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We revisit the problem of influence of a chirp on production of solitons by an initial pulse, considering
the rectangular pulse shape and a piecewise-constant chirp, which form of the pulse is very easy to ana-
lyze. We show that there is a critical value of the chirp, beyond which individual solitons are split. This

critical value is nearly constant.

PACS number(s): 42.81.Dp

This is a short report on the effects of a chirp on the
soliton production in the nonlinear Schrodinger equation

iqx=_qrt_2q*q2 > (1)

which is the model equation for optical solitons in optical
fibers [1]. As any pulse is injected into the end of an opti-
cal fiber, the pulse will reshape itself into a set of N soli-
tons and a collection of continuous radiation (quasilinear
modes). The latter always disperses away and are of
minor interest, while the solitons will propagate as
coherent units down the fiber and could be counted at the
other end. A major question is what are the amplitudes,
positions, phases, and frequency shifts of each of the N
solitons. This was answered in 1972 by Zakharov and
Shabat [2]. One takes the eigenvalue problem

vy, +ilv,=qev; , (2a)
vy —ibv,=—qqv; , (2b)

where g, =¢(x =0,¢) and solves for the bound state ei-
genvalues ({,=§,+in,) and the normalization
coefficients ¢, of each bound state. From c,, one can
determine the initial position and phase of the nth soli-
ton. The one-soliton solution of (1) is
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0=27q(t—t,) , (4a)
d=—2&(t —t)+ M’ +E)x + ¢ , (4b)

where 77 determines the amplitude and the width of the
soliton, while £ determines its frequency shift (—2¢).

For the case when the initial profile g, is real (no chirp)
and has the shape of a box, sech, or Gaussian, the bound
state spectrum has long been known [3] (see also Ref. [4]).
The key feature of any simple real profile is that its area
determines the number of bound states and their ampli-
tudes (7), with the latter only mildly dependent on the
shape of the initial profile. When there is a phase varia-
tion across the profile, linear in ¢, then it is a trivial
matter to transform this away. The only consequence of
this is to shift all eigenvalues on the real axis which intro-
duces a common real part to all eigenvalues. The lowest
order nontrivial phase variation is one that varies as 2
commonly referred to as a “chirp.” The effects of such a
chirp on a sech profile was first studied (primarily, by nu-
merical methods) by Hmurcik and Kaup in 1979 [S]. The
basic result was that the chirp would reduce the soliton
production and in some cases split a pulse into two soli-
tons, with each soliton moving in opposite directions.
Some analytical results, based on application of the WKB
approximation to the linear equations (2), were obtained
by Lewis [6].

In order to more carefully detail the appropriate pa-
rameter regimes, we have reinvestigated this problem.
This time we have taken as a model initial profile

qO: A(t)ei¢(') , (5)

where A(t) is a box profile, and ¢(¢) consists of two op-
positely directed frequency shifts:
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0, t*’<L?
A(t): O, L2<t2 (63.)
o(t)=klt| . (6b)

The advantage of this model is that it has piecewise
closed-form solutions and, by matching the pieces togeth-
er, one may obtain a closed-form solution for the scatter-
ing coefficients. The average chirp of this configuration is

2
<%>=k/L . )

Although the chirp in this model configuration is not
continuous, it contains the key features of the problem,
and the scattering data can be rapidly evaluated for it.

Typical results for the bound state eigenvalues (7 and
&) are shown for L =0 in Figs. 1(a) (7 vs k for various Q)
and 1(b) (£ vs k for various Q). What one observes here
is that for k less than about 2, one has individual soliton
formation with no frequency shifts, while for k >2 the
soliton’s are created in pairs with equal and opposite
phase shifts. These latter solitons will move apart and
separate with a velocity growing almost linearly with the
chirp.

Referring to Fig. 1(a), for Q =1.0, we have a net pulse
area of 2.0 that is just above the first critical area of 7/2,
at which a soliton appears from the initial pulse at X =0.
As k increases from zero to about 2.0, the amplitude of
this soliton slowly decreases and then vanishes, with no
other solitons existing for larger values of k. For 0=1.6,
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FIG. 1. Plots of the soliton eigenvalues vs the chirp factor k
for various Q. In (a), the imaginary part 7 is plotted. In (b), the
real part £ is plotted. (For Q> 2.2, the curves for £ are essen-
tially identical to the Q@ =2.2 curve).

the net initial area is 3.2, and we still have only one soli-
ton at k =0. For increasing k, the solitons amplitude de-
creases, vanishing around 2.3. When k takes values be-
tween about 2.8 and 12, we have various regimes where
two low-amplitude solitons are produced, with equal 7
and opposite & [see Fig. 1(b)]. For larger Q, Q =2.2, one
obtains solitons with a larger amplitude. For k <2, only
one soliton is produced with a zero real part of the eigen-
value, while for k > 2 one finds that two solitons are pro-
duced, again with exactly opposite real parts £ of the ei-
genvalues [Fig. 1(b)]. For Q >2.4, at k =0, the net pulse
area is >4.8, which is above the threshold (%77) for a
second soliton to be produced at k =0. Here, for Q =2.8
and 3.4, we very clearly see the existence of this second
soliton. As k increases, the two solitons converge and
then bifurcate near k =1.8. For larger k, these two soli-
tons now appear with nonzero real parts. Clearly what is
happening is that there is a critical value of k. Below this
critical value of k (~2.0), solitons are generated with no
real part for the eigenvalue, while above this value soli-
tons are generated in pairs, with each member of the pair
moving in opposite directions.

This behavior was not obvious from the earlier work
[5], which is the reason we have restudied it and present-
ed it in this manner. One will note that there is a remark-
able similarity between our Fig. 1(a) and Fig. 1 in Ref.
[7], which was a seemingly different problem (vector soli-
ton production in a birefringent fiber). However, as these
figures demonstrate, their should indeed be a connection
between these two problems.

In order to relate what we have done here with the ear-
lier work of Hmurcik and Kaup [5], we also have plotted
our results as they did. In Hmurcik and Kaup, what was
plotted was 7 vs Q for various values of k. When we do
that for these data, we obtain Fig. 2. What one observes
is that for k =1.5, the first two eigenvalue curves start to
collapse into one at the top. As k increases through
k =2, the collapse continues on down toward the bottom
of the curves. Our Fig. 2 is almost identical formwise to
Fig. 1 in Ref. [5].

However, what was unclear in the earlier work was the
existence of a nearly uniform critical value of k. This is
clearly seen in our Fig. 1. In Fig. 2, this is not at all obvi-
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FIG. 2. Typical plot for i vs Q for k =0 and 1.5.
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ous. Thus our result here is that for all Q, the critical
value of k seems to always be close to 2.

We note that our results presented in the bottom left-
hand part of Fig. 1(a) are actually equivalent to those ob-
tained in another early work [8] (whose authors were
unaware of the earlier results of Hmurcik and Kaup [5]).

We do remark that our simplified treatment of the
chirp probably does introduce one feature that may be
model dependent, and may be different for a true chirp.
That feature is the flatness of the curves in Fig. 1(a) for
large k. If ¢(t) in (6b) were replaced by ¢(2)=(3k /L*)t?%,
then different results could be expected for large k for the
following reason. Model (6b) has an exactly zero chirp
for t >0 or t <0. Thus the region of ¢ >0 and the region
of t <0 could coalesce into individual solitons indepen-
dent of the other region. This is what would happen for a
true chirp if k > 2 and, simultaneously, & is not too large.
These two regions would independently coalesce into
separate solitons provided that k was not so large as to
drive the coherent area in each region below 7/2. How-
ever, in the present model at k >>2, these two regions
still act independently and, since the chirp is exactly zero
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in these regions, there is nothing to reduce the coherent
area of each region. Although these regions are separat-
ed by the phase discontinuity at ¢ =0, there is nothing to
hinder soliton production since, in each region, we have
no chirping. However, if we take ¢(¢)=t2, then for a
sufficiently strong chirp (k >>2) each region would be-
come sufficiently strongly dephased that, inside each re-
gion, the effective coherent area will be reduced below the
critical area. In this case, the soliton production would
be hindered or prevented. One of the major observations
from Ref. [5] was that for soliton formation to occur an
effective coherent area [Q(L37/3k)!/?] had to be on the
order of or greater than 7/2. Thus if the chirp is
smoothly extended over the entire pulse, as k increases,
the eigenvalue curves in Fig. 1(a) should actually decay
instead of asymptotically approaching a constant value.
Except for this point, these results seem to be quite
representative of how a chirp affects the soliton forma-
tion.
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