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We consider the combined effects of a power law Levy step distribution characterized by the
step index f and a power law waiting time distribution characterized by the time index g on the
long time behavior of a random walker. The main point of our analysis is a formulation in terms
of coupled Langevin equations which allows in a natural way for the inclusion of external force
fields. In the anomalous case for f ( 2 and g ( 1 the dynamic exponent z locks onto the ratio
f/g Dra. wing on recent results on Levy Bights in the presence of a random force field we also find
that this result is independent of the presence of weak quenched disorder. For d below the critical
dimension d, = 2f —2 the disorder is relevant, corresponding to a nontrivial fixed point for the force
correlation function.

PACS number(s): 02.50.Ey, 02.50.Ga, 05.20.—y, 05.40.+j

I. INTRODUCTION II. LANGEVIN EQUATIONS

Anomalous difFusion arising from nontrivial waiting
time distributions, so-called continuous time random
walks (CTRW's), has been used to model a variety of
physical phenomena [2]. For example, the dynamics of
carrier difFusion and recombination in disordered media
has been described in terms of a CTRW [3—7]. Anoma-
lous difFusion in an intermittent dynamical system [8,9]
and in a linear array of convection cells [10,11] has also
been analyzed in terms of CTRW's.

Anomalous difFusion is also associated with power law
step size distributions, the so-called Levy distributions
[12—15]. The Levy flights generated by the Levy step
distribution have been used to model a variety of physical
processes such as self-difFusion in micelle systems [16]and
transport in heterogeneous rocks [14].

In the present paper we consider the combined effect
of a power law waiting time distribution and a power
law Levy step size distribution, i.e., the case of continu-
ous time Levy flights (CTLF's). Since Levy flights lead
to superdifFusive behavior, whereas a power law waiting
time distribution entails subdifFusive behavior, the com-
bination of the two yields an interesting description of
anomalous difFusion in the general case [2].

The key issue in the paper is the discussion of CTLF's
in terms of coupled Langevin equations for the position
and the time. This approach is achieved by introducing
as an intermediate variable the path or arc length along a
particular trajectory. Besides the clearer physical inter-
pretation afForded by Langevin equations as stochastic
equations of motion, such an approach also allows in a
natural way for the inclusion of external fields, for exam-
ple, a drift force field.

In Sec. II we discuss the Langevin equation associ-
ated with power law step and waiting time distributions.
Section III is devoted to the discussion of the associated
Fokker-Planck equations. In Sec. IV we discuss the prob-
ability distribution for the position of the walker as a
function of time. In Sec. V we carry out a scaling analy-
sis in the absence of an external force field. In Sec. VI we
give a discussion and comment briefiy on the role of an
external quenched force field, drawing on recent results.

S

r(s) = sI(a')da',
0

or the Langevin equation

dr/da = vI(a). (2)

In Fig. 1 we have shown the parametrization of a par-
ticular trajectory. Equation (2) is readily generalized in
the presence of an external drift force field F depending
on the position of the walker. We obtain, in this case,
the Langevin equation

dr/da = F(r) + vI (s) .

Similarly, the total elapsed time after 8 "steps" in the
continuum limit is

8

t(s) = r(a')ds',
0

(4)

implying the Langevin equation

dt/ds = r(a). (5)

The coupled Langevin equations (2), (3), and (5) consti-
tute the present formulation of continuous time random
walk. We are considering here the separable case where
the step distribution n'(g) and the waiting time distribu-
tion w(r) are statistically independent [2,17,18].

Let us denote the step size distribution by s'(g), where

g is the elementary microscopic step. We assume that
vr(vI) is normalized, i.e., f 7r(sI)d rl = 1. Likewise, we de-
note the waiting time distribution by to(r), where tu(r)
is the probability of the walker of waiting the time in-
terval v at a given position before performing the next
step. Due to causality 7 ) 0 and the normalization of
to(r) reads Jo w(r)dr = 1.

Parametrizing the random walk [1] in the continuum
limit by means of the path parameter or arc length 8
along the trajectory we have, for the position of the
walker r(s), after s "steps, "
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FIG. 1. Plot of a particular random walk parametrized by
the arc length s.

III. FOKKER-PLANCK EQUATIONS

Limiting first the discussion to the force free case, i.e. ,
F = 0, the probability distributions Pi(r, s) and P2(t, s)
associated with the Langevin equations (2) and (5) are
easily inferred [19,20]. From the definition Pi(r, s)
{b(r —r(s))) and P2(t, s) = (b(t —t(s))), Eqs. (1) and
(4), and averaging according to the power law noises in
Eqs. (7) and (8), we deduce the scaling forms [2]

n. (g)d"g oc )7
' ~d)7. (7)

We assume an isotropic form characterized by the step
index f. In order to ensure normalizability we have in-

troduced. a lower cut g a of the order of a microscopic
length a and chosen f ) 0. For f ) 2 the second moment

(rP) = J z'(g)(72d"g is finite and a characteristic step size

is given by the root mean square deviation g()72). For
1 & f & 2 the second moment diverges, but the mean
step (i1) is finite. In the interval 0 & f & 1 the first mo-
ment diverges and even a mean step size is not defined

[12]. In a similar way we assume for the waiting time ~
the power law distribution

u)(~)d~ oc 7. ' sdr

Owing to causality v ) 0. In order to guarantee normal-
izability we introduce a short time cutoff of the order of
a microscopic time scale and choose g & 0. The distri-
bution is characterized by the time index g. For g & 1
the first moment (~) = jur(7 )7 d7 is finite, setting a well

defined hopping rate 1/(r). For 0 & g & 1 the mean
value (w) diverges and we cannot define a characteristic
rate or time scale.

In order to eventually discuss the anomalous diffusive
characteristics of a random walk driven by the power
law noises g and v we must determine the distribution
function P(r, t) and, in particular, the mean square dis-
placement

(r'(t)) ~ Dt'~,

where D is the diffusion coefficient and z the dynamic
exponent. Since the random walk takes place in physical
time t we are thus faced with the issue of eliminating
the auxiliary path variable 8 labeling the walk. Owing
to the stochastic nature of the Langevin equation (5) for
t it is not possible to invert it and solve it for 8 and we
shall instead turn to the associated deterministic Fokker-
Planck equations.

In the case of a sharp waiting time distribution i()(~) =
b(~ —ro), corresponding to a fixed hopping rate 1/wo, Eq.
(5) becomes deterministic and can be solved for s, i.e. ,
t = wos, and we obtain by insertion the usual Langevin
equation

dr/dt = (I/vo)F(r) + (I/ro)g(t).

In the general case of a nontrivial waiting time distribu-
tion we must, however, discuss the coupled equations.

We shall now focus on power law distributions for the
waiting times and steps. For the step g we assume an
instantly (in terms of s) correlated power law distribution

P, (r, s) = e'"' " ' = s "~"Gi~ ~, (10)(2~)" ps'~~ p
'

P2(t, s) = did a (—i~t —(—i~) s —1/vG
(2~) E" "J

(11)

(&'( )) = J P~(&, )&*«""'"

In Fig. 2 we have depicted the scaling exponents p and
v as functions of the step index f and the waiting time
index g, respectively.

A simple heuristic argument [2] using Eq. (13) to infer
that t scales like si~" and eliininating s in Eq. (12) yields
the scaling relation

(r (t)) oc t

and according to Eq. (9) the dynamic exponent

(14)

By choosing a suitable scale for t and s we have fixed the
coefficients of k" and (—iu)" to be unity.

The scaling exponents p and v depend on the step
index f and time index g, respectively, characterizing
the power law step size and waiting time distributions in
Eqs. (7) and (8). For f ) 2, i.e., the case of a finite
mean square step, p locks onto the value 2 and the scal-
ing function Gq takes the Gaussian form characteristic of
ordinary Brownian walk, Gi(x) = exp (—z ). This is a
consequence of the central limit theorem which here leads
to universal behavior and defines the universality class of
Brownian motion. For f & 2 the scaling exponent (L( = f
and the scaling function G~ can only be given explicitly
in terms of known functions for p = 1 and p = 1/2 (the
Cauchy and Smirnov distributions, respectively, [17]). It
is, however, easy to show that Gq ~ const for z ~ 0 and
Gi -+ 0 for x ~ oo. From the distribution in Eq. (10) we

infer the scaling form for the mean square displacement
of the walker in terms of the path variable 8,

(r'(I)) = J Pi(re)r 'd'r cc I'~'. ,

A similar discussion applies to Pz(t, s). For g ) 1, i.e. ,
the case of a finite first moment, corresponding to a well
defined hopping rate, the scaling exponent v locks onto 1
and the scaling function Gz (x) = b(l —z~. This is again
a consequence of the central limit theorem which leads to
a universal time behavior, i.e., a hopping rate. For g & 1
the scaling exponent v locks onto g, i.e., v = g, and we
obtain a nontrivial scaling behavior. For the mean square
displacement in terms of the path variable we have
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Z = )(d/iet.

P(r, t):—t » G r/t»
) (16)

We conclude this section by writing down the Fokker-
Planck equations following from Eqs. (10) and (11). In-
troducing the "factional" nonlocal diHerential operators

As we shall discuss in Sec. V this is indeed the correct
result following from the scaling law for P(r, t),

due to the fact that the probability of the walker arriving
at r in time t equals the probability of being at 8 on the
path at time t multiplied by the probability of being at
position r for this path length 8, summed over all path
lengths.

In order to derive Ps (s, t) we use the general expression
for P(r, t) for arbitrary step and waiting time distribu-
tions given by Mont roll and Weiss [21]. In Fourier space
we have

P(k, (d) = (—i(u) '([1 —t()((d)]/1 —t()(ur)x(k)), (23)
gp, ik ryp

(2~)s
(17) where vr(k) and u)((t)) are the Fourier transforms of the

step and waiting time distributions, i.e.,
vD" = — e ' '(—i(d)"2'

reaecting the long range Levy steps and waiting times
we have

r(k) = f e '"'err(rt)d tt, (24)

BPi (r, s)/Bs = V"Pi (r, s),

BP2(t, s)/Bs = D"P2(t, s).

(19)

(20)

In the Brownian case p, = 2 and v = 1 and V'" reduces
to the usual Laplace operator 6 describing ordinary dif-
fusion, whereas D" becomes the first order di8erent ial
operator B/Bt. —

In the presence of a force field F(r) we have, corre-
spondingly, [19]

w(w) = f e' 'w(r)dr. (25)

We notice that since u) (r ) = 0 for 7. ( 0 due to causality
Eq. (25) reduces to a Laplace transform and (d) is defined
along a contour parallel to the x axis in the upper half
complex cu plane.

For the power law distributions in Eqs. (7) and (8)
we obtain in particular 7r (k) = 1 —k" for small k and
t()(u) = 1 —(—iur)" for small u, i.e. , to leading order in

and k, the distribution

BPi(r, s)/Bs = —V(F(r)Pi(r, s)) + V"Pi(r, s). (21) P(k, (d) = (—i(d)" i/( —i(d)" + k". (26)
Here the first term on the right hand side of Eq. (21) is
the usual drift term due to the motion of the walker in
the force field.

IV. THE DISTRIBUTION P(r, t)
In order to calculate the probability distribution for

the walker as a function of the physical time t we must
eliminate the path variable 8. In other words, we have to
derive the distribution Ps(s, t) since it then follows that
P(r, t) is given by the relationship

Pe(e, t) = f(dw/2rr)e '
( iw) e— (27)

We have not found a simple physical argument leading
to Eq. (27), i.e., the "inversion" of Eq. (11), but notice
that BPs/Bt = BP2/Bs.

Inserting Eq. (10) for Pi (r, s) in Eq. (22) and requiring
that P(r, t) is the Fourier transform of Eq. (26) it is easy
to demonstrate that Ps (s, t) is given by [2]

P(r, t) = dsPi (r, s)Ps (s, t),
0

(22) V. SCALING ANALYSIS

In the absence of the force field, i.e ., for F = 0, it is an
easy task to carry out a scaling analysis . The results are
most easily deduced from Eq. (26) . We have

2 P( )
—iwt+ikr ( z(d)

2vr (2w)s (-i~)"+ k» ' (28)

0 1 2 0 1

leading to the scaling form in Eq. (16) with scaling func-
tion

FIG. 2. (a) id as a function of f For f ) 2 the e. xponent
p = 2 and we have an ordinary Brownian walk; for f ( 2
the exponent p, = f and we have Levy Sights, leading to
anomalous superdiffusion. (b) v as a function of g. For g ) &

the exponent v = 1 and we have a well de6ned hopping rate
for the walker; for g ( 1 we have v = g and we obtain a
sub diffusive behavior .

du) d"I ~
—'L47+tk

G(x) = x
2x (2~)" (—iud) [1 + x &k&/( is))"]—(29)

The mean square displacement is given by

(r (t)) = f d rP(r, t)r ee t t*
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FIG. 3. Plot of p, versus v. Along the solid line p, = 2v we

have the universality class of ordinary Brownian motion with
z = 2. In the region p ) 2v we have the universality class of
anomalous superdiffusion; in the region p & 2v we have the
class of anomalous subdifFusion.

and we find the dynamic exponent z = ls/v in agreement
with the heuristic result in Eq. (15).

Along the line p, = 2v we have z = 2 and CTLF's
have the same scaling characteristics as ordinary Brown-
ian motion. The superdiffusive behavior induced by the
long range Levy steps is precisely balanced by the long
waiting times. We notice, however, that the scaling func-
tion G depends on the scaling index p = 2v; only in the
case p = 2 and v = 1 do we obtain the Gaussian distri-
bution.

For p, & 2v we have z ) 2, the Levy flights prevail
and we obtain superdiKusive behavior; correspondingly,
p, & 2v implies z & 2, the long waiting times dominate,
and we have subdiffusive behavior.

In Fig. 3 we have shown the different universality
classes for CTLF. For z = 2 (p = 2v) we have the univer-
sality class of ordinary Brownian motion. For p ) 2v we
obtain the universality class (or classes) of anomalous su-
perdiffusion with an exponent z depending continuously
on the ratio of the microscopic exponents f and g. Simi-
larly, for p, ( 2v we have the universality class of anoma-
lous subdiffusion.

VI. DISCUSSION AND CONCLUSION

In the present paper we have discussed the combined
eff'ects of an algebraic waiting time distribution and an

algebraic Levy type step distribution on the motion of a
random walker. In order to include external force fields
we have formulated this analysis in terms of a set of cou-
pled Langevin equations. In the absence of force fields
a simple scaling analysis shows that the dynamic expo-
nent z characterizing the long time behavior of the mean
square displacement is given by the ratio z = p/v, where
the scaling exponents p and v are related to the mi-
croscipic step and waiting time exponents (p = f for

f & 2 and tj = g for g & 1). This dependence defines
three universality classes: (i) normal di8'usive behavior
for p = 2v, (ii) anomalous superdiff'usion for p & 2v, and
(iii) anomalous subdiffusion for p & 2v.

In the presence of a quenched (time independent)
Gaussian random force field and a well defined hopping
rate, i.e. , for v = 1, we have recently shown [19] that z
locks onto p for f & 2. It is now easy to generalize this
result to the case of a nontrivial waiting time distribu-
tion with v & 1. Since the force field is independent of
t we can directly apply the discussion in Ref. [19] to Eq.
(3), treating the path variable s as the efFective time. We
conclude that in this case z is also given by p/v for weak
quenched disorder. The analysis in Ref. [19], leading to
the critical dimension d, = 2p, —2 below which a non-
trivial force correlation fixed point emerges, can. also be
carried over to the present case. From a physical point
of view it is clear that a nontrivial waiting time distribu-
tion has no efFect since the quenched force field acting at
position r simply "waits" until the walker arrives. How-
ever, in the case of a time dependent random force field
the waiting time distribution will interfere with the tem-
poral force correlations and we have to treat the coupled
Langevin equations in order to eliminate the intermediate
path variable s. This interesting case will be considered
in a forthcoming paper [22].
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