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Nematic liquid crystais between antagonistic cyhnders:
Spirals with bend-splay director undulations
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We reexamine the problem of a nematic fluid trapped between two concentric cylinders with difkrent
anchoring conditions on each of the cylinders. If the splay constant K, is less than the bend constant Kb,
the director varies monotonically between the plates. If, however, K, & Eb, the director can undergo a
series of spatial oscillations. Observation of these oscillations may allow measurement of K, /Eb. For
semiflexible polymer liquid crystals the oscillations should be readily observable and very sensitive to
temperature changes.

PACS number(s): 61.30.Gd, 62.20.Dc, 61.41.+e

A nematic fluid is contained between two concentric
cylinders of radii r, and r2. The anchoring conditions at
each cylinder are such that the nematic director is per-
pendicular to the cylinder axes. On the inner cylinder
the angle made by the director with the radial direction is
0 and on the outer cylinder a. %hat is the director field
inside the cylinders? This problem was first proposed by
Meyer, solved in a special case by Padrodi, and is dis-
cussed in the book by de Gennes [1]. The interest lies in
the case aAO. The director is then forced to traverse the
cylinder between two boundaries offering different an-
choring conditions and must therefore distort.

The special case studied in [1] is the so-called one-
constant approximation where the elastic constants for
splay, E„and bend, E&, are set equal to one another. In
that case the angle made by the director with the radial
direction P(r) varies monotonically with radius,
P(r)=aln(r/ri )ln(rz/ri ) (Fig. 1). In many problems the
one-constant approximation is a reasonable simplification
and captures the essential physics of the system. The
magic spiral problem is a counterexample. By setting
K,AKb we find an interesting, nonmonotonic, change in

To see this we write the director in cylindrical coordi-
nates (r, 8,z) as n =(n„,ns, n, )=(cosf, sing, O). Note
that as in the previous treatment of this problem we as-
sume the director has no z component [2]. This could be
forced upon the system by application of a strong field
favoring alignment perpendicular to the cylinder axis.
To make the system mathematically tractable we make a
small distortion assumption, 1( ((1.

The total nematic energy per unit length of the
cylinder is then [1]

F=m f dr(Kb —K, )r 'Q +Kbr
1

then has the form
2

I'~ J dt ~ —P' —1
1nr I jt g (2)

f(r) =a ln(r/r, )/ln(rz/r, ), (4)

i.e., a monotonic variation with distance. In this case the
potential vanishes.

(ii) If K, )Kb then the director moves in a potential

2.

-i. . 5I

Note that the first term has exactly the same form as that
for director distortions between two flat plates. The
second term is a potential induced by the curved
geometry. This second term vanishes if E, =Lb. If t is
interpreted as a time, then the free energy (2) is the same
as the action for a particle with displacement g moving in
a parabolic potential well. The free energy minimum can
thus be found directly from the equation of motion

d2$ = —kg
t 2

with k:K, /Kb —1—. Three regimes are then possible.
(i) If K, =Kb then the one-constant approximation is

strictly valid and we obtain the Padrodi result:

In problems with cylindrical symmetry it is useful to in-
troduce the transformation t =ln(r /r, ). The free energy
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FIG. 1. Plot of the radial dependence of the angle {normal-
ized to a) made by the director with the radial direction, as a
function of r/r, . Here we choose r2/r, =10. We show the
three possible scenarios. {i) (dotted line) E,=E&, (ii) Hull line)

K, /Kb=26&1, (iii) (dashed line) K, /1(b=0. 5&1. In (ii) the
director undergoes spatial oscillations of amplitude larger than
CX.
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well and the solution is oscillatory,

f(r)=asin[v k ln(r/r&)]/sin[&k ln(r2/r&)] .

(iii) IfK, (Kb the solution is again monotonic,

(5)

'((t=a sinh[& —k 1n(r/r t )]/sinh[V —k in(r2/r, )] .

(6)

In this case the particle moves in an inverted potential
ss eQ

Case (ii) is the one of most interest. Provided
k 1n(rz/r, ) )2m the director makes one or more oscilla-
tions in traveling between the plates. In t space these
have period

FIG. 2. The director orientation between the cylinder in the
two cases. (a) K, /Kb =26 & 1, so the bends to escape splay. (b):
K, /Kb=0. 5(1; there are no oscillations. We have chosen
r2/r& =10 and the anchoring angle a=1, to make the oscilla-
tions clear. The director is tangent to the curves at each point.

The period is independent of any dimensional parameters
and depends only on K, /Kb. The number of complete
oscillations is the largest integer not greater than

n =(2n) 'in(rt/r& }(K,/Kb —1)'

Physically, the oscillations occur because or large K, IKb
it costs less free energy for the director to bend than to
splay. By oscillating splay is avoided at the expense of
bend. If Kb & K, it is no longer favorable to bend and we
have case (iii).

We can plot the "nematic trajectory" in each case, i.e.,
the curve with tangent following the local nematic direc-
tor. These follow from the geometrical relation
tangdrld8=gdrld8=r along with the equation of
motion (3}. Here 8 is the usual polar angle in cylindrical
coordinates. Integrating once gives

8(r) =8(r, )+g(r) g(r
& ), —

where g (r)—: (r/k)df/dr—. The curves 8(r) are plotted
in Fig. 2.

Two things are to be noted. First, the oscillations do
not occur between two flat plates. In that case
r2 =r, = ~. With two fat plates the free energy has the
same form as (2} but without the potential term The cy-.

lindrical geometry induces this term. Second, the ampli-
tude of the oscillations can be much larger than a. The
maximum is g =a/sin(~k lnr2/r, ). For 2n =m, with
m an integer, the oscillations diverge. We then need to
include nonlinear corrections, which were ignored in

deriving (1) [3]. For many small molecule nematics
K, /Kb (1, and there will be no oscillations. However,
for rigid polymeric nematics the splay constant can be-
come very large [4]. It is governed by the constant densi-
ty constraint which forces the chain ends to arrange in an
entropically unfavorable way [5]. The splay constant
then diverges as the length of the molecule, whereas the
bend constant depends on the rigidity of the molecule.
We can thus expect K, &Kb for such systems. For
semlflexible polymer nematics some novel elects can
occur due to the presence of hairpins [6]. These rapid
bends in the chain each have associated energy penalty
UI, . Thus the number of hairpins per chain of length
L is (L /l )exp( —

Ub Ik T}, here l is a microscopic
length. Each hairpin acts like a chain end and
K, /Kb cc(UblkT) exp(UblkT) [5,7,2]. Thus K, /Kb is
large and grows rapidly with decreasing temperature.
This implies that the number of oscillations should be
very temperature dependent.

The oscillations predicted here should be visible under
polarized light, using the optical birefringence of nemat-
ics, and may provide a method of directly measuring
K, /Kb.
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