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Synchronization of chaos using continuous control
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We show that two identical chaotic systems can be synchronized by applying a method of continuous
chaos control. The presented method is especially useful for higher-dimensional systems.

PACS number(s): OS.45.+b

The essential property of a chaotic trajectory is that it
is not asymptotically stable. Closely correlated initial
conditions have trajectories which quickly become un-
correlated. Despite this obvious disadvantage, it has
been established that synchronization of two chaotic sys-
tems is possible [1-3]and has potential practical applica-
tions in secure communications [4,5].

Pecora and Carroll showed [1] that there exists the
class of chaotic systems for which synchronization can be
achieved. Consider a system that can be divided into
drive subsystem (whose largest Lyapunov exponent is
positive) and driven subsystem (with all negative
Lyapunov exponents}. In this case trajectories from two
identical driven subsystems can be synchronized if the
same driven system is used. This result has been numeri-
cally and experimentally verified mainly on electrical sys-
tems [1—3].

de Sousa Vieira, Lichtenberg, and Lieberman [2]
showed that the boundary of possible synchronization
and nonsynchronization is strictly connected with the
transition from chaotic to hyperchaotic behavior that is
characterized by at least two positive Lyapunov ex-
ponents [6,7].

Recently chaos controlling method of Ott, Grebogi,
and Yorke (OGY) [8] has been used to synchronize
chaotic systems [9]. It was shown that by applying small,
judiciously chosen, temporal-parameter perturbation to
one of the chaotic system we can stabilize its orbit around
a chaotic trajectory of the other system achieving synch-
ronization of the two systems. The OGY method has
been applied to control chaotic orbits by Mehta and Hen-
derson [10]. Although this idea can be directly applied to
synchronization problems it may not be easily used for
dynamical systems more general than the one considered
in Ref. 10.

The OGY method requires a permanent computer
monitoring of the state of the system and deals with Poin-
care map to evaluate the changes of the parameter. Since
the corrections of the control parameter are rare and
small, the fiuctuation noise leads to occasional bursts of
system into the region far from the desired orbit causing
breaks in synchronization. The frequency and duration
of these breaks increase with the increase of noise intensi-
ty.

In this Brief Report we discuss the possibility of apply-
ing a continuous chaos controlling method developed by
Pyragas [11]to achieve a synchronization of two chaotic
systems. The method we developed is a generalization of

the method of controlling dependence on initial condi-
tions [12].

To synchronize two chaotic systems,

x =f (x),

y =f (y}, (lb)

where x, y E.lR", that we call A and B, we use the strategy
which is schematically illustrated in Fig. 1. %e assumed
that some state variables of both systems A and B can be
measured. Let us say that we can measure signal x;(t)
from the system A and signal y, (t) from 8
(t'=1, 2, . . . , n). Chaotic systems A and 8 are coupled
unidirectionally in such a way that the difference D ( t }be-
tween the signals x, (t) and y, (t) is used as a control signal

F(t) =K [x,(t)—
y, (t) ]=KD(t)

x+ax+x =Bcost,

y'+ay+y =B cost .

(3a)

It is well known that for a =0.1, 8 = 10.0 Eqs. (3) show
chaotic behavior [13]and if x(0) is slightly different than
y(0) (x=[x,x, l], y=[y, y, 1] ) trajectories x(t) and y(t}
diverge exponentially from each other. To achieve
synchronization we add perturbation signal (2} to Eq. (3a}
obtaining a coupled system

x+ax+x =K(y x)+8 cost, —

y+ay+y =8 cost .
(4)

In numerical calculations we used the fourth-order

introduced into one of the chaotic systems ( A in Fig. 1)
as a negative feedback. K )0 is an experimentally adjust-
able weight of the perturbation and we discuss its selec-
tion later. An experimental realization of such a feed-
back presents no dif6culties for many practical systems.
The perturbation signal (2} modifies the solution of Eq.
(la) and forces synchronization. When the synchroniza-
tion is achieved, i.e., x;(t)=y;(t), F(t) becomes zero and
the chaotic systems A and B become practically uncou-
pled. This property shows that in the synchronized re-
gime perturbation (2) does not change dynamics of chaot-
ic systems A and B.

%'e illustrate our synchronization procedure on the ex-
ample of two identical Dulng's equations
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FIG. 1. Scheme of our method of synchronization of two
chaotic systems. Some dynamical variables of two systems
[x;(t) and y;(t)] are measured and chaotic systems A and B are
coupled via negative feedback.
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Runge-Kutta method with integration step n./200.
Lyapunov exponents have been estimated using Wolf
et al. method [14]. We have studied the dependence of
the synchronization time t„defined as the time taken to
reach the synchronization with the assumed precision
10, i.e., ~y(t} x(t—}~ &10 . For K in the interval
(0.01, 0.1) we estiinated t, for 1000 randomly chosen ini-
tial conditions and averaged them. Our results are shown
in Fig. 2 (dots) where as expected, t, decreases when E in-
creases. To verify the effectiveness of our method in
noisy situation we add additive white noise to one of the
chaotic systems —B. We found that synchronization is
still possible and that the noise has no inhuence on the
synchronization time t, as shown in Fig. 2 (squares). The
interesting and practically useful features of our method
is that the continuous control allows automatic correc-
tions of perturbation signal (2} [through y;(t) ] when noise
is added to the system. No other modification are neces-
sary for application of our method to noisy systems.

The presented example showed that our method is a
very convenient way to synchronize multidimensional
systems by feeding back a single variable. Generally it
has to be one of the state variables described by a drive
subsystem (in the classification of Pecora and Carroll [1]}
of chaotic systems A and B as feeding back variables
from driven subsystem gives no results in continuous
chaos control method [15]. Coupling stiffness E has to be
chosen in such a way to achieve small synchronization
time t, . However, due to the limitations of continuous
chaos control methods [15] feeding back one state vari-
able is not always successful. One can easily show that
synchronization can be achieved only if the number of
positive Lyapunov exponents of the coupled system
equals the number of positive Lyapunov exponents of a
single system. In our example only one positive
Lyapunov exponent in the spectrum of Eqs. (4} is allowed
to achieve synchronization. Knowing equations of chaot-
ic systems A and B we can easily check the above condi-

FIG. 2. Averaged time to achieve synchronization (t, )
versus coupling stiffness E; ~ systems without noise, 8 white
noise with amplitude 10 ' added to the chaotic system 8.

tion by direct computation of Lyapunov exponents. If
the systems A and are given only by time series we can
check properties of correlation dimension (one scaling re-
gion for chaotic attractor and at least two scaling regions
for hyperchaos) [7]. If Lyapunov exponents condition is
fulfilled the coupled system (4) evolves on the same mani-
fold on which both chaotic systems evolve and that is
why synchronization can be obtained. When it is not
fulfilled the coupled system evolves on higher-
dimensional manifold on which hyperchaotic attractor
exists and according to de Sousa Vieira, Lichtenberg, and
Lieberman [2] synchronization cannot be obtained. As
shown in Ref. 14 by weakly coupling two chaotic sys-
tems, as in our synchronization procedure it is not so
easy to find hyperchaos. But if we are unlucky to find
more positive Lyapunov exponents for the coupled sys-
tem than we have in the original systems we can try to
avoid hyperchaos either by changing coupling stiffness E
or by simultaneously feeding back more state variables of
chaotic systems A and B.

To summarize, we presented a method for achieving
synchronization of two chaotic systems by applying a
continuous chaos control scheme. Our method does not
require the monitoring of chaotic trajectories or applica-
tion of targeting procedure that was necessary in the pre-
vious method [3]. Due to the continuity of the control,
our synchronization method is also efBcient in the pres-
ence of noise and can be easily applied to the experimen-
tal systems, especially to secure communication systems
[4»l.
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