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Envelope soliton propagation in media with temporally modulated dispersion
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The problem of soliton propagation in media with time dependent second-order dispersion is
considered. We present analytical and numerical results for the variation of the soliton parameters
and characteristics of the emitted radiation by the soliton, for the cases of a periodic or random
modulation of the dispersion. In the case of a periodically modulated dispersion it is shown that
resonant emission of linear waves is possible. The law of radiative decay of the soliton is found in
both cases. Applications to the propagation of light pulses in optical 6bers with variable dispersion
are discussed.

PACS number(s): 03.40.Kf, 05.40.+j, 66.90.+r, 42.25.—p

I. INTRODUCTION

The problem of nonlinear wave propagation in media
with modulated dispersion appears in many branches of
physics: ultrashort pulse propagation in optical fibers
with variable dispersion along the fiber [1]- [3], magnetic
solitons in modulated films [4], nonlinear plasma waves

[5]. The results to be presented here can be applied to
problems of propagation in media with either spatially
inhomogeneous dispersion or temporally varying disper-
sion. The first type of dispersion can be found in magnets
and long Josephson junctions, while the second appears
in optical 6bers, plasma waves, etc. Optical 6bers rep-
resent very interesting media where the evolution of the
envelope of the electric field is described by a NLSE (non-
linear Schrodinger equation) where the role of time is
played by the spatial coordinate z ( corresponding to the
first derivative with z). For the fiber case the temporal
variation of dispersion corresponds from a physical point
of view to the spatial variation of the dispersive proper-
ties of fibers. That correspondence is important for the
analysis of the inBuence of randomly varying dispersion,
because in virtue of this formal equivalence we are able
to apply the methods of the theory of random processes.
Prom a practical point of view, 6bers with variable dis-
persion can appropriately modify the pulse parameters
and in particular they can be used for the compression of
optical pulses [2,16]. The propagation of an envelope soli-
ton in a medium with temporally varying dispersion was
studied by Hasegawa and Kodama [1] for the optical fiber
case. They considered the small scale periodic modula-
tion (with characteristic length I ) that is encountered
in picosecond pulses. For this range of pulse duration
the dispersion length xo is a few hundred Ineters so that
L && xo. In this case the guiding soliton concept is
valid, denoting that solitons are robust against perturba-
tion. More recently Gordon [3] studied the infiuence of a
periodic modulation of the nonlinearity. He found a res-

onant condition for emission by linearizing the equation
around the soliton. Later this approach was associated
with the inverse scattering transform (IST) method by
Elgin [14], who found the resonant conditions for soliton
emission in optical 6bers with a periodic ampli6cation
and third-order dispersion. Here we consider the cases
of periodic and random modulation of the dispersion by
using IST perturbation theory. This method essentially
simplifies the calculations and represents a natural frame-
work for the study of this nearly integrable system. In
particular, it gives the soliton evolution within an adia-
batic description of the characteristic dynamical parame-
ters and allows one to estimate the linear wave emission.
We compare the results of this analytic approach to the
numerical solutions of the partial diHerential equation.
We calculate the radiative damping of solitons for both
cases of variable dispersion including large variations of
dispersive parameters.

II. FORMULATION OF PROBLEM AND BASIC
EQUATIONS

We will study in this work the NLSE soliton dynam-
ics in media with temporally changing dispersion. The
problem is described by a modified NLSE,

iu, +a(t)u +2~u] u = O.

This modified NLS equation comes up in optical fibers [1],
magnets [4], etc. In pulse propagation in optical fibers
t plays the role of the spatial variable along the propa-
gation direction and (1) describes the evolution of ultra-
short pulses in a 6ber with modulation of second-order
chromatic dispersion. In the fiber case x is norxnalized

by the pulse duration t„ the length by the characteristic
2

dispersive length xo ——— „,and the amplitude by3.&)~" I'
II

Qpo(mW) = 2.9A ~ V ]
D ] S/t„where ] D ~=
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'4+4.. +2IOI'4 =i—, 0. (2)

For the investigation of a very slowly varying dispersion
Eq. (2) seems more suitable than (1).

Here we will investigate the evolution of the single soli-
ton solution for the case when a(t) = 1+e(t), with e « 1,
and e(t) is a periodic or a random function, with zero
mean.

u ,(z, t) = 2iil sech[2i1(2: —((t)]

x exp —i —z —ih(t) (3)

is the average fiber dispersion, and S is the effective
transverse cross section of the fiber. It should be noted
that Eq. (1) can be transformed into a NLSE with a
nonstationary damping [6] by introducing a new time
variable v = f a(t')dt', and using the transformation

u(z, t) = @(x,t)v(t), with v(t) = a i~2. Then we have

For t « t, we obtain the t2 dependence typical of diffu-
sive motion,

((b,()') = 8(,'~,'t'/t. ,

2 2

((b,h)') =8~,'I 1 ——',
I ~,'t'/t.

&o)

When t )& t we have the standard diffusion law with
((b,()2), ((Ah)2) 02t. It should be noted that, when

(p = 0, ((b,()2) = 0 and only the phase is modulated.

III. CALCULATION OF THE EMISSION FIELD

Along with the variation of the solitonic parameters we
must also consider the problem of the emission of linear
waves by the soliton under the action of the dispersion
modulation. We will calculate the energy of emission
using the IST method.

The energy of emission is defined by [10]

where

z = 2g(z —t,"), h = 4(f —g )t+ho, (= —4(t+(p.
2 +OQ

»(I a(A) I-')dA
7l OQ

(12)

a=no (=(o (4)

—= —4(a(t), —= 4(( —g )a(t).
dg dh

dt ' dt

In (3) g(t), ((t), ((t), and h(t) are the amplitude, position
of center, velocity, and phase of the soliton, respectively.

We perform our calculations for the variation of the
soliton variational parameters using the perturbation
theory for NLSE solitons based on the inverse scatter-
ing transform (IST) [7,8]. The results of the calculation
are

I
a I'+

I
b I'= 1.

For ep « 1, Eq. (12) has the form

(13)

OQ

E. a = — (I b(A) I )dA,
OQ

(14)

The scattering data coefficient b(A, t), where A is the spec-
tral parameter, is calculated by perturbation theory ac-
cording to the formula [5,7,8]

The a(A, t) coefficient is related with the b(A, t) coefficient
by the condition

The calculation for the adiabatic variation of the param-
eters can be performed explicitly. For the periodic mod-
ulation case we consider e(t) = ep sin~t so that

Bb(A, t) . 2
ice*~ 2*"&

= —4iA'b+, , A(A, (, t),Bt 2g b, '+ g'

where b = A —( and

(15)

( cos(~t) —1)= —4p t —ep
)

2) I( cos(ut) —11I

)
For the random modulation with

(6)

(7)

+oo
A = dzI [6 —igtanh(z)] f(t)R(u)e *

2

f'(t)R'(u)e*
I

e (16)

( (t)) =o
2

(e(t)e(t')) = ~2exp

we find for the mean square of Eg = ( —(p and b,h =
h —hp, with (p ———4(pt and hp ——4(Q —go2)t

where 8 = ((/g)z+ h and f(t) = e(t) and R(u) = —u
correspond to the perturbation terms to the canonical
NLSE.

Next we present the results for the two different mod-
ulations considered.

(i) For the periodic modulation with e(t) = csin(~t)
we obtain from (15) after performing the integration in
(16)

((b,g)') = 16( n, [t+t, (e ' ' —1)], (10)

2 2

((Eh) ) = 16' I
1 ——

2 I

a', [t+t (e ~ ' —1)]. (11)
&o)

Bb(A, t) 2mee '~" +" l sin(ut)(A + g )
Ot cosh( 2 )

where we used b = be

(17)
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For the spectral density of the emitted power averaged
over one period we find

P(A) = (
—

(~ b(A) ~')) = (2 Re b ).

(13), (14), and (21) we have

42r'o,'(Ao2 + g') '
[1 + 16t2(b 2o + r12) 2] cosh (

~'
)

(22)

After integration we obtain for A(A, q, () and the spectral
power P(A)

2%362 Q2 + 2 2

4 o+'g (Ar

Let us now calculate the correction to the soliton profile
u = u~d(x, t) + bu(x, t) where bu(x, t) = 2rlie ' (u +
u), where u describes the part of the correction that
moves together with the soliton and changes its shape
and u is the oscillating part of the radiation [8]. The
first expression can be calculated analytically:

w = e sech(z) [1 —2z tanh(z)],

+bD(4(b, (b + rI ) + (d)], (19)

where Do ——A —(0 and 8~ is the Dirac delta function.
We observe that the emission is Doppler shifted by the

constant initial velocity (o and is exponentially narrow.
Substituting into (15) the adiabatic expressions for the
phase b(t) from (6) and (7) and using [11]

eiz sin(8) ) ( 1)bbg (z)e i228—

where g„ is the Bessel function of order n, we obtain the
condition for a resonant emission

where z = 2gx. Substituting u into the expression for u
we obtain

u~, = 2iile ' [1+e(t)]sech([1+ e(t)] zj. (23)

e~2r

2 cosh( 2' ) (x, + 1)/4g t

Thus the soliton duration in media with variable disper-
sion is changed. A similar phenomenon for the sine-
Gordon kink was noted in [9]. The oscillating part is
calculated in the Appendix by using the stationary phase
method and is equal to

4(A' + (' —q') + n(u = 0, (20)
~ib'1+i 4i

x[x, +i tanh(z)] e
cosh z

(24)

2

where the amplitude of a higher harmonic is = j„'( " ').
This formula agrees with the one obtained by Gordon [3]
and Elgin [14]. Figure 1 shows the power spectrum of the
numerical solution of (1) for the resonant case ur = 4rl2

Higher harmonics of emission can clearly be seen.
(ii) For the random modulation we assume that (8) and

(9) are satisfied. It is necessary to calculate the mean
spectral density of emitted power, i.e.,

P(A) = 2Re b ),
-Ob

Bt

where ( .) denotes ensemble averaging. Using (8), (9),

(I

((

FIG. 1. Power spectrum in log-linear scale for the resonant
case.

where bi ——4g t —x /4rIt and x, = x/4gt
In the following we compare the evolutions given by

(23) and (24) with the numerical solution of Eq. (1)
which was obtained by the method of lines using a finite
difference discretization in space with Dirichlet bound-
ary conditions. The nonlinear term was given the stan-
dard form. The resulting system of ordinary differential
equations was solved by a predictor corrector method of
fourth order. The accuracy of the computation has been
checked by monitoring the values of the mass and mo-
mentum which remain conserved in the perturbed case
(and energy in the unperturbed case). In all cases the
relative error for these quantities was less than 10 . It
has been pointed out by Herbst and Ablowitz [12] that
this nonintegrable discretization of the NLSE could lead
to numerical chaos while the integrable variant does not.
To check for this we have systematically changed the form
of the nonlinear term and compared the results. In or-
der to avoid reBections of the radiation component &om
the boundaries we have added to the equation a damp-
ing term acting only close to the boundaries. Figures
2(a) and 2(b) show the profiles given by (23) and (24)
and the numerical solutions of (1) for (d = 1 and u = 0.5
for three difFerent values of t. We see that (23) and (24)
approximate well the changes of the soliton shape in the
nonresonant case. For cu = 4g2, the resonant value pre-
dicted by the theory, (23) and (24) cannot describe the
solution of (1). This is very apparent in Fig. 3 which
shows the maximum of the modulus of the solution for
the numerical simulation and the perturbation result.
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IV. CALCULATION OF THE RADIATIVE
DECAY OF SOLITON

Th ~ ~

he emj.sslon of waves by th lite so on un er the action
of modulation of the diso e ispersion in principle can lead to
two efFects: radiative damping and solito dan so

'
on eceleration.

an es imatj. on of these efFects we use two cons
integrals for E . 1 h

s we use two conserved
r q. i i: t e number of quanta

0
+oo

N = ! u! dz = const, (25)

and the field momentum Q

0
40 50

X
60

+
Q = — (u~u' —u'u)dx = const. (26)

For these integrals the following IST formulas are valid

I

Oi

N =4g+
+OO

q =8(n+

(I b(&) I')d»

2A(! b(A) !')dA.

(27)

(28)

Dirrerentiating with respect to t'o mme, we ave the relations

0

dN =4—+
dt dt

dQ d((ri) +

dt dt

P(A)dA = 0,

2AP(A)dA = 0.

(29)

(30)

0
40 50

X
60

sing relation (29) the radiative dampin of the 1'ing o e so itons

Let us Grst consider the periodic modul t . Wa ion. e have

FIG. 2. (a) Pro61e of!u! ss s function

( op), t=42 (middle), and t= 58 (bottom) for s
periodic modulation of dispersio f 2

'
n, or g= l, t =01

&u = 1 (resonant case) Th
and

sei The solid line corresponds to thes o e nu-

~ ~

'P= P A dA=
+3Q2 2

32(ccshrcpc, —1])c,—14g~

The behavior of asas a function of ~ is shown in Fig. 4 for
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If'
dt 2~(coshjf

v 4, —1])~gz, —1
(32)

Here the variable t corresponds to a space variable along
the fiber. This equation is difficult to integrate analyt-
ically, and we perform a numerical integration. The re-
sults for e = 0.3 and u = 1.01, 1.2, 2, and 5 are pre-
sented in Fig. 5. It is clear that there is resonant emis-
sion for ~ = 1 and that the emitted power decreases
with u. It seems that the long distance behavior is
described by a logarithmic law. This phenomenon can
be observed in an optical loop with a local change of
the dispersion. Consider, for example, the fundamen-
tal soliton (2' = 1) propagation in a fiber loop with
slowly varying dispersion. Let the loop length be equal
to I,, the second-order dispersion P2 ———20 ps2/km,
the second-order dispersion changes be bP = 5 ps2 /km,

e = 1 for diferent values of g. It is easy to see that there
is emission only for cu & 4g . Similar results have been
obtained for Langmuir solitons interacting with sound
waves by Maloined [13].The above restriction shows that
the important modulation periods A~ = —are the ones
that are smaller than the period of internal oscillation of
the soliton, = A,

' . If we consider the fundamental
soliton in the fiber with 2g = 1, we see that A = 8zo
where zo ——

4 is the soliton period. This agrees with pre-
vious results [3,14]. On the other hand, for A &( zo the
emission is exponentially small and the soliton remains
robust with small losses, so that it can be described by
averaging out the high frequency oscillations of Eq. [1].
For the picosecond duration solitons, xo ——

4 is about
a few hundred meters and the inQuence of variation of

II
k for the emission can be neglected. However for fem-
tosecond (fs) pulses zo is a few meters and this effect
must be taken into account. In particular the intensive
emission can lead to the decay of the soliton. This ef-
fect can be important in optical fiber loop devices with
a variable dispersion part. The radiative damping of the
soliton easily follows Rom (26) and (28) and is given by
the equation

2 APAdA+ 8gg ——0. (33)

The calculation showed that

8(iq = 0 and ( = const. (34)

The soliton is not decelerated under emission. This is
related to the eHect that the number of quanta emitted
forward and backward are equal.

We now study a medium with random dispersion.
(i) Let us begin our consideration with the white noise

case. From Eq. (22) we obtain

+OQ

P(A)dA = 4m o, Pi1, (35)

2 2 5
CJ P7/

dt
(36)

where

(z2 + 1) 128
p, = dz

[cosh( 2')]2 15~

Integration gzves

2 W km for A = 1.55 pm, the fiber have
a core cfiameter a = 9.3 pm, and the soliton pulse dura-
tion be To ——1ps. Then for I = vr x 50m 155.2 m we
obtain &om Fig. 5 that after 500 round trips the soliton
amplitude decreases due to radiative damping by 77%.
This apparently strong damping would be interesting to
observe experimentally.

The decay time can easily be estimated to be td
We obtain here a very interesting result: the decay of soli-
tons when the number of quanta is conserved. Because
the total integral N = Ng + N is conserved, the growth
of the continuum component N leads to the decrease of
the discrete component Ng and g correspondingly.

From (30) one can infer the influence of the perturba-
tion on the velocity (radiative deceleration):

G..)G go

(1 + 4vr2Iirt04t) 4
(38)

X

G. DG ---' o
X

~ ~
~ ~ ~ y ~ ~ ~ ~ y ~ ~ ~ g

so that the decay length is

1

4m02pq4

(ii) For a noise with a finite correlation length (t, g
0) we obtain

x
x O OX

X O Ox x OOOOx x Xxx

G. 2G ---—---—————~-
2GG

OOOOOXXXX OOOO
X X Gg vr2o 2(A2 + i12)2

dA. (39)[1+16t2(A2 + i12)~][cosh(—")]2

FIG. 5. Radiative damping in time of the soliton
aznplitude for the periodic case for c = 0.3 and
tu = 1.01 (x), 1.2 (o), 2 (*), and 5 (~).

This equation is difficult to solve explicitly, so we in-

tegrate it numerically. Results for e = 0.3 and t
0, 0.2, 3, and 5 are presented in Fig. 6. The first value of
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FIG. 6. Radiative damping in time of the soli-
ton amplitude for a random e with correlation time
t = O (&) o 2 ( )» (*) 5 (~ ).

APPENDIX

The field up to the first-order correction is defined by
u = u~g+ bu, where

bu = 2irle' (mr+~),

A(A, q) [A + irl tanh(z)]', i
8miq2 (A2 + rI2)s

+ A'(A, g)
87ri [cosh(z)] (A2 + rl2) s (A2)

and z = 2gx.
For eR = e(t)u we obtain [see (16) and (18)]

de l'Institut National de Sciences Appliquees is part of
"Unite de Recherches Associee au C.N.R.S. No. 1378."

t corresponding to the white noise case agrees very well
with (38). The increase of the correlation length leads to
an increase of the soliton radiative decay length.

V. CONCLUSION

4~irI(A'+ rl')'
cos}1(2 )

From (A2) and (A3) we have, using the integral

(A3)

The above results show that for A && 2:o the emission is
exponentially small and the adiabatic description is valid.
When the modulation length is compatible with z, i.e.,
A = zo we have resonant emission of the soliton. This
can be important for the propagation of femtosecond soli-
tons in fibers and in optical loop devices with a variable
dispersion. From the expression of the emitted power P
it follows that for A &( xo the emission is small and the
guiding center soliton description is valid. This confirms
the analysis of [1]. The analysis also showed that there
is a radiative damping of the soliton. This phenomenon
can be observed experimentally in an optical loop device
with locally varying dispersion after a few hundred round
trips of the pulse.

Note added. When this work was completed we learned
about the study of Malomed et aL [15], who formulated
the adiabatic dynamics of a pulse with chirped &equency
by a variational approach. Our expressions (23) and (24)
are compatible with the results of this approach. We are
grateful to these authors for providing a copy of their
work prior to publication.

f cos xz
dz

(z2 + 1)cosh( ~ x)

= ze '+ cosh(z)ln(l + e '), (A4)

that the localized part of the correction is

V = esech(z) [1 —2z tanh(z)].

For the oscillating part w we find

ee * + A(A, g) [A + ig tanh(z)]'
8xirI2 (A2 + rI2) s

—4iA t+i —cdP

+ A'(A, g) 4,„., ; i+ e'
8vri[cosh(z)] (A' + rj )

(A6)

Applying the stationary phase method, we obtain for
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e~7r

2cosh( * )(x + 1)/4g t
f81 +'t 4 X

x[x, + itanh(z)] e ' ' ' +
cosh z

where b'~ ——4gzt —x2/4gt and x

(A7)
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