.
%'e shall now show that the boundary condition given

by Eq. (28) is satisfied for crt)=1. In fact, from Eq. (28) it
follows that for nq ~m, 0.p~ 1, This means that
Op= +1, just like in the case when the plasma column is
surrounded by perfectly conducting walls [1]. Hence, the
properties of stationary convection of a current-carrying
cylindrical plasma under the action of a longitudinal
magnetic field are the same in both cases. Note that also
in the present case, namely, when the plasma is surround-
ed by vacuum, v„(r =a)=ve(r =a)=0 [1]. In fact, from

The modes given by Eq. (31}have zero perturbed ve-
locity, and, therefore, they cannot lead to convection [1].
However, when resistivity is present these modes have a
finite perturbed velocity and have been shown to lead to
convection [6].

On the other hand, the modes given by Eq. (30) lead to
a finite perturbed velocity [1] and, being both marginal
(ReQ=O) and stationary (Imp=0), they can lead to
convection [12]. These modes are linear and incompressi-
ble solutions of Eqs. (1)—(7), provided that y in Eq. (3) is
infinite [1]. Under some conditions, however, the modes
given by Eq. (30) satisfy Eq. (3) for arbitrary finite y. In
Ref. [1], it was shown that this happens for large wave
numbers, ka &) 1, and

Eq. (12) it follows that g„(r=a)=(t)(r =a)=0 when

xoJ
1 —o=

and

&oJ
(35)
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respectively. It is clear that the last equations are
satisfied for o =+1. In particular, for 0 =1, xp=Z
where Z, is the first zero ofJ, [1].

To sum up, we have shown that the set of Eqs. (1)—(7)
has stable stationary solutions characterized by nq =m.
These modes are incompressible and satisfy Eq. (3)
for arbitrary finite y, provided that p, j~

(3/k—a)dp' '/dr
~ „,. The latter condition is

fulfilled for large wave numbers, ka &&1. This situation
is identical to the one encountered when the plasma
column is bounded by perfectly conducting walls [1]. On
the other hand, when the e8ect of resistivity is con-
sidered, the modes given by Eq. (31) have a finite per-
turbed velocity and when rl/a=8tr/3, where tl is the
resistivity, they have been shown to lead to plasma con-
vection [6]. Finally, it is interesting to note that, as far as
convection is concerned, resistivity and viscosity seem to
play equivalent roles with one acting as the inverse of the
other. Resistivity controls convection at the edge of the
unstable spectrum whereas viscosity controls the central
region of the spectrum [3].
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