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Simulation of phase ordering kinetics in conserved scalar systems
with long-range interactions
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Two-dimensional phase ordering kinetics is simulated in systems with conserved scalar order
parameter with the long-range attractive interactions, falling off with the distance r as r with
0 ( o & 2. From our simulations, it is found that the dynamical scaling of the scaling function
holds and its scaling forms are almost independent of cr for 0 & 1. In addition, the growth exponent
z of the characteristic length l(t) t ~' ls consistent with the theoretical prediction by Bray and
Rutenberg [Phys. Rev. E 49, R27 (1994)].

PACS number(s): 64.60.Cn, 64.60.My

I. INTRODUCTION

The phase ordering kinetics of systems quenched from
the disordered phase to the ordered phase has been ex-
tensively studied [1]. Typical models of phase ordering
kinetics are model A and model B of critical dynamics
[2], corresponding to nonconserved and conserved order
parameters, respectively. In these processes, the dynami-
cal scaling [3] is a key concept to an understanding of the
late stage of domain growth where the equal-time two-
point correlation function of the order parameter S has
the form

(S(x,t)S(x+ r, t)) = C(r/l(t))

where l(t) is the characteristic length at time t after the
quench and C(x) is the scaling function. The angular
brackets in (1) indicate an average over initial conditions.
For systems with the short-range interactions, it is well
known that l(t) obeys a power law l(t) t~~z for model
A (SRMA) [4] or l(t) t~~s for model B (SRMB) [5].
These power law growths have been confirmed by several
numerical simulations [6—9].

When analyzing an experiment, one has to be aware
of the possible presence of long-range interactions. Thus,
it is of interest to study how the long-range interactions
afI'ect the phase ordering processes. Recently, Hayakawa,
Racz and Tsuzuki (HRT) [10] have analyzed the phase
ordering kinetics for vector order parameter systems with
the long-range attractive interactions, falling oK with the
distance z as r " ~ with 0 & a & 2 and the spatial di-
mension d. After the work by HRT [10],several theoreti-
cal investigations have been carried out for systems with
long-range interactions. Bray [11]has indicated that the
result of HRT which is based on the theory by Kawasaki,
Yalabik, and Gunton [12] cannot be used for the scalar
order parameter, and predicted l(t) ~ t~~l~+ & for o & 1
and l(t) t~~2 for o ) 1 in cases of model A with long
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interactions (LRMA). Bray and Rutenberg [13) general-
ized Bray's argument to the model with conserved order
parameter. Their prediction for the model B with long-
range interactions (LRMB) is given by l(t) t~~( + )

for o & 1 and l(t) t~~s for 1 & a & 2 [13]. In cases
of LRMA, simulations by Hayakawa et aL [14] have got-
ten consistent results with Bray's prediction [ll]. Lee
and Cardy [15,27] also found l(t) t~~(~+ ) in the one-
dimensional model. Theoretical arguments [16,17] also
support Bray's prediction [11]. In particular, the argu-
ments by Ohta and Hayakawa [16] based on the interfa-
cial picture have shown that the correlation function is
scaled for cr & 1 but not scaled for o & 1, though their
results are not consistent with those of Hayakawa et al.
[14] at first sight.

For the conserved case, however, we do not have any
argument to support the prediction by Bray and Ruten-
berg [13].There are only arguments by HRT [10] and by
Hayakawa [18] who have considered a growth kinetics of
a system with an O(n) symmetric order parameter with
large n cases. Therefore, we need to attempt to check
the argument by Bray and Rutenberg [13] in LRMB. In
addition, we study the validity of the scaling ansatz of
the scattering function or the correlation function (1).

The organization of this paper is as follows. In the
next section we will introduce the method of our simula-
tion of LRMB. In Sec. III, we summarize our numerical
results, which are almost consistent with the theoretical
prediction. We also indicate that the scaling form of the
scaling function is almost independent of 0 for u & 1.
In the 6nal section, we discuss our results and present
concluding remarks. In the Appendix we illustrate the
universal behavior of the scattering function for a small
wave number based on the argument by Furukawa [19]

II. THE METHOD OF OUR SIMULATION

In this section we will illustrate the method of our sim-
ulation of the model 8 of critical dynamics with long-
range interaction (LRMB). In our model, the time evo-
lution of the order parameter obeys
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BS(r, t) =V p, r, t
0t (2)

where p is the chemical potential given by

p(r, t) = —V S(r, t) + g(S)
, S(r ', t) —S(r, t)+ dr

lr —r'I"+

where we assume that g(S) whose zeros exist at S
+1,—1 is an odd function of S. We restrict ourselves to
the cases of 0 & o & 2 and P ) Q.

Our numerical method is based on the cell-dynamical
systems (CDS) introduced by Oono and Puri [9]. It is
possible to discretize (2) as

with the system size 512 x 512 for o. = 0.5. Moreover,
we have performed ten runs for the system with the size
256 x 256 up to t = 15000 and 20 runs for the system
with the size 128 x 128 up to t = 50000 in the case of
o. = 0.5 to check the Gnite size scaling. We adopt the
periodic boundary condition. Note that we need a larger
system size to simulate the dynamics for small a. than a
system for large o [14].

We calculate the characteristic length of the system
l(t) and the scattering function I(q, t). We have used
the circular averaged scattering function I,(q, t) defined
by [7,8]

I,(q, t) = ) I(q, t) )
S( n ti+ 1) = S(n t) i+ {{p(n,t))) —p, (n t)i, (4)

where S(n, t) is the order parameter at the lattice site n
and time t, and

({&(ri))) =
6 ). @(ri ) +

12 ). &(ri )
n'gNN n'gNNN

with the summation over the nearest neighbor sites (NN)
and the next nearest neighbor sites (NNN) of n. The
chemical potential p, in (4) is assumed to be

p(n, t) =iD(—V ) S(n, t) —A tanh[S(n, it)] + S(n)

(5)

where D = 0.5 and A = 1.3 are positive constants, and
(—V2) ~2 is a symbolic representation of V(r) r
The operator (—V~) ~2 can be interpreted as an operator
in Fourier space [20]

L(q ) = [1 —
s cos(q ) —

s cos(q„) —
s cos(q ) cos(qs)] ~,

where q = 2xn/N, n = 0, 1,2, . . . , ¹ The summation
is carried out in the spherical shell defined in n ——&

l q l
N/2x & n+ 2. Note that the summation has the cutoff

q, = (2m/N)n, with n, = N/2.
The traditional definition of the characteristic length,

k (t) i, is given by

(7)

Shinozaki and Oono [21], however, have shown that this
defxnition leads to systematic errors and have introduced
a new characteristic length q (t) i defined by

g ~o q 'I(q, t)
q-(t) =

P ~oq-'I(q, t)

In our later discussions, we will use q (t) i as the char-
acteristic length t(t), except for the case in which we
compare our results with the traditional results.

where q = (q, q„) = (2vrm /N, 2am„/N) with the inte-
gers m and m„, which are less than the linear size of
the system ¹

The method of solving (4) and (5) can be summarized
as follows. I et F be the Fourier transform. First, we

Ftransform S(n, t) ~ S(q, t) into the Fourier space. Sec-
ond, defining S'(q, t) —= 1(q)S(q, t), we coine back to

F-'
the real space S'(q, t) ~ S'(n, t) with the introduction
of the inverse of the Fourier transform. Thus we get an
explicit form of the chemical potential from (5) and ob-
tain S(n, t + 1) from (4). Finally, we come back to the
first stage in this paragraph to continue this process.

In our sixnulation, quenches are carried out at the cen-
ter of the miscibility gap. The initial value of the order
paraxneter on the cell is distributed at random between
—0.125 and 0.125. In order to avoid the dependence of a
special initial configuration of the order parameter field,
we have perforxned eight runs for o = 0.5, and ten runs
for o = 1.0 and 1.5. Our results are obtained. &om sim-
ulations up to t = 15000 with the system size 256 x 256
in the cell unit for o. = 1.0 and 1.5, and up to t = 40000

III. RESULTS

In this section we summarize our numerical results,
including the time evolution of l(t) and the scaling form
of the scattering function.

First, we present the time dependence of the charac-
teristic length l(t). As mentioned in the Introduction,
Bray and Rutenberg [13] have predicted l(t) ti~ for
1 & o & 2, t(t) (tl t) nsfior o = 1, and l(t) ti~2+
for 0 ( o. ( 1. From Fig. 1, we have estimated the
growth exponent 1/z of the characteristic length defined
by l(t) ti~' as 1/z = 0.43 6 0.03 for o = 0.5 and
1/z = 0.36 + 0.01 for o = 1.5. For o = 1.0, on the
other hand, on account of the logarithmic correction to
the characteristic length /(t) as l(t) (t lnt)i~', we ob-
tain 1/z = 0.35+0.01. Although these growth exponents
obtained from our simulation have a little larger values
than the theoretically predicted values for each o, our
simulation results almost seem to be consistent with the
prediction by Bray and Rutenberg [13]. A little discrep-
ancy between the theory and simulation may come Rom
the following reasons: finite size efFects, and the insuK-
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FIG. 1. The double log plots of /(t) versus time where

l(t) = 2x/q (t) in systems with the size 512 x 512 for
o = 0.5 and with the size 256 x 256 for cr = 1.0, 1.5, re-
spectively. The solid, dotted, and dashed lines correspond to
l(t) =t, [t ln(t)] ~, and t, respectively

FIG. 2. The double log plots of /(t)/t ~* versus t */N for
the system of o = 0.5, where we have used a numerically
evaluated value for z. The envelope line at the late stage of
domain growth has been obtained by connecting the points
whose derivative coefBcients are nearly zero.

ciency of both our simulation time steps and the number
of average runs. In particular, the finite size efFects may
be enhanced in the case of smaller 0. In this case, the
concept of finite size scaling may be important if we take
into account the system size dependence of the dynamics.
Bray [ll] has suggested that the characteristic length l(t)
may be scaled by the system size N as

I, (z)zdz = 1.
0

(12)

late stage of the domain growth in Figs. 3—5 as functions
of z = q/q (t) for 0 = 0.5, 1.0 and o = 1.5, respectively.
Note that we adopt the following normalization:

(9)

where f is a scaling function and its asymptotic behavior
is expected to be

f(z) const for z & 1, (10)

where z = ti/'/1V. Note that for small z the time evolu-
tion of the system is not sufficient to realize the scaling
regime, so in this case seeking the asymptotic form of f is
almost meaningless. To examine the ansatz (9) by Bray,
we plot l(t)/ti/* versus ti/'/N for the system of rr = 0.5
with the sizes 128 x 128, 256 x 256, and 512 x 512 in
Fig. 2 with the estimated value of z &om our simulation.
From Fig. 2 it is certain that a simple ansatz (9) does not
hold. By looking for the envelope line at the late stage
of growth, however, we may expect the existence of some
sort of the finite size scaling instead of (9), because if we
use other values of z, even the theoretical value, there is
no such envelope line. Note that according to (10) the
envelope line in Fig. 2 should tend to be a constant.
Though in Fig. 2 the envelope line has the small slope,
our simulation results may not get rid of the possibilities
of a constant f(z) for z & 1 from the insufficiency of our
simulation.

The scaling ansatz (1) can be rewritten as

0+

O~
00

+ +&0

0+
4

a
+

0+

a=0.5

+ t=20000

t=25000

t=30000

o t=35QQQ

0 t=40000

Figures 3—5 suggest the existence of a universal scaling
function. We must confess ourselves that our result does
not have enough accuracy to discuss the weak violation
of scaling for 0 & 1 suggested by Ohta and Hayakawa
[16] (see also Sec. IV).

Figure 6 scales plots of data for 0 = 0.5, 1.0, and
1.5, with a comparison of the data for model B with
short-range interaction (SRMB) [22]. We adopt the re-
sult of Shinozaki and Oono [22] as the data of model
B. In Fig. 5 we use (7) as the characteristic length be-
cause they adopted k (t) i defined in (7) in their paper
[22]. To emphasize the difFerences among them we use

I (q t) = &(t) I. (qlq (t))
~ ~~zz n zgS~fQQg ~ zz ~

I . i, I

where I„(z) is the scaling function. In other words, if
the scaling is violated, then a single characteristic length
l(t) does not make sense. To check whether the scaling
holds we plot l(t) I,(q, t) at various time steps in the

FIG. 3. The scaling plots of the scaling function at
t=20000, 25000, 30000, 35 000, and 40000 for u = 0.5 with
the system size 512 x 512.
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FIG. 4. The scaling plots of the scaling function at t=8000,
10000, 12000, and 14000 for cr = 1.0 with the system size
256 x 256.

double log plots for the normalized scaling function and
Q = q/k (t). It is striking that all of data except for
Q 0 in o = 0.5 can be represented by a single universal
function.

The most essential part of the scaling function is deter-
mined by two asymptotic limits Q ~ 0 and oo. In ordi-
nary short-range cases, it is well known that I„(Q) Q
for small Q [23,19] and I„(Q) Q

s (Porod's law) [24]
for large Q. For small Q we may expect I„(Q) Q4 even
for the long-range model from the generalized Furukawa
argument (see Appendix) [19]. The interpretation of an
anomalous behavior near Q 0 for o = 0.5 will be pre-
sented in the next section.

For large Q, we expect that Porod's law

with the interface density Z(t) is still valid in our model,
because the pro6le of the order parameter determined
by the static equation (2) is steep in the vicinity of the
interface [16]. Even in the short-ranged model, however,

FIG. 6. The double log plots of the normalized scaling func-
tion versus scaled wave number q for systems of LRMB for
o. = 0.5, 1.0, 1.5 and for the system of SRMB. We adopt the
result of Shinozaki and Oono [22] as the data of SRMB. To
compare their old data [22], we have used k defined by (7)
as the characteristic length. Slopes 4 and —3 represent the
conventional Q law and Porod's law, respectively, while slope
4.5 corresponds to Q

+ for 0 & cr ( 1 predicted from (18).

it is dificult to observe Porod's law from simulations and
experiments, because the interfaces have 6nite widths.
Thus, the following modi6cation:

I,(q, t) oc Z(t)q exp( —Al q ) (14)

is often used by several authors [25,26], where Al is pro-
portional to the interface width. The ratio Z(t)/qm(t)
should be constant in time for the validity of the modi-
fied Porod law. We valuate Z(t) from the cross point of
ln[qsI, (q, t)] at q = 0 as in Fig. 7, where we note that
I,(q, t) is not normalized as in Eq. (12). We also plot
Z(t)/q (t) for cr = 0.5, 1.0 and 1.5 as a function of time
(Fig. 8). From this figure, the ratio Z(t)/q (t) is almost
constant in time for 0 = 0.5. On the other hand, the ratio
depends on time for 0. = 1.0 and 1.5. This insufBciency
may stem from the following reason. Our simulations for
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FIG. 5. The scaling plots of the scaling function at t=8000,
10000, 12000, and 14000 for cr = 1.5 with the system size
256 x 256.

FIG. 7. The plots of ln[q I,(q, t)] versus q for o = 1.5 at
t=l0000 and 15 000.
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the scaling function for 1 & 0 ( 2 can be evaluated as

I..(q) =c,q'-c,'q'+ t +". (i9)

2

FIG. 8. The plots of o(t)/q (t) versus time where n{t) is
the interfacial area density at time t for u = 0.5, 1.0, and 1.5.

0 = 1.0 and 1.5 have been performed for smaller systems
with shorter simulation time than those of cr = 0.5 .

IV. DISCUSSION

CNc( t)
—d (as r -+ oo) (15)

We now consider the anomalous behavior of small wave
numbers in I, (Q) for 0 & 1. For the nonconserved
model with long-range interactions (LRMA), Ohta and
Hayakawa [16] have shown that the asymptotic form of
the correlation function C~+(r, t) is given by

for small Q, where Cz is a constant. Equation (19) sug-

gests that the scaling is violated for o ) 1 as in Ref. [16].
Thus the leading singular term disappears in the scaling
limit. This kind of rough discussion leads to qualitatively
consistent results with our simulation results (see Fig. 6).

The basic assumption used here is that p(q = 0, t)
approaches a nonzero time independent constant. The
assumption essentially states that p is not conserved and
justi6es the usage of the theory by Ohta and Hayakawa

[16]. Although this assumption seems to be quite reason-
able for the short-range interactions, it may be dangerous
for long-range cases. Therefore, the argument presented
here should notify the reader that the anomalous behav-
ior like (18) is not derived &om a reliable assumption.

We now conclude our paper. The purpose of this pa-
per is to clarify the scaling behavior of the conserved
model with long-range interaction. From our CDS simu-

lation, we obtain the following. (i) The time evolution of
the characteristic length is consistent with the theoretical
prediction by Bray and Rutenberg [13]. (ii) Finite size
scaling may exist for the system of smaller a. (iii) The
scattering function satisfies the dynamical scaling for all
of «r (iv) .Our simulation suggests that the scaling form
of the scattering function I, (Q) seems to be indepen-
dent of 0 except for small Q behavior in o = 0.5. The
singular behavior of small Q in o = 0.5 may come &om
the leading singularity of small Q for 0 & 1. We need
simulations for larger system size and enough number of
average of runs to conarm the above conclusion.

for 0 & 0 & 1. This long tail must be an origin of sin-
gularities for I„{Q). In fact, (lp(q, t')l ) may be ap-
proximated by (l p++(q, t') l2) with the chemical potential
pN+(r, t) for LRMA. Therefore, the asymptotic behav-
ior of (lp(q, t)zl) for q -+ 0 in systems of LRMB with
0 & cr & 1 may be evaluated,

(I/ (q t) I') = (I/
"

(q t) I')
= (i/(0 t)l') —C2(q/(t)) +"

where we have used (AS). Cz is a constant in both q and
t. The leading singularity term (q/(t)) comes &om the
inverse of the Fourier transform of (15). If we substitute
(16) into (A5) or

with a constant c [see (AV)], we obtain the asymptotic
form of the scaling function I„(q/(t)) as

I, {Q) Cgq —C2Q +

for small Q = q/(t) where Cq ——(lp(0, t)lz}. This {18)
suggests that the singular term Q4+ can be observed in
the scaling form of I„(Q) for 0 & o & l. On the other
hand, by using an argument similar to both the above to
obtain (18) and the result of Ohta and Hayakawa [16],
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APPENDIX

In this appendix, we apply the arg»ment of Furukawa
[19] for SRMB to our case (LRMB). The equation of mo-
tion to describe the time evolution of the order parameter
is given by

BS~ =-q/~(t) (A1)

where pz(t) is the Fourier transform of the chemical po-
tential. Therefore, the equation of motion for the scat-
tering function I(q, t) is

BI(q, t) = 2q'(/. (t)~-.(t)), (A2)
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where the angular brackets express the average over ini-
tial configurations. Furukawa [lg] assumed the multi-
time-scaling of p, as

I

is a constant because U»(0, tl&~))) is only a function of

t'/t. Setting A = G»(0), we obtain

(«(t))U. (ql(t) l(t')/l(t)),

(A3)
(lv'(t) I') = A'[l(t)]' (A8)

o, =2 foro ) 1, o. =2o foro (l.
where o; represents the eHects of the long-range interac-
tion as

%'e assume that A does not vanish because we regard pz
as a nonconservative quantity. This assumption Inay be
crucial, as mentioned in Sec. IV. Thus from (A6) and
(AS) we obtain

Using I(0, t) -+ 0 in the scaling limit (A2) with (A3)
leads to

I(q, t) - 2cA't'[l(t)]" q' (A9)

BI(q, t)
U»(«(t) l(t')/l(t)) «' (A5)

The asymptotic form of the scale function I„(ql(t)) =
l(t) dI(q, t) for small ql(t) is now given by

where we have used (A3). When q ~ 0 we obtain from
(A5)

I-( l(t)) - t'[l(t)] '
( l(t))' (A10)

where

= 2q'(l~p(t) I')«
84

( l(t') lc—:— U„„O, «'
t p ""('l t

We can see that t2[l(t)] 4 is a constant by substituting
the value of o.. Therefore, we obtain

I. (Q) Q

(A7)
for small Q where Q = ql(t).
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