
PHYSICAL REVIEW E VOLUME 50, NUMBER 2

Parallel simulation of the Ising model

AUGUST 1994

G. T. Barkema and T. MacFarland
Laboratory of Atomic and Solid State Physics, Clark Hall, Cornell University, Ithaca, New York 1/853 85-01

(Received 7 March 1994)

Methods for parallelizing Ising model simulations are presented. A parallel single-spin Metropolis
algorithm [J. Chem. Phys. 21, 1087 (1953)] has been implemented with a speedup of 27 on 50
processors of the KSR-1 parallel computer. A parallel Swendsen-Wang algorithm [Phys. Rev. Lett.
58, 86 (1987)] obtains a speedup of 3.2 on nine processors of the same computer. Both of these
simulations were carried out on 200 x 200 lattices. The parallel local cluster algorithm [Phys. Rev.
Lett. 7l, 2070 (1993)] has been implemented with an almost linear speedup. We also discuss
ongoing research using the parallel local cluster algorithm.

PACS number(s): 02.70.—c, 05.50.+q, 64.60.Cn, 75.10.Hk

I. INTRODUCTION

In this paper we explore the parallelization of three al-
gorithms that are commonly used for the simulation of
the Ising model: the single-spin Metropolis algorithm [I],
the Swendsen-Wang algorithm [2], and the local cluster
algorith~ [3]. The Metropolis algorithm has been used
extensively to study both equilibrium properties and non-
eq~iihbrium properties of the Ising model and many sim-
ilar models (see Ref. [4] and references therein). It suf-
fers however Rom critical slowing down: near the critical
temperature, correlation times scale with a power of the
system size. This problem has largely been solved with
the introduction of the Swendsen-Wang algorithm and
the related Wolff algorithm [5], although application of
these algorithms is limited to the study of equilibrium
properties of a restricted class of Ising models. Recently,
the local cluster algorithm was introduced. This algo-
rithm combines the computational eRciency of the Wolff
algorithm with a wider applicability.

Faster simulation xnethods for the Ising model have
many applications. The motivation for this research is
the study of the Ising model in a porous medium for
varying strengths of interaction between the two compo-
nents and the pore walls, as well as phase separation in
porous media. The substantially diferent length scales
appearing in these systems necessitate large-scale compu-
tation. The lattice size must be substantially larger than
the pore size, which in turn must be large compared to
the lattice spacing. Since we would like to study pore
sizes of &om 4 to 40 lattice constants our systems will
consist of up to 256 lattice sites. Without eKcient sim-
ulation methods on parallel computers, this research is
impossible because of the large computational demands
imposed by the system size.

Our simulations were carried out on a KSR-1 parallel
computer. The KSR-1 that we use consists of 128 proces-
sors, each coxnparable in speed to a fast workstation. The
processors are partitioned into four groups of 32 proces-
sors. Processors within one such group are connected by

II. A STRAIGHTFORWARD PARALLEL
METROPOLIS ALGORITHM

In the single-spin Metropolis algorithm, a lattice site a
is selected, and the proposed move is to Hip cr, the spin
located on this site. If the total energy of the configu-
ration will decrease by this move, the xnove will always
be accepted. If the energy increases, the probability that
the proposed move will be accepted is given by

AA~~ = min{1, exp[H{A) —H(B)]),

in which A is the initial con6guration, and B is the con-
Sguration after execution of the proposed xnove. H is the
Hamiltonian

H/kT = —J) o,o, ,
(&.i)

(2)

in which J is the coupling constant, and the s»mmation
runs over all nearest-neighbor pairs (links). If the move
is accepted the new con6guration is B, otherwise it is
A. For a parallel implementation of the Metropolis algo-
rithm, the lattice can be divided into doxnains. Conven-
tionally, periodic boundary conditions are imposed. In
the following section, a division of the lattice into slices

a zero level communication ring. These zero level rings
are themselves connected by a level 1 ring. Each proces-
sor has 32 megabytes of memory. Memory management
is handled by the hardware and low level operating sys-
tem, so that the user accesses the local memory as if the
machine has one shared memory. We used the shared
memory of this machine for communication [6], but the
algorithms are also suited for parallel computers without
global memory.

In this paper, for simplicity we have applied our al-
gorithxns to the simulation of the two-dimensional Ising
model. Each of them can be readily extended to higher
dixnensionality.

1063-651X/94/50(2)/1623(6)/$06. 00 50 1623 1994 The American Physical Society

1624 G. T. BARKEMA AND T. MacFARLAND

is assumed, although the generalization to other divisions
of the lattice is straightforward. Each slice has periodic
boundary conditions in one direction, and in the other
direction is connected to neighboring slices. The slices
are organized in a ring structure, which preserves the
periodic boundary conditions of the original lattice.

Each processor selects sites in its domain and accepts
or rejects spin Bips on these lattice sites. It is desir-
able to select the site on which a spin Bip is proposed
in a random way, as this avoids the introduction of an
anomalous dynamical behavior and reduces biases due to
the paeudorundom nature of the random number stream
[7]. A straightforward parallel implementation of this
algorithm introduces difficulties. A conBict arises if two
different processors select adjacent lattice sites o. and P at
the same time. A straightforward implementation might
cause the spin values at sites o. and P to be updated,
both based on the old spin values at sites n and P. Thus
a "combined" step is achieved, that unfortunately does
not fulfill detailed balance and yields biased results. Cir-
cumventing these "combined" steps by starting a spin
Bip by locking the spin value of a selected site and re-
leasing it after it is updated might result in a deadlock.
The correct way to deal with this situation is to handle
the spin Bips sequentially in a random order. This re-
quires additional communication, which slows down the
algorithm.

Such situations are simply avoided by using the same
sequence of random sites on each processor. Processors
then select sites that are periodic images of each other,
and which therefore are never adjacent. This selection
method causes no bias in equilibrium properties. Al-
though the sites are not selected strictly at random, we
found no bias in the dynamical behavior, and expect this
to be the case whenever the domains are not extremely
small.

One side eKect of using the same sequence of random
numbers on each processor is that, if the generation of the
random numbers for site selection is itself parallelized, a
8uperlinear speedup will be achieved: the time for gen-
erating these random numbers is proportional to 1/H
and I2/H random numbers have to be generated for one
Monte Carlo (MC) step per site. Here H is the number of
domains. Thus the (wall-clock) time required for a small
part of the code, the random number generation for the
site selection, scales as L2/H2.

On a KSR-1, we carried out simulations of a sys-
tem with 200 x 200 sites at critical temperature (J =
0.44068), for a varying number of processors. In a se-
quential run, one additional attempted spin Hip per site
takes 0.803 s, which corresponds to a time per spin Bip
of about 20 ps. The circles in Pig. 1 give the measured
speedup compared to this timing result, as a function of
the number of processors. The speedup increases to a
maximum of about 17 for 40 processors and then begins
to decrease.

For one MC step per site in the parallel implementa-
tion, each processor has to make L /H spin flip attempts.
In our parallelization by domain decomposition the mem-

ory requirement per processor decreases as the number of
processors increases, resulting in a higher cache and sub-

30 I I l I

i

I I I I

]
I I I 1

j

I I l I

speedup

10

10 20 30
processors

50

FIG. l. Speedup of the Metropolis algorithm as a function
of the number of processors; the circles denote the straight-
forward parallel Metropolis algorithm, while squares denote
the "smart" version of that algorithm. The smooth curves
are our scaling predictions for the speedup.

cache hit ratio. Because of this, the time per spin Bip in
the parallel implementation decreases with the number
of processors to about 8 ps on four or more processors.

Synchronization must take place if a border point is
selected. If B sites are located on the border of each
domain, statistically we have to synchronize B times for
one MC step per site. In our implementation we divide
the lattice in one direction; thus B = 21 = 400. The
speedup 8 is given by

I2 x 20 (ps)
(L2/H) x 8 (ps) + Bw

in which 7;„„,is the time required for synchronization.
We get a good fit to the data if we take v,„„,= 100 ps,
resulting in the solid line in Fig. 1. The KSR-1 that
we used is configured so that, if one requires less than
16 processors, one can allocate a set of processors which
occupy the same communication ring. When 16 or more
processors are used, processors may not share the same
communication ring, resulting in slower communication.
This is reBected in our measurements.

III. A SMARTER PARALLEL METROPOLIS
ALC DRITHM

The number of times that processor synchronization
has to take place can be limited substantially by the fol-
lowing algorithm. Each processor oversees its own do-
main, and additionally has copies of the spin values on
the adjacent border strip of the neighboring domains.
As before, all servers generate identical random members
that determine the domain sites on which a spin flip is
proposed. If an internal site is selected, the server can

PARALLEL SIMULATION OF THE ISING MODEL 1625

L2 x 20 (ys)
(L2/H) x 8 (ps) + /2B/n7;„„,

(4)

We get a good fit to the data if we take ~,„„,= 1.2 ms,
resulting in the dotted line in Fig. 1. We observe that
a synchronization takes longer in the "smart" algorithm,

I
I
I
t
I
I

I
I
I

44
I
I
I

I
I
I
I
I
I
I
I
I
I

I
l
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I

I

I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I

c5 t
I
I
I
I

I
I
I
1

I
I
I
I

44t 9
I
I
I
I
I
I
I
I
l
I
I
I
I
I

I
I

I
I
I
I
I
I

1
I

I

45 t

I
I
I
I
I
I
I
I
I
1
I

I
I
I
I
I
I
I
l
1
I
I
I
I
I
I
I
I

I

I
I
I
I
I

I
I
I
I
I
I
I

FIG. 2. Illustration of the "smart" parallel Metropolis al-
gorithm. The dotted sites indicate copies of spin values lo-
cated on adjacent domains. Sites 1—9 are selected sequentially.
When site 9 is selected, communication must take place, since
the copy of the spin value at the site marked "4" may have
changed.

accept or reject the nip and no communication is nec-
essary. After a border site is selected the copy of that
site residing on the adjacent neighboring processor may
be out of date. Even in the absence of communication, a
processor can keep track of which copies of border spin
sites are still up to date, because of the synchronized site
selection. As long as the information required for accept-
ing or rejecting a move is up to date, no synchronization
need take place. Once common~cation can no longer be
postponed, synchronization between all processors takes
place, after which all copies of neighboring border spins
are up to date. Keeping track of these copies reduces the
&equency with which synchronization must take place,
resulting in a higher speedup.

As an illustration, in Fig. 2 each process selects the
lattice sites 1 through 9 sequentially. When lattice site
number 4 is selected, its spin value is updated based on
the copy of the spin value of its neighbor across the do-
main border and the field denoted by "4" that resides on
the same process is marked to be out of date. Up to now,
no communication has been necessary. At the moment
that lattice site 9 is selected, information is required that
xnay not be current, since one of the neighbors of lattice
site 9 may have been changed (because the spin value at
site "4" might be changed). Synchronization takes place
at this point, after which copies of all border sites are
current. This reduces the number of times that we have
to synchronize during one MC step per site to /2B/tr
[8], instead of B.

We have also implemented this smart" Metropolis al-
gorithm on the KSR-1, and measured the speedup com-
pared to the same sequential ixnplementation. The re-
sults are plotted in Fig. 1 as squares. The speedup S is
now given by

which we think is due to the imperfect load balancing
over the larger time interval between synchronizations.
On a large number of processors, the "smart" Metropolis
algorithm outperforms the simple Metropolis algorithm
by about a factor of 1.6.

Other machine-specific schemes have been mentioned
in the literature over the past several years, for the ETA-
10 [9], the M64/60 [10], the Cray YMP [11], the Con-
nection Machine [12],and for the CDC CYBER 205 [13].
Also, special purpose computers have been designed for
simulation of the Ising model with the Metropolis algo-
rithm [14,15].

IV. A PARALLEL SWENDSEN-WANG
ALC ORXTHM

The single-spin Metropolis algorithm is highly local.
Therefore, near the critical temperature where the cor-
relation length is of the same order as the size of the
system, it can take a prohibitively long time to obtain un-
correlated configurations. Unfortunately, it is near this
temperature that the behavior of the system is most in-
teresting. If the dynamical behavior of the system is not
of interest, uncorrelated configurations can be generated
much more efBciently with methods in which elemen-
tary moves consist of Ripping groups of spins, or clusters.
The first widely used cluster algorith~ was proposed by
Swendsen and Wang in 1986 [2]. In this algorithm, all
sites are grouped into clusters to which new spin values
are assigned. We present a parallel version of this algo-
rithm.

One lattice sweep in the sequential Swendsen-Wang
algorithm consists of three stages.

(1) Visit all links connecting nearest-neighbor spins o;.
and oz. If cr; = o~, with probability P,t,

——1 —exp (—2J)
the link is activated. Activated links are also called bond8.

(2) Construct clusters of lattice points. Two points
belong to a cluster if and only if they are connected by a
path of activated links.

(3) For each cluster, pick a random spin value and
assign that to all the spins of the cluster.

The proof that this algorithm satisfies detailed balance
and ergodicity can be found in [2].

Mino [16] proposed a vectorized implementation of the
Swendsen-Wang algorithm based on the storage of clus-
ters in a tree structure. Since this approach is better
suited for vectorization than for parallelization, we pro-
pose a solution along the lines set out in the previous
section.

In our parallelization of the Swendsen-Wang algorithm,
the lattice is again partitioned into domains, each of
which is allocated to a diHerent processor. Each proces-
sor is responsible for constructing clusters and assigning
spins within its domain. Under this scenario, conBicts be-
tween the processors could arise &om the fact that clus-
ters may cross borders between domains. In this case one
processor could start assigning a spin value to its side of a
cluster, while a dHFerent processor could assign a diferent
spin value to another part of the same cluster. To avoid
these connects, a master processor assigns spin values to

G. T. BARKEMA AND T. MacFARLAND 50

clusters containing border sites ("border" clusters). The
assignment of spins to clusters entirely contained within
the interior of one domain ("local" clusters) can be inde-
pendently made by the processor to which the domain is
allocated.

In our parallel Swendsen-Wang algorithm, the task of
a processor to which a domain is assigned consists of the
following steps.

(1) Visit all links connecting nearest-neighbor spins a;
and o~, where sites i and j are within the processor s
domain. If n; = o'~, with probability P,t,

——1—exp (—2J)
the link is activated.

(2) Construct all clusters consisting of lattice sites con-
nected by links activated in the previous step. A distinc-
tion is made between local clusters and border clusters.
All border clusters are numbered. The border cluster
number of each border site is stored in an array. This ar-
ray is copied into global memory, and a synchronization
counter is incremented.

(3a) For each local cluster, pick a random spin value
and assign it to its sites.

(3b) When the master processor has completed the as-
signment of spins to the border clusters, assign these spin
values to the sites within these clusters.

The task of the master processor for one lattice sweep
consists of the following steps.

(mi) With probability P,t., activate the link between
aligned spins located on the borders of adjacent domains.

(m2) After receiving the arrays of cluster numbers of
the border sites, group the border clusters that are con-
nected by links activated in the previous step into global
clusters.

(ms) Assign spin values to all global clusters (and thus
to all border clusters), and increment a global synchro-
nization counter.

Let us deffne the time required for step i by 7 (i). The
total time of one sweep w~„ is then approximately given
by

r~„= r,„„,+ max [r(mi), r(l) + r(2) + r(3b))
+max [r(3a), r(m2) + r(ms)] . (5)

As a consequence of the way in which we divide the
lattice, all times required by the master processor are
proportional to the nu~ber of border sites BH = 2LH
All times required by the other processors are approxi-
mately proportional to the number of points in the do-
main Is/H Empirically . we determined prefactors for
these times, resulting in r(m2) + r(ms) = 2LH x 37 ps,
r(1) + r(2) + r(36) = ~ x 22 ps, r(mi) and r(3a) are
small, and w y = 30 ms.

One sweep in a sequential implementation for a 200 x
200 lattice at critical temperature on a KSR-1 takes
7 zzq —0.87 s . We measured the speedup of a parallel
implementation with respect to this timing result; the
results are plotted in Fig. 3 as circles. In the same 6g-
ure, we plotted a theoretical estimate of the S, given by
8 = r„~/r„„, in which we used the estimated times men-
tioned above. The maximum speedup that we obtained
was about 3.2, on nine processors (one master proces-
sor and eight other processors). The rather low number

4 I t I I

j
I I I I

j
I I I I

j
I I 1 1

j
1 1 I I

j
1 I I I

speedup

0 I I I L j I I I I j I I I I j l t l I j I 1 I 1 l I L l I

0 10 80 30 40 50
processors

FIG. 3. Speedup of the parallel Swendsen-Wang algorithm
as a function of the number of processors. The circles indi-

cate the measured speedup. The smooth curve is our scaling
prediction for the speedup.

of processors that can be used efficiently arises from the
serial nature of the work carried out by the master pro-
cessor. When the number of processors increases, the
workload of the master increases due to the increasing
number of borders in the system, whereas the workload
of the other processors decreases. To use a large number
of processors eKciently, the task of the master processor
can be parallelized.

Wolff' [5] developed a single cluster modification of the
Swendsen-Wang algorithm. According to his algorithm,
first a lattice point is picked at random. Only the clus-
ter to which this point belongs is constructed. Finally,
as in the Swendsen-Wang algorithm, a new spin value is
assigned to all the spins of this cluster. This modi6ca-
tion was found to be slightly superior to the conventional
Swendsen-Wang method, especially in higher dimensions,
due to the fact that on the average larger clusters are
treated. As the difference in efEciency between the WolfF
algorithm and Swendsen-Wang algorithm is small, a par-
allel implementation of the latter may still outperform
the former.

An approach to parallelization of the Swendsen-Wang
algorithm, similar to the one we propose here, has been
published by Heermann and Burkitt [17]. Their approach
is not based on the existence of one master process, and
thus avoids the bottleneck that our scheme has for a 1arge
number of processors. Rather than investigating more
complicated schemes along this line, we pursued paral-
leljzation of the local cluster algorithm (as described in
the next section).

V. A PARALLEL LOCAL CX USTER
ALGOMTHM

The recently proposed local cluster (LC) algorithm [3]
can be implemented in a way that conserves the high

50 PARALLEL SIMULATION OF THE ISING MODEL 1627

efBciency of the WoHF algorithm but, in contrast to that
algorithm, is very suitable for parallel processing. In this
section, we first describe the particular implementation
of the LC algorithm that we used in our parallel program.
Next, we present timings for this algorithm. Finally, we
discuss differences in the dynamics of the WoHF and the
LC algorithms.

A general description of the LC algorithm can be found
in Ref. [3]; in this section we describe only the specific
implementation for which we obtained timings. Paral-
lelism is obtained by domain decomposition: the L x L
lattice is divided by horizontal and vertical gridlines at a
regular spacing into domains of size (L/~H) x (L/y H),
where H is the number of processors. Each processor
makes cluster moves that are limited to the interior of its
domain; this requires no knowledge of the spin configu-
rations on other processes. One LC cluster move consists
of the following steps.

(1) Each processor selects at random a site r, located
in the interior of its domain, to be the first spin in the
cluster C.

(2) Consider the links connecting z E C to its neigh-
bors y g' C, that have not been considered before; these
links are activated with probability h(0, 0„)(1—exp),
in which case site y is added to C.

(3) Repeat step (2) until all links from sites in C have
been considered, and Hip the spins of all sites in C. How-

ever, if at any moment a site is added to C that is located
on the border of the domain, cease the construction of C
and restore the original spins to all sites in C.

To satisfy ergodicity, the gridlines that divide the lat-
tice into domains are shifted periodically. The time re-
quired for one local cluster move is roughly proportional
to the number of sites that are covered by the generated
cluster (coverage). In order to avoid a large load im-

balance, each processor runs up to a certain cumulative

40

30

coverage, after which the processor copies the configu-
ration in its domain to global memory, the gridlines are
shifted, and the processor copies the configuration of its
new domain into local memory, etc.

We carried out simulations on a 120 x 120 lattice, with
H =1, 4, 9, 16, 25, and 36, for communication after cu-
mulative coverages per site (CCPS) of 8 = 1 and 8 = 10.
Both the equilibration and correlation times are roughly
proportional to the wall-clock time required to obtain a
certain CCPS; we define the speed e of the simulation as
the CCPS per second. In Fig. 4 we plot the speedup of
the simulation as a function of the number of processors
H, for the case in which we comm~~icate after a CCPS
of 1 (circles) and 10 (squares).

In a sequential program, the time elapsed between two
synchronization points is equal to w = HaL; we mea-
sured a,~q ——14 p,s for the sequential case. Because of
a higher cache hit ratio when domain sizes are smaller,
o;„„is smaller by about 10%. In a parallel program, the
communication time is in approximation described by a
constant plus the amount of data to be communicated
divided by the bandwidth: 7 = 7s + (L2/H)/m. Thus,
the speedup 8 is given by

ck'peqHL

np „HL2/H+ so+ (Lz/H)/m

The data are fitted well if we assume ro ——9 ms and m

large; assuming these values, Eq. (5) is plotted in Fig. 4
as solid lines for a CCPS of 1 and 10.

Moving the gridlines takes time, and hence should not
be done more often than necessary. If the CCPS before
the gridlines are moved is too large, the interior of the
domains will be equilibrated long before the border sites
(that equilibrate only after several gridline moves); this
leads to a long tail in the autocorrelation function of the
quantities observed and thus to inefficiency. Typically,
this problem does not occur if the CCPS before the grid-
lines are moved is 1 or smaller; in these cases, many sites
would not have been visited in the sequential algorithm
either. In practice, this long tail becomes particularly
noticeable above a CCPS of 10. Therefore, we do not
present timings for this regime.

20

speedup

10

10 20
processors

30 40

FIG. 4. Speedup of the parallel local cluster algorithm as
a function of the number of processors. The circles indicate
the measured speedup for a CCPS of 10. Squares indicate
the same for a CCPS of 1. The smooth curves are our scaling
prediction for the speedup.

VI. CONCLUSIONS

Methods are presented for parallel and distributed pro-
cessing of the Ising model. The Metropolis algorithm
with random site selection can be implemented on the
KSR-1 with a speedup of up to 27 on 50 processors
for a 200 x 200 lattice. A parallel implementation of
the Swendsen-Wang algorithm is presented that obtains
a speedup of a factor of 3.2 on nine processors of the
same computer. The local cluster algorithm can be im-
plemented with an almost linear speedup, and is for this
reason more efBcient on a parallel computer than the
Wolff and the Swendsen-Wang algorithms.

1628 G. T. BARKEMA AND T. MacFARLAND

ACKNOWLEDGMENTS

John Marko and Geoffrey Chester are gratefully ac-
knowledged for their help with this research. The work
of G.T.B. was supported by the National Science Foun-
dation under Contracts Nos. ASC-9310244 and DMR-91-
21654 through the MRL program, the Materials Science
Center, and the Cornell National Supercomputer Facil-
ity. T.M. is supported by a Department of Education

Graduate Grant No. P200A10148-93. This research was
conducted using the resources of the Cornell Theory Cen-
ter, which receives major funding f][.om the National Sci-
ence Foundation, and New York State. Additional fund-
ing comes from the Advanced Research Projects Agency,
the National Institutes of Health, IBM Corporation, and
other members of the center's Corporate Research Insti-
tute.

[1] N. Metropolis et aL, J. Chem. Phys. 21, 1087 (1953).
[2] R.H. Swendsen and J.S. Wang, Phys. Rev. Lett. 58, 86

(1987).
[3] G.T. Barkema and J.F. Marko, Phys. Rev. Lett. 71, 2070

(1993).
[4] Applications of the Monte Carlo Method in Statistical

Physics, edited by K. Binder, 2nd ed. (Springer-Verlag,
New York, 1987).

[5] U. Wolff, Phys. Rev. Lett. 82, 361 (1989).
[6] In our programs, variables are declared as either globally

shared between processors or local to each processor. All
communication between processors takes place through
the globally shared variables. If a processor writes to
global memory, it increments a counter. If a processor re-
quires data &om global memory, it waits until the appro-
priate counter has been increased, ensuring synchroniza-
tion between processors. The propagation of the contents
of these global variables between processors is carried out
by the operating system and by the underlying hardware.

[7] A. Compagner and A. Hoogland, J. Comput. Phys. '7l,
391 (1987).

[8] G.T. Barkema, Ph.D. thesis, Utrecht University, 1992.
[9] D.W. Duke, R. Salvador, and D. Sandee, in Supercomput

ing, Vol. II: Science and Applications (IEEE Computer
Society Press, Los Alamitos, CA, 1989).

[10] K.J.M. Moriarty and J. von Neumann, Int. J. High Speed
Comput. 1, 505 (1989).

[11] H.-O. Heuer, Comput. Phys. Commun. 59, 387 (1990).
[12] J.G. Amar and F. Sullivan, Comput. Phys. Commun. 55,

287 (1989).
[13] M.Q. Zhang, J. Stat. Phys. 56, 939 (1990).
[14] G.R. Aiello, M. Budinich, and E. Milotti, Comput. Phys.

Commun. 56, 141 (1989).
[15] H.W.J. Blote, Int. J. Mod. Phys. C 2, 246 (1991).
[16] H. Mino, Comput. Phys. Commun. 88, 25 (1990).
[17] D.W. Heermann and A.N. Burkitt, Parallel Comput. 13,

345 (1990).

