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Fokker-Planck approach to the dynamics of mismatched charged-particle beams
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A semianalytic formalism is constructed for investigating the transverse dynamics of intense, mis-
matched charged-particle beams which are centered on, and propagate through, focusing channels.
It uses the Fokker-Planck equation to account for the rapid evolution of the coarse-grained distri-
bution function in the phase space of a single beam particle. It also incorporates the space-charge
potential, which is calculated from Poisson s equation using the coarse-grained density. A simple
phenomenological model of dynamical friction and diffusion represents the efFects of turbulence trig-
gered by charge redistribution. Sheet beams and fully two-dimensional beams are both considered
in detail. In addition, closed-form solutions are presented for beams in which the space charge is
negligible and noise arises from other stochastic processes.

PACS number(s): 41.85.Ja, 29.27.Bd, 41.75.—i, 52.35.Ra

I. INTRODUCTION

Space-charge forces in high-intensity linear accelera-
tors are known to complicate the beam dynamics signif-
icantly. If at injection the beam is mismatched, charge
redistribution takes place. This injects &ee energy associ-
ated with the mismatch in root-mean-square (rms) beam
size, i.e., the "rms mismatch, " into a spectrum of collec-
tive modes. If the &ee-energy density is large compared
to the thermal-energy density, the mode amplitudes will
also be large. Wave breaking will occur in phase space
and the beam will become turbulent. As individual par-
ticles interact with the time-dependent mean global field
and with clumps of particles within it, their orbits can be
chaotic. The ensemble of particle orbits tends to cover
the accessible phase space in a coarse-grained manner
much more rapidly than binary encounters alone would
permit and its range of energies widens. In this sense, the
collective interactions cause rapid, collisionless relaxation
toward a stationary state which leads to quasithermal-
ization of the &ee energy. This scenario, which has been
seen in both laboratory and nuinerical experiments [1—4],
results in particles being ejected into high-amplitude or-
bits, causing the emittance to grow and a halo to form.
The halo is of particular concern in linear accelerators
envisioned for long-term continuous-wave operation be-
cause too much halo impingement on the accelerating
structures would cause enough radioactivation to inhibit
routine maintenance.

This sequence of events is akin to the collisionless relax-
ation of stellar systems in which the gravitational field is
rapidly changing, a process known as "violent relaxation"
[5—7]. It is clear that, after a sufficiently long time, in-
teractions between particles, e.g. , "collisions, " will drive
a system of stars, or of confined charged particles, to the
steady state having the largest entropy. This state cor-
responds to thermodynamic equilibrium, for which the
distribution function is the Maxwell-Boltzmann distri-
bution [8]. However, the relaxation time associated with
collisional encounters is much longer than the age of the
universe in the case of galaxies and the beam's transit

time in the case of linear accelerators. These many-body
systems are therefore effectively collisionless, and the fact
that they rapidly relax to a state of quasiequilibrium with
a core-halo structure is surprising at first glance.

There are significant differences between the evolu-
tion of stellar systems and charged-particle beams, how-
ever. They arise because, whereas a stellar system is
self-gravitating and (ideally) isolated, a beam is self-
repelling and confined by an externally imposed focus-
ing force. One consequence surfaces in connection with
the state of thermodynamic equilibrium itself. For a self-
gravitating system, collisional relaxation moves the sys-
tem through a succession of configurations with progres-
sively greater core concentration and lower total mass of
bound stars. The maximum-entropy configuration there-
fore has a tightly bound central core of stars surrounded
by a diffuse, and infinite, halo. There is no finite self-
gravitating system for which the classical entropy is ex-
tremized [6]. By contrast, external focusing confines a
beam for all time, provided none of its constituent par-
ticles impinges on the accelerator walls. In this sense,
and unlike a stellar system, a beam can therefore seek a
bound state of maximum entropy. This state is observ-
able provided the beam is retained for a time which is
long enough for collisional relaxation to run its course,
as in storage rings, for example.

Another consequence of the difference between stel-
lar systems and beams arises in conjunction with the
detailed dynamics of violent relaxation. The size of a
newly formed stellar system has an upper bound corre-
sponding to the Jean's length Ag. Collective modes with
wavelengths greater than AJ are unstable. Modes with
wavelengths close to AJ are soft, may easily be excited
to large amplitudes, and can then dominate the violent
relaxation of the stellar system [9]. In a beam there is
no counterpart to A J. Rather the length scale of interest
is the Debye length AD. If linear Landau damping were
the only mechanism available to damp the mode spec-
trum, then fluctuations with wavelength A & AD would
damp on a time scale of the order of a plasma period
and fluctuations with A ) AD would be relatively long-
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lived [10]. Beams that are space-charge dominated have
radii exceeding AD and can therefore sustain these long-
wavelength collective modes.

It is not obvious that violent relaxation drives a sys-
tem of stars or charged particles all the way to thermody-
namic equilibrium. The process halts when the potential
stops changing and there is no guarantee that the free
energy is fully equilibrated at that time. In the case of
stellar systems, there is considerable evidence that not
all "final" states are equally probable and an attempt
has been made to formulate a maximum-entropy princi-
ple which excludes inaccessible states [6]. The same is
probably also true for charged-particle beams. Both the
laboratory and n»merical experiments performed to date
show that the density profiles of beams which have under-
gone violent relaxation possess an essentially thermalized
core surrounded by a halo which is not fully thermalized
[3,4,11].

We recently introduced a formalism to account for the
complex transient dynamics of an intense, mismatched
charged-particle beam and applied it to sheet beams [12].
Our purpose here is to elaborate the ideas and generalize
the formalism presented in the earlier paper to make it
applicable to beams of practical interest. In doing so, we
endeavor to account for the dynamics of the bulk of the
beam, i.e., that pertaining to the inner two-to-three rms
radii. Thus although we recognize that violent relaxation
may not drive all of the beam to strict thermodynamic
equilibrium, we nevertheless assume it does as a working
hypothesis. In view of the observations, we can expect
this hypothesis to provide a realistic model of the interior
regions of the beam and of the halo-generation mecha-
nism, but a poorer model of the dynamics and evolution
of the outerxnost regions of the halo.

We consider nonrelativistic beams for simplicity and
because space-charge forces generally become less impor-
tant to the dynamics as the beam energy grows. We
select a plane orthogonal to the beam, superimpose a
comoving coordinate system centered on the axis of the
beam which coincides with the axis of the focusing chan-
nel, and describe the transverse dynamics in this coordi-
nate system. Thus, our xnethodology can be straightfor-
wardly applied to relativistic beams as well.

1 3&
fk [A& exp[ 2 + —f, (2 1)

g 2k2A~2 2 &

where k is the wave number of the xnode. This equation
is valid for kAD &( 1. Modes for which kAD & 1 damp on
a time scale tz and modes for which kAD &( 1 are long
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The corresponding relaxation time t„, which is the time
needed for a typical particle to lose memory of its initial
orbit, is of the order of the very long time scale t~ associ-
ated with binary Coulomb interactions, i.e., collisions in
the absence of strong multiparticle correlations.

A rms-mismatched beam continues to oscillate. If the
Debye length AD is much larger than the beam size a,
then space charge is unimportant, the beam oscillates in
response to the external focusing force, and the &ee en-
ergy associated with xnismatch thermalizes on the time
scale t~ so that t„ tg. If, on the other hand, AD is com-
parable to or smaller than a, then collective space-charge
forces enter. Free energy associated with rms mismatch
distributes itself in a spectr»m of collective xnodes. These
modes are subject to linear Landau (i.e., phase-mixed)
damping. If the beam is Fourier transformed using the
periodic boundary conditions of a homogeneous cube, a
procedure which is strictly valid for a uniform and infinite
configuration [14], then the time scale for linear Landau
damping is found to be [10]

II. DYNAMICAL CONSIDERATIONS
NO YES

A beam that is matched at injection into the focus-
ing channel is stationary because it is in equilibriuxn
and characterized by the Maxwell-Boltzmann distribu-
tion function [8]. If the beam is mismatched, it will evolve
toward the Maxwell-Boltzmann distribution. Figure 1 is
a Bow chart depicting the very complicated evolution-
ary sequence which may ensue as a consequence of space
charge. We constructed it based on the reported results
of laboratory and numerical experiments.

A mismatched beam will undergo rapid charge redis-
tribution during the first quarter of the beam's plasma
period tT, = 2m/mz [13]. If the beam is rms matched,
it becomes quasistationary at t t„/4, at which time
most of the &ee energy associated with mismatch of the
shape of the density profile appears as emittance growth.
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FIG. 1. Flowchart illustrating the evolutionary stages of
mismatched charged-particle beams with space charge toward
Maxwell-Boltzmann equilibrium.
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lived. Thus, if AD & a (a warm beam), we can expect
the modes to damp within a few core oscillations, but
if AD (( a (a cool, space-charge-dominated beam), the
large-scale global modes will persist.

There appear to be many degrees of &eedom available
by which a space-charge-dominated beam may release the
&ee energy of rms mismatch. We may expect the beam
to pass through a state of strong turbulence triggered by
wave breaking associated with charge redistribution if

MV2$2a2h
2

(2.3)

where M is the particle mass, v is the longitudinal veloc-
ity of the particle along the focusing channel, kp is the
betatron wave number without space charge, a is the size
of the equivalent uniform beam, and 6 is a dimension-
less &ee-energy parameter

h = —K (po —1) ——(1—po) + (K —1) ln pp
1 2 2 (2.4)

in which the tune depression K is the ratio of the betatron
wave number with space charge to ko and po = xo/x, ,
where xp and x, are the rms beam sizes of the mismatched
beam at t = 0 and the matched beam, respectively. Di-
viding by Et, ——Mv~~/2, where vq is the thermal velocity,
gives

2

=i —ko
i

h (2.5)

We may write the Debye length in terms of beam param-
eters by starting with

au&

The tune depression K may be expressed as

K
y22'pa

(2.6)

(2.7)

where the generalized perveance K incorporates the
beam current I and magnitude of the particle charge Q
in the manner

K=
2mepMV3

' (2.8)

in which cp is the permittivity of free space. Using
u„= nQ /eOM and I = vra n'Qv, where n is the par-
ticle density, we have

Vg 1
v koa/2(l —K2)

(2.9)

Let us now evaluate b,E /Et for examples of high-
current proton and electron beams. Suppose pp

——0.8,

(2.2)

where AE is the &ee energy per particle due to rms
mismatch, E& is the thermal energy per particle, and Ak
is the efFective half-width of the mode spectrum [15]. If
the focusing channel is linear and continuous, we may
express b,E in the form [16]

h, = —(1—r. )v,
1

4
{2.11)

e = 0.2, koa = 0.2n, and v = O.lc = 3 x 107m/s, for
which h = 0.045. We choose temperatures T for the
proton and electron beams which typify their respective
sources. For a T = 1eV proton beam, vq 10 m/s
and EE /Eq 10s. For a T = O.1eV electron beam,
vq 10 m/s and AE /Et 10 . These beams are
also space-charge dominated, for we have from Eq. (2.9)
A~/a 10 for the proton beam and 10 for the
electron beam. Since we expect AkAD to be of order
unity or less, according to Eq. (2.2) these cold beams
should pass through a state of strong turbulence in con-
junction with wave breaking in phase space.

Localized collective modes in a strongly turbulent
beam release their free energy very quickly (on a heating
time scale th, t„) via linear and/or nonlinear Landau
damping. In so doing, the short-wavelength modes dis-
sipate and single particles efBciently gain energy by re-
peated resonant interactions with the dissipating modes.
The particles continue to interact with the residual weak
turbulence and the beam relaxes on a time scale which
is short compared to ts [17]. For example, in three-
dimensional beams which are strongly turbulent, the av-
erage "collision frequency" is g times larger than
in a quiescent beam, where g:—1/nA& is the plasma
parameter [18]. In space-charge-dominated beams g
is large and interactions between particles and localized
Huctuations are important. In weak turbulence the av-
erage collision &equency is g / times smaller than in
strong turbulence.

For example, in recent experiments with neutral plas-
mas the wave —wave-particle interaction is observed to
generate heating. The particles extract energy &om the
waves as they proceed along dynamically chaotic orbits
and the particles exhibit rapid stochastic diffusion in
velocity space [19]. Furthermore, in conjunction with
strong turbulence, long-wavelength modes can decom-
pose into collapsing wave packets with length scales less
than AD via the modulational, or ponderomotive, insta-
bility. This instability has been the subject of exten-
sive analysis in conjunction with strong Langmuir turbu-
lence in plasmas [15,20]. As their collapse progresses, the
short-wavelength modes dissipate via Landau damping.

It is clear &om these considerations that both sys-
tematic global oscillation of the potential and transient,
stochastic local Huctuations can in8uence the violent re-
laxation of a beam. These processes increase the energy
spread of the particles and they inject some particles into
large-amplitude orbits, yet the ways they inBuence the
particle distribution are qualitatively di8'erent.

The increase in energy spread, or "beating, " reveals
itself in the relative growth of the rms beam size x and
rms emittance i. Using the principle of conservation of
energy, Reiser developed a recipe for estimating the 6nal
rms size 2: and rms emittance e &om the &ee energy
of mismatch [16]which we now summarize. Letting p
x /x;, we have for a centered beam

p' —1 —(1-~') ln p = h. +I, (2.10)
where the &ee energy h, associated with shape mismatch
1S
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in which v is a dimensionless parameter (e.g. , v = 0.154
for an initially Gaussian density profile) and h is given

by Eq. (2.4). Equation (2.10) may be solved numerically
for p, from which we find

oo poo

xp pp

The final emittance is given by

- x/z

1+ —,(p' -1)
6p Xp K

(2.i2)

(2.13)

These expressions lead to the identification of a final tem-
perature. For example, suppose the injected beam is in
thermodynamic equilibrium at temperature Tp and the
ejected beam is in thermodynamic equilibrium at tem-
perature T . Then the ratio of emittance to beam size
is proportional to the rms velocity v oc v T at both t = 0
and t m oo, so ep/xp (x ~Tp aild e /x oc y T . Thus
we identify

T 1= 1+ —(p -1) .
Tp K

(2.14)

F(p) =4 —2~
~

lnp+2lnp,p+1 (p+1)
&p

—ij (2.16)

If heating were absent, e and x would evolve together in
lock-step, but when heating occurs, e grows to a relatively
larger amplitude than x, i.e., by the factor (T /To) i/2.

This circumstance typifies what is observed in laboratory
and numerical experiments, and heating (T ) To) is
prevalent.

Calculations of the orbits of test particles in the elec-
tric potential of a globally oscillating core show that some
particles gain energy, but the process is self-limiting [4,
11,21, 22]. This is easily explained as a resonance phe-
nomenon. A particle will gain energy if it enters the core
when the core is large and leaves the core when the core
is sxnall. The space-charge force of the core then imparts
a net boost to the particle and the process repeats itself
as long as the particle orbits in phase with the core os-
cillations. However, as the particle increases its energy,
its orbital period changes, the orbit eventually falls out
of phase with the core oscillation, and the energy gain
self-limits. There is accordingly a maximuxn amplitude
which a particle can attain from this systematic process.
For a given particle, the maximuxn amplitude clearly de-
pends on its initial position and velocity. Inasxnuch as
the initial distribution function specifies the initial con-
ditions of all particles, it also specifies the component of
the halo governed by this process. In other words, global
oscdlation of the potential does not generate additional
halo.

The time scale t „ for ejection of particles via the
oscillating-core —single-particle interaction can be esti-
mated from elementary considerations. The change of
total energy of a particle for each interaction with the
core is [23]

bE~(p) —Mv ksa (1—~ )F(p),
1
2

(2.i5)

where

and p = x; /x „q, in which x; and x „k are the rms
beam sizes when the particle enters and leaves the core,
respectively. For a particle which is resonant with the
core oscillation, the maximuxn energy gain occurs when

x; is maxixnum and x „q is minimum, so we take p =
[xo+ 2(x; —xo)]/xo ——2ps —1. The electric self-field of
a uniform cylindrical beam is [24]

Q Mv (1 r )—kor for r ( a
Q Mv2(1 —/c2)koa2/r for r ) a . (2.17)

Upon superimposing the external focusing field, we find
the single-particle potential energy to be

'-Me k ~r forr&a
U(r) =

& iMv~kz~a~((e~ —1)(1+2&n(v/a)]+(r/a)~)

for r)a.
(2.18)

For K = 0.2 and pp ——0.8, we have t,„3t„which is rep-
resentative. Numerical experiments with space-charge-
dominated beams typically show particles appearing well
outside the core after just one or two core oscillations.

By contrast, interactions with a broad spectruxn of
modes are not self-limiting. A statistically small sample
of particles may be expected to interact in phase with
many localized Buctuations over several orbital periods,
and the orbits of these particles would thereby achieve
very large amplitudes. Moreover, these interactions will
divert soxne particles from orbits which are nonresonant
with respect to the core oscillation to resonant orbits and
these particles will then experience the self-limiting en-

ergy gain. Inasmuch as these mode-particle interactions
are stochastic, the attendant dynamics is very diKcult
to analyze, but it is clear that particles can quickly lose
memory of their initial conditions. Localized fluctuations

thereby provide the mechanism for generuting additional
halo. There is both experimental and numerical evidence
for ongoing population of the halo by particles having
small initial energy [3,4,11].

Macroscopically, interactions of the particles with tur-
bulent Buctuations produce rapid heating at the expense
of the available free energy and at a rate commensurate
with the strength of the turbulence. Therefore, from a
thermodynamic viewpoint, we regard the initial particle
distribution function and its associated temperature Tp,
and the final (Maxwell-Boltzmann) particle distribution
function and its associated temperature T, to be given.
Our goal now is to develop a formalism to xnodel the dy-
namics connecting the initial distribution function to the
final distribution function.

Vk define t~ to be the time it takes for the resonant
particle, which gains energy b,E„(p) once each period t,
of core oscillation, to climb up the potential well from
U(r = a) to U(r = 2a):

U(2a) —U(a) 3 —(1—K )2ln2

AE~(2po —1) (1—/c2)F(2po —1)

(2.19)
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III. FOKKER-PLANCK MODEL

A precise statistical treatment of the beam dynamics
involves the microscopic Klimontovich density distribu-
tion. This distribution consists of a self-consistent su-
perposition of the orbits of all constituent particles of
the beam in the Cartesian phase space (x, u) of a single
particle and it satisfies Liouville s theorem [25, 26]. The
microscopic distribution is

N

f(x, u, t) = —) b(x —x;(t))b(u —u;(t)), (3.1)

where (x;(t),u;(t)) denotes the orbit of the ith particle
and N is the total number of particles. The ultimate goal
of a numerical experiment is to specify the Klimontovich
distribution as a function of time.

To develop an analytic formalism, it is more practi-
cal to work with a macroscopic distribution function.
We thus consider the macroscopic, coarse-grained dis-
tribution function f (x., u, t), which is found by averaging
the Klimontovich distribution over scales substantially
greater than those associated with localized turbulent
fluctuations:

1 2irQ2 . k b((ui, —k. u)
V Mes - k' e'(k, ~i, )

(3.6)

1 2irQ .Eg kkb((ui, —k u)
V M2eo - (ug k2 e'(k, ~i, )

(3.7)

The right-hand side of Eq. (3.3) drives the final velocity
distribution to the Maxwellian distribution, in which the
velocity of the center of charge of the system is constant
and the coordinate system is comoving with the center
of charge. For a beam in a focusing channel this implies
a centered beam with (x) = 0 and (u) = 0. Although a
misaligned beam may migrate to the static equilibrium of
a centered beam, the time scale for the decay of the beam
centroid's betatron oscillation may be difFerent from the
relaxation time. For example, the oscillation persists if
the external focusing force is linear [28]. Thus we restrict
this analysis to beams which are initially centered.

If the coarse-grained beam is regarded to be uniform
so that it can be Fourier transformed using the periodic
boundary conditions of a homogeneous cube of volume
V, then the transport coeflicients are [14, 18]

f (», u, t) = dx' du' f(x', u', t),
Ev(x, u)

(3.2)

where EV(x, u) is a phase-space volume element cen-
tered on the coordinates (x, u) which is large compared
to the size of the turbulent fluctuations but small com-
pared to the size of the beam. In what follows, the over-
bar is a signature of quantities which are calculated from
the coarse-grained distribution f

After resolving the Klimontovich distribution into two
components, f and fluctuations about f, and averaging
Liouville's equation, we are left with a "collision" term
involving the fluctuations [26]. Working with a coarse-
grained distribution function is tantamount to neglect-
ing nonlinear coupling between fluctuations in the par-
ticle distribution and fluctuations in the electromagnetic
field. This approach results in the reduction of Liouville's
equation to an equation of the Fokker-Planck type [17,
iS, 27]:

In these expressions, E'p is the energy contained in the
fluctuation with wave vector k and angular frequency
~p, and in this quasilinear formulation it evolves in the
manner

BE'g sr M(u„(ui,= 2', fi, + 2, " du f(u)b((ui, —k u),Bt

where

(3.8)

Im [e(k, (ui, )] .BRe [e(k, (u)] (3.9)

The first term on the right-hand side of Eq. (3.8) ac-
counts for Landau damping or growth at the rate pg from
absorption or i.nduced emission of mode energy by the
particles, respectively, and the second term accounts for
spontaneous Cherenkov emission of mode energy by the
particles. The dielectric response function is

(Bi+u.V +K V„)f = .V„(Ff)+V„(D.V„f),
(3 3) e(k, ~) = 1+ —" du

k V„f(u)
k~ u) —k u

(3.iO)

K = —QM V' (@y+4,), (3.4)

and the vector F and tensor D are coefficients of friction
and difFusion, respectively. According to Poisson's equa-
tion, 4, is determined &om the coarse-grained density,
which is in turn determined from f:

V 4, (x, t) = — du f (», u, t) .
Eo

(3.5)

where K is the net acceleration of a particle in the comov-
ing kame found from the potentials 4y and 4, associated
with the external focusing force and coarse-grained inter-
nal space-charge force, respectively, i.e.,

e'(k, cup) denotes [Be/Bu] „,u = ug + ipse —is the solu-
tion of e(k, ~) = 0, and the k summation in Eqs. (3.6)
and (3.7) is over the growing (unstable) modes obtained
from these zeros, for which ~ & 0. The friction F arises
from particles losing energy to»~~table modes via spon-
taneous Cherenkov emission and the difFusion D results
from particles recoiling in response to absorption and in-
duced emission. In turn, difFusion gives rise to turbulent
heating of the particles.

The efFect of fluctuations is to change the shape of
f continuously until there are no inore growing modes
and pg ( 0 for all k. When this has occurred, the
modes quickly dissipate by linear Landau damping and
the turbulence vanishes. For example, in the presence of
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a background isotropic Maxwellian velocity distribution,
the Buctuation spectrum evolves as

7rMar erg (
i

1 —
~

du f(u)b((uk —k. u),k2er k, (oI, ( k,~T)
(3.11)

in which k~ is Boltzmann's constant. This shows ex-
plicitly that E'p dissipates if E'g ) k~T and the en-

ergy spectrum thermalizes toward the equipartition value
E'g ——kg) T.

We have collected this quasilinear formalism &om Ichi-
maru's textbooks [17, 18] to highlight the ingredients of
a self-consistent solution for the dynamics of a turbu-
lent beam. As the Buctuations evolve, they change the
shape of the coarse-grained distribution function, which
in turn modifies the evolution of the Buctuations. The
formalism is obviously very complicated. It is also only
approximate, particularly with regard to its application
to an inhomogeneous beam, for in this case it is very
difBcult to calculate the normal modes. In the spirit of
our goal to develop a semianalytic formalism, we shall
replace the complicated theory with a simple model of
the turbulence which preserves the salient features of a
fully self-consistent approach.

In general, the transport coefFicients may be expected
to be functions of position, velocity, and time. We shall
ignore the position and velocity dependences and model
the beam as a Buctuating Buid in which particles execute
Brownian motion as they interact with the Buctuations.
We take F = P(t)u and D = D(t)I, where P(t) and D(t)
are time-dependent relaxation-rate and diH'usion coeK-
cients, respectively, and f is the identity tensor. These
simplifications lead to our model Fokker-Planck equation

(Bg + u V + K V„)f = PV„(uf) + DV„f .

(3.12)

The left-hand side accounts for systematic efFects aris-
ing &om the external focusing field and the mean space-
charge field of the entire beam, and it therefore includes
resonances between global space-charge modes and the
focusing force if any are present. It also includes the sys-
tematic dynamics of the oscillating-core —single-particle
interaction described in Sec. II above. The right-hand
side accounts for stochastic eKects of the collective-mode
spectrum, specifically the localized Buctuations, on the
particle orbits.

Equation (3.12) will be most accurate for slow-moving
particles confined to the central region of the beam.
Faster particles will have less time to interact with the
Buctuations and they will sample the outer region of the
beam in which the density profile has a strong spatial
dependence. Thus, by ignoring the position and velocity
dependencies of F and D and forcing D to be isotropic, we
are accounting principally for the dynamics of the bulk
of the particles confined to the inner part of the beam
and for the expulsion of particles &om the core and less
accurately for the evolution of particles comprising the
outermost regions of the halo. This is the gist of the
philosophy set forth in the Introduction.

IV. ONE-DIMENSIONAL BEAMS

In the case of one-dimensional (1D) beams we assume
that the coarse-grained distribution f(x, u, t) is indepen-
dent of the longitudinal position z and of the transverse
position y. We also ass»me that the dependences on the
velocities u, and u& are separable and that we have al-

ready integrated f over u, and uz. We let W(z, u, t)
represent the integrated distribution function. It then
satisfies the Fokker-Planck equation

(Bg + uB + KB„)W = PB„(uW) + DB„W, (4.1)

where K = Kg+ K, is the total acceleration experienced

by a particle. The distribution TV is normalized such that

dz duW z, u, t = 1. (4.2)

The coarse-grained density n(z, t) is obtained from the
distribution W(z, u, t):

n(z, t) =r 'f duw(z, u, &), (4.3)

B K, = n(z, t).
Map

(4 4)

Since P and D are taken to be independent of x and
u, the right-hand side of the Fokker-Planck equation can
be written as Pd„[W], where

8„=B„[u+(2a) 'B„] (4 5)

is the Fokker-Planck collision operator in which a(t) =
P/2D. The Gauss-Hermite functions Q (u), defined as

4-(u) =12,—
I

e "II-(~au)
a)' '

(4.6)

are eigenfunctions of 8„, i.e., Z„[g ] = —mQ . We
therefore use the following expansion for the velocity de-
pendence of the distribution function:

W(z, u, t) = ) A (z, t) g (u) .
m=0

(4.7)

We thea expand the coefficients A (x, t) in terms of the
Gauss-Hermite functions y„(z):

t' 1 ab'~
(p„(z) =

~

—
~

e H„(~az),q2"n! n y
(4 8)

in which a(t) is a free time-dependent variable. The full
decomposition for the distribution function is then

W( u, tx) = ) ) A" (t) @ (u) &p„(x) .
m=0 n=o

(4.9)

where L 2 is the total number of particles per unit area
in the (y, z) plane. We shall consider a continuous, linear
focusing channel for which Ky ———~2x. The acceleration
K, due to space-charge forces is determined &om the
density n(z, t) by Poisson's equation
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n(x, t) = I ) Ao (t) (p„(x),
n=p

(4.10)

which, when integrated over x, must always yield L
and &om the properties of the Gauss-Hermite functions

I

This decomposition has the advantage that its lead-
ing term is Gaussian both in velocity and position.
The leading term therefore corresponds to the Maxwell-
Boltzmann equilibrium distribution appropriate to the
continuous, linear focusing channel in the absence of
space charge and it thus provides a solid foundation
on which to build the efFects of nonlinear space-charge
forces. Another advantage is that the conservation of the
total number of particles is expressed simply as As(t) = 1
for all t. This is obtained directly from the particle den-
sity

which are summarized in Appendix A. Additionally, as
shown later in this section, the requirement that the
beam is centered implies that Ai(t) = Ao(t) = 0 for
all t.

The acceleration K, is found by straightforward inte-
gration to be

K, (x, t) = Ao(t) erf(y ax)
2LMep

(4.11)

As shown in Appendix B, the Fokker-Planck equation
yields the following set of coupled nonlinear difFerential
equations for the coefticients A":

d( A" = „mA" + gm(m —1)A"
2 + „nA" + gn(n —1)A" +

dye n dna n
20! 2a ~n ~mA" ', + i/m+1A" ~',

2 2—i/m ~nA" ii + i/n+1A"+ i ——~2 Wn~m) A i ) Ao I~"„—m —A"
C0 (d' (dp0 0 j=p I =0

(4.12)

in which a)o —— ga(0)/a(0) is a reference frequency,
w()t is the dimensionless time, n = o.(()/o, (0),

a = a(()/a(0), and

Q2 a(0)
ML2ep 2

(4.13)

by assumption,

by assumption,

(4.14)

(4.15)

(4.16)

(4.17)

is a plasma &equency. The coefBcients I"„are defined in
Appendix B.

It is apparent upon inspection of the system (4.12) that
the space-charge force introduces a quadratic coupling
between the coefn.cients. In the absence of space charge
(u„= 0), the system (4.12) becomes a set of coupled
linear difFerential equations. This suggests that an ana-
lytical solution is possible for this case, and it is presented
in Sec. VI. The last term in Eq. (4.12) is a damping term
and will govern the behavior for t ~ oo. Since it is pro-
portional to m, only the coeKcients Ap will maintain a
finite value when t + oo. In the case of a beam which is
symmetric with respect to the axis at all times, only the
coeKcients with m + n even are needed since A" = 0 if
m+ n is odd.

The center position of the beam (x), the mean trans-
verse velocity (u), the mean-square width (x2), the mean-
square velocity (u ), and the mean-square emittance

= (x )(u ) —(xu) can be expressed simply in terms
of the expansion coefBcients

1+ 2A 1+ 2A — A . 4.&8

The parameter a(() is still arbitrary. This follows from
the fact that the decomposition of the distribution func-
tion in physical space is not unique. One possible choice
is to assume that a(() has the same time dependence
as n(() as was done in our earlier paper [12]. Another
possibility is to use the close connection between a(()
and the mean-square width of the beam as indicated by
Eq. (4.16). Imposing the condition Ao2(() = 0 will yield
(x2(()) = [2a(()] . This condition will be satisfied if
Ao2(0) = 0 and dtA02 ——0. The latter will be obtained if
we require a to satisfy

dna = —2a (4.19)

V. TW'O-DIMENSIONAL BEAMS

In the case of two-dimensional (2D) beams, we assume
that the coarse-grained distribution f(x, u, t) is indepen-
dent of the longitudinal position z, that the dependence
on the longitudinal velocity u is separable, and that
the distribution function has been integrated over u .
We represent the integrated distribution in polar coor-
dinates by W(r, 8, u„us, t), which satisfies the Fokker-
Planck equation

Specifying the parameter a(t) [or equivalently the pa-
rameter a(()] by imposing condition (4.19) identifies a(t)
with the reciprocal of the instantaneous mean-square
width. In particular it guarantees that, in the absence of
space charge and when equilibrium is reached (t -+ oo),
all the coefEcients A are zero except Ap —1.
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8, + u„8„+—Bg+ l K„+—
l
8„ug /' — ugz )

r ( r p

- 1/2a q.
qP, r

~ .(Ipl+~)'.
(ar ) I I/ e ar I I 1 (ar )

(5.5)

+ (Ks — '
) 8„, W = P (2, + 6, ) W, (5.1)

r

where l: and l.„, are the Fokker-Planck collision op-
erators defined in Eq. (4.5) for the radial and azimuthal
velocities, respectively. The distribution R' is normalized
such that

f
oo 2m +oo +oo

drr d8 du„dug W(r, 8, u„, ug, t) = 1.
0 0 —OO —oo

(5.2)

We shall consider a nonrotating, generally nonaxisym-
metric, centered beam in a continuous, linear focusing
channel for which K„= —cu2r. The acceleration K,
due to space-charge forces is determined &om the den-
sity n(r, 8, t) by Poisson's equation

C"'~ = Re(A"'~„), gx, e lm(Ax»a ) (5.6)

The coarse-grained density n(r, 8, t) is

+oo +oo
n(r, 8, t) = L i du„dug W(r, 8, u„, ug, t)

in which a(t) is again a &ee time-dependent variable. The
leading term in this expansion is Gaussian in u, ue, and
r, i.e., it is the Maxwell-Boltzmann equilibrium distribu-
tion in the absence of space charge appropriate to a con-
tinuous, linear focusing channel. The coefficients Ap q„

are complex and satisfy Ax"g„= (A. x'„"x)' and they can
also be expressed in terms of their real and imaginary
parts

V K, = n(r 8t).
MeO

(5.3)
=I, ' ) ) A~~'ov(t) qP(r) e'", (5.7)

p= —oo q=0

To solve the Fokker-Planck and Poisson equations self-
consistently, we expand the distribution function into
complete sets of orthogonal functions:

W(., 8, u„, u. , t) = ) ) ) ) A"'„(t)@ (u. )
ra=0 n=O p= —oo q=O

xQ„(ug) gP(r) e'" (5.4)

Here g (u„) and @„(ug)are the Gauss-Herxnite functions
defined in Eq. (4.6) and gP(r) are the Gauss-Laguerre
functions

where L is the total number of particles per unit length
in the z direction, which must be obtained by integrat-
ing n(r, 8, t) over r and 8. Using the properties of the
Gauss-Laguerre functions, this ixnplies Ao'o(t) = 1 for
all t. There are additional conditions on the coefficients
which are imposed by the properties that the beam is
centered and nonrotating. These conditions will be pre-
sented later in this section.

The components K„and Kg of the acceleration are
found by solving Poisson's equation, which is done in
Appendix C. They are

2 +oo - 2
i

i-1/2
K„= ur r + " (—1—e "

) — ) A~o'o e ' ——'(ar ) ~"~ p(lpl, ar ) e'"

pWO

(5.8)

+oo - 2
~

)- &/

K, = (5.9)

p+0

in which we introduce a plasma &equency for the two-dimensional beam

Q ap

2' LMeO
(5.10)

and p(p, x) is the incoxnplete gamma function.
As shown in Appendix C, the Fokker-Planck equation yields the following set of coupled nonlinear differential

equations for the coefficients Ap'q:
x
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gm(m —1)A"' 2 „+(m+n)A~ q„+ gn(n —1)A"'
2 + „([p]+2q)A&'q —2/q([p[+q)A'q„

OO

+ —qm) A", „( Ipl+2(q'+1)+n ~,', ,
—2&(q'+1)(q'+(pl+1) J;,, +, )

qt Q

OO—q'mq. l ) Ann
1 ( ~p~+2(q'+2) —(n+1) 1,—2/(2'+1)(q'+~p~+1)A +1)

ql Q

OO

+ —) J~, (11'm(n+1)(n+2)An' 1 „+~ —
quan(n —1)(m+1)A '+i „

ql —P

—'p A ' „+ +1A"'„+
A 2 OO——,~m ) A"', „Z,",,

0 q'=0
+OO OO +OO

II tl I I I tt I I I II) ) ) ) A~ooq b'(p p p ) 2itmA '
i M iynA '

i&qq q
0 pt OO ql P pl I OO qll P

(m+n—) A"—
Q)p

(5.11)

where a, 6, uo, and ( have the same definitions as in Sec. p

IV, b(p) is the Kronecker delta function, and the constant
I II I II

coeScients J" „K „M"","„,and N"", "„are defined
in Appendix C. The last term in Eq. (5.11) acts as a
damping term and will govern the behavior as t m oo.
Since it is proportional to (m + n), only the coefficients
Ao'z will maintain a finite value when t m oo. This re-
suits &om the requirement that the velocity distribution
in u„and ug evolve toward a Maxwellian distribution.

It is apparent upon inspection of the system (5.11)
that the space-charge force introduces a quadratic cou-
pling between the coefBcients. In the absence of space
charge ((d~ = 0), the system (5.11) becomes a set of cou-
pled linear differential equations. This suggests that an
analytical solution is possible for this case and it is pre-
sented in Sec. VI for an axisymmetric beam.

Prom the coefKicients AJ"q„, or their real and imaginary
parts C 'q„and S~' „,respectively, various moments can
be calculated:

(u*) = ) )
(Cio iS()', ) =0- ~(q+ 2) i,o i,o

2 2a q' q+1

by assumption, (5.14)

~(q+ 2) i,o i,o
(&w) = ) (Co,'i+ Si,'o) = o2/2a, q!it'q+1

by assumption, (5.15)

by assumption, (5.16)

(5.17)

(5.18)

Equations (5.12)—(5.15) imply that the centering of the
beam is governed by the absence of dipole terms (p =
+1). A generalized emittance, which is appropriate for
use with beams in which the Cartesian components of
the motion are coupled, can also be calculated [29]:

(x) = a 'i Co'o = 0

(y) = a 't'S", = 0

by assumption,

by assumption,

(5.12)

(5.13)

~2 = (~') (u.') —(~u*)'+ (y')(u„') —(yu. )'
+2(*y)(u*u. ) —2(*u.) (yu*)

This generalized emittance takes the form

(5.19)

~2,q ~2,q 2g2, q

64ao'~2 = 16 1 —Co o 2+ 2 C2 o + +02 + 32t 00
(q+1)(q+2)

S"—S" + ~2C"2,0 0,2 1,1
+ 32 So'o

V'(q+1) (q+2)

- 2

q!Q(q+1)(q+2)

- 2

- 2

, ; q'g(q+ )(q+ )

- 2

(5.20)
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Again, up to this point, the parameter a(() is arbitrary.
A possible choice is to require a(0) = (r2(0)) ~ and

Ij'& (p pl)/2 P2 = (p + A)/2,

(6.3)
OO

dna = a —„) Az'o (2q+1)Jz —2(q+1)Jz +z
q=p

(5.21)

p (p2 4 2) 1/2

The solution that tends to h(g —fo) b(g —go) as t ~ 0
1S

This is equivalent to requiring Ao'o(0) = 0 and dqAo'o =
0, which implies Ao'o(() = 0 and, from Eq. (5.18),
(r (()) = 1/a((). Thus, in a similar fashion as in the
1D case, defining the parameter a by Eq. (5.21) identi-
fies it with the instantaneous value of the reciprocal of
the mean-square radius.

VI. CLOSED-FORM SOLUTIONS

In the special case of a hot, emittance-dominated
beam, in which the space-charge force is negligible, the
model Fokker-Planck equation takes the form

+2h (0 Co) ' (n no) + & ln nol (6.4)

in which d = 1 or 2 for the 1D or 2D case, respectively,
and a, b, h, and 6 are functions of time determined &om
the diffusion coefficient D(t) in the manner

t

a(t) = 2 dt' D(t') e
0
t

b(t) = 2 Ch' D(t') e-'~"
0

(Bg+u V + Ky V„)f = pV„(fu)+DV„f .

(6 1)

t

h(t) = —2 dt' D(t') e- "'+"",
0

A(t) = ab —h (6.5)
The overbar has been dropped &om the distribution func-
tion because there is no space-charge-induced turbulence
and the stochastic processes generating the transport co-
efficients are presumed to be &om other sources, such as
radio-&equency noise or random deviations of the focus-
ing force along the accelerator. If we specialize further to
a continuous, linear focusing force for which Ky ———u z
for the 1D sheet beam, or Kf ———~ r for the 2D cylin-
drical beam, then all of the particle orbits are simple-
harmonic. Taking P to be constant, we can determine
in closed form the first integrals of the Lagrangian sub-
sidiary system associated with Eq. (6.1) and then express
the solution for f in terms of these integrals using a pro-
cedure documented by Chandrasekhar [30]. This solution
is analytic and therefore is advantageous for a number of
applications. It can be used to check computer coding of
the formalism in Secs. IV and V. Because it provides the
basis for determining analytically any desired moment,
it can also be used in conjunction with experiments to
study the efFects on the beam of stochastic processes for
which the relaxation rate may be expected to stay con-
stant and the difFusion may be expected to be indepen-
dent of position and velocity. With the aid of the analytic
results, these experiments could be configured to provide
measurements of the transport coefficients.

Motivated by these considerations, we proceed to solve
Eq. (6.1). We let p(x, u, t

~
xo, uo) denote the probability

of finding a particle with position x and velocity u in the
range (x, x+dx), (u, u+du), respectively, at time t given
it started at (xo, uo) at t = 0. Following Ref. [30], we
express the solution in terms of the first integrals of the
motion

'. (
f(x, u, t) = pq exp —) a„„u; + a „g;u;

i
2+a x; (6.7)

in which

O.'p Ltd'
2

2-=——.-+(» —
/ )tl% g 2 tltc

20,'0 (d 2
2 2—,&* +PiP2 &1P2+&2P1

Pp

The distribution function f(x, u, t) may be deter-
mined by multiplying Eq. (6.4) by the initial distribu-
tion f (xo, uo) and integrating over the initial conditions

(xo, uo). To illustrate the procedure, we consider an ini-
tial distribution which is Gaussian in both xp and up,
1.e.)

d dt'ao(u) . (
f(xo, uo) =

I ~

exp ao). I "o'+ *o
I

~E~«);, E &0 )
(6.6)

Here, as before, we are letting pp represent the ratio of
the initial rms beam size to the matched rms beam size
and ao ——a(0) = P/2D(0). With this initial distribu-
tion, the integrals can be evaluated in closed form. This
calculation, as well as the calculations of the moments
delineated below, is entirely straightforward but very te-
dious, and we used a computer-algebra code as an aid.
The result is

( = (pgx —u)e g = (p2x —u)e (6.2)
x 2(Pz + P2)

and their initial values (go, go), in which
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20!p 2 2 2+(i — 2) A@2
~o

2ap (ae~ + be2 + 2hege2) + (eg —e2)

2Ao [Gc~py + b82p2 + hcyc2(py + p2)

+ egal + e2@2 ele2(pl + p2)
2 2

2ao (ac~@~ + bezpz + 2hexe2plp2)

+(eipi —e2p2)
2

ez 2o'p —
2 2apA + a+ 6+ 2h + a@~

Pp

+bp& + 2hkips + (0& pq) )

n(x, t) = „~ ~

exp — Qx'
2~) i

2~' . , ') (6.8)

in which

where we have used the shorthand notation eq ——e"'
and e2 ——e"' . The distribution function shows clearly
that the effect of the linear focusing force is to stratify the
phase space into corotating similar confocal ellipsoids and
the stochastic processes determine the detailed evolution
of their sizes and eccentricity.

The density can be calculated by integrating over the
velocity space. The result is

vrI. DzscUSSZoN

The systems of equations for the expansion coefficients,
Eqs. (4.12) and (5.11), are equivalent to the coupled
Fokker-Planck and Poisson equations. Space charge in-
troduces quadratic terms in the expansion coefficients
and the equations must therefore be solved by numer-
ical integration. Because the charge-redistribution phase
lasts for a very short time, we may ignore its detailed dy-
namics and regard the turbulence resulting Rom charge
redistribution to be present at t = 0, the time of injec-
tion of the beam into the accelerator. A viable strategy
for solving the equations would be to truncate the se-
ries, solve the truncated series, then increase the num-
ber of equations, and solve the larger series. If the solu-
tions substantially agree, then one knows that a sufficient
number of terms has been retained in the truncation.
Although this procedure involves numerical methods, it
should nevertheless be much faster than particle-in-cell
codes for most applications. We have developed numeri-
cal codes based on Eqs. (4.12) and (5.11), but shall rele-
gate application of the formalism to future papers.

The equations for the expansion coefficients are valid
for Fokker-Planck transport coefficients with arbitrary
time dependence which must be specified. By way of ex-
ample, we propose a physically plausible phenomenolog-
ical model of the difFusion coefficient [12]. We introduce
a diffusive temperature" T = mD/Pk~ which, in equi-
librium, corresponds to the true thermodynamic temper-
ature. We then adopt an exponential model of turbulent
heating:

n(0)
0'(t) = —2c~u + (82V1 el @2)

Px ao
"

- 1/2

(6.9) D(t) = M 'Pk~T(t) = M 'Pka[T +(Tp —T )e '] .

This result gives at once the time dependence of the rms
beam size. For the 1D case x = cr and for the 2D case
r = ~20'. Likewise, the rms emittance can be calculated
and the result for both the 1D and 2D cases is

(t) =.-(0)p gc(t) . (6.10)

These expressions for the rms quantities are quite simple
in the sense that they involve only elementary functions
[31]. We have writtea computer codes to implement the
semianalytic formalism for 1D sheet beams [12] and 2D
cylindrically symmetric beams developed in the preced-
ing sections and have used the analytic results in con-
junction with validating the codes. In so doing, we have
mutually confirmed both the codes and the analytic re-
sults.

More general analytic expressions for these rms quan-
tities can also be developed. For example, consider a 1D
sheet beam that is initially Maxwellian in velocity space
but has an arbitrary initial density profile centered on
the focusing channel. We may then proceed through the
sequence of calculations leading to the moments, begin-
ning with Eq. (6.4) and saving the integration over xp
for last. In this way we geaerate expressions for o 2(t; xo)
and e (t; xp). Finally, integration over xp yields the same
expressions for 0'(t) and e(t) as given in Eqs. (6.9) and
(6.10), respectively, ia which u /pp may be replaced by
[2aocr 2 (0)]

Starting kom temperature Tp, the beam strives to reach
a Maxwell-Boltzmann distribution with temperature T
and the heating occurs at the rate P, & P associated
with "strong" turbulence. We would expect P, )) P in a
badly rms-mismatched beam because strong turbulence
ensues, which then dissipates very rapidly to weak tur-
bulence. Likewise, we would expect P, P in a modestly
rms-mismatched beam because the associated turbulence
is thea relatively weak. The relaxation rate P is left
as a free parameter to be specified based on. the dom-
inant relaxation mechanism(s) in the beam. The ratio
T /To is calculated from the available free energy using
Eq. (2.14).

Our model of the turbulence, which incorporates a
beam "temperature" and relaxation rate which are inde-
pendent of both position and velocity, is likely to be most
appropriate for particles moving with velocities not much
exceeding the thermal velocity, as is the ease near ther-
modynamic equilibrium when Coulomb collisions drive
the relaxatioa [32]. It may therefore be expected to ap-
ply to "typical" particles comprising the central region of
the beam. In actuality, the relaxation rate vriH be slower
for fast particles because they will have less time to in-
teract with localized field Buctuations. Consequently, be-
cause halo particles either move rapidly through the core
or orbit around the core, the halo Inay be expected to
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thermalize more slowly than the core. This is seen in
simulations [2, 3]. However, despite its shortcomings, the
model should be useful both for studying the evolution
of global irregularities in the beam and for investigating
halo generation from the core.

It is clear that a more accurate theory hinges on more
accurate transport coefficients. As formulated, our model
Fokker-Planck equation is similar to that pertaining to
Brownian motion, for which the collision term is

(7.2)
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in which

W(x, u, t) = (b,u)
Lt

1 (b,ub, u)1)x,ut =—
At

(7.3)

APPENDIX A: PROPERTIES OF THE
GAUSS-HERMITE

AND GAUSS-LAGUERRE FUNCTIONS

1. Gauss-Hermite functions

are the dynamical-friction vector and difFusion tensor, re-
spectively. b,u(x, u, t) is an incremental change in the ve-

locity of a single particle occurring over a time At, which
is long compared to the correlation time of the stochastic
space-charge fields seen by the orbiting particle, but short
compared to the characteristic time for evolution of the
distribution function. To resolve the dynamical behavior
of the transport coefficients in a beam which is oscillating
and turbulent due to rms xnismatch, Et should be chosen
to be a small, but xnacroscopic, fraction of the particle's
orbital period. The averages are taken over the number
of particles [32]. More explicitly, if P~q (x, u, t

~
4u) is the

probability that the velocity u of a particle at coordinate
x changes by an increxnent Lu in time At, then

The Gauss-Hermite functions are defined as

&-(u) =
I

—
I

e " I-(~au)
)' 1 a ()

'~'

(2 mI ')r)

and satisfy the following normalization conditions

(A1)

f g„(u) du = b(n),

+oo

(u) @„(u)e " du = b(m —n), (A2)

in which b(m) is the Kronecker delta function, i.e., b(m g
0) = 0, b(0) = 1. Other useful properties of these func-
tions are

(Au(x, u, t)) = J d(Au) dtuPu, (x, u, t
~

ku), (7 4)
/2aug = pm+1/ +g+ ~mg (A3)

and likewise for (b,uAu). Equation (7.2) is the same
collision term as in Eq. (3.3) with the substitutions

2a u g = g(m+ 1)(m+ 2) g~+z + (2m+ 1)g
+pm(m —1) @~ 2, (A4)

1F= —T+ —V„B,
2

D = —'V.1
2

(2a) 't (9„$ = /m+1 g—
(7.5)

(2a) (9„$ = g(m+1) (m+2) g~+»

(A5)

(A6)

One may readily investigate these quantities in con-
junction with numerical experiments [33]. Examples of
numerical integrations of particle orbits in a Buctuating
background indicate that the difFusion coefficient may
have a more complicated evolution than simple exponen-
tial growth [34] and that the transport coefficients are
very sensitive to the form of the Huctuation spectrum
[35]. To calculate the averages which generate W and 17,
one may study orbits of test particles during the interval
At in an ensemble of nuxnerical experiments and take en-
semble averages of the defIections Au and AuLu. This
procedure may be successively implemented to cover all
of configuration space, velocity space, and tixne. Alter-
natively, one xnay calculate the fluctuation spectruxn at
each position and time step during the course of a nu-
merical experiment and then construct the coefficients
from the spectrum using Eqs. (3.6) and (3.7) as guides.
We believe that future work along these lines will prove
&uitful. The ultimate goal, of course, is to relate the
transport coefficients to accelerator design parameters.

2a8&g = —dna mg + g(m+1)(m+2) g +2

(A7)

2. Gauss-Laguerre functions

The Gauss-Laguerre functions are defined as
Z/2a q!

(lpl+ v) '.
(a„2)ls(/2 e o~'I I~I(a„2)

(A10)

u8„$ = —g(m+1)(m+2) g +2 —(m+1) g . (A8)

In the case of the 1D beam we will also use the Gauss-
Hermite functions p„(x):

1 al '~'
p„(z) =

~

—
i

e * II„(~ax), (A9)q2"n! n)
which, of course, refIect the above properties as weB.
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and they satisfy the normalization relations

~ ~

rQdr =— lpl t'Ipl—I'
I

—+q I,
o

' 2~ ql(lpl+q)' 2 ( 2 ) '

(A11)

The coeKcients A are then expanded in terms of
the Gauss-Hermite functions p~(z) also defined in Ap-
pendix A:

re " QQ, dr = b(q —q') .
0

Other properties are

q+ —+1r ( 2 )

+v'(q+I) (q+ Ipl+I) &+i

(A12)

(A13)

A (x, t) = ) A.' (t) p, (z) .
j=p

(B4)

The space-charge force can be determined &om Pois-
son's equation by straightforward integration with the
boundary condition K, (z = 0) = 0:

8t4q = dta r— q+—
2

8 K, = n(x, t) = ) A~o (t) &p(z),
Mop LMcp .,

+V'(q+1)(q+I pl+1) 4',+i (A14)
K, (z, t) = As (t) erf (~az)

2LMep

APPENDIX B:REDUCTION OF THE
FOKKER-PLANCK EQUATION

FOR ONE-DIMENSIONAL BEAMS

For one-dimensional sheet beams, the distribution
function W(x, u, t) satisfies the Fokker-Planck equation

(8, + u8. + K8„)W' = P8„(uW) + D82W .

We now define the operator

dx e ' p„(z)f (z)

(B6)

(B7)

We first expand W in terms of the eigenfunctions g (u)
defined in Appendix A:

W(z, u, t) = ) A (x, t) @ (u) .
m=p

(B2)

DtA
dt's mA + gm(m —1)A
20!

8 —2a(Kf + K, ) j A
20,'

m+1 8 A +i —mPA
20! (B3)

Inserting this expansion into the Fokker-Planck equation
and using the properties of the Gauss-Hermite functions
yields the following system of differential equations for
the coefficients A (x, t):

and apply it to Eq. (B3). Since 7 [p~] = b(j —n), we ob-
tain, using the properties of the Gauss-Hermite functions
listed in Appendix A,

7[A ]=A",
7[8qA~] = dqA" —(2a) dna nA" + gn(n —l)A"

7 [8 A i] = —~2a v n A"

7 [KyA i] = —ur 7 (zA i)
= —(2a) '(u'(~nA" ', + gn+1A"+', )

(B8)

Upon applying the operator 7 to the space-charge term
we obtain

7 [K,A i] = 7 & Aaerf(~az)—
2LMcp

oo Ag oo

) .~ V" -» ) .A' -i ~~
~l —] j=p

Q2
g As ) A' i7[erf(gaz)cp~]—

2LMep j=p
(B9)

7 [erf(~az)&p~] can be evaluated from Eq. (2.20.16.26) of Ref. [36] and is given by
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sin (j n—) 2 f 1 ) i j+n Ij+n)t
for j+ n odd

7.
[ f(+ ) .

] ~
z (g!n!) j —n ( 2 ) (B10)

, 0 for j + n even.

7 [yz i&p~] can be evaluated from Eq. (7.375.1) of Ref. [37] and is given by

j+n j' —( 1 ) (j+n j')—t fn+j' j)—(j'+j n)—

~

~

~ ~ ~ ~

~

7-[~, ~.] ( 27I~ (j'!j!n!) ( 2 ) ( 2 ) ( 2 )
aj' (Bll)

, 0

Setting j = 0 in Eq. (Bll) gives the same result as Eq. (B10). Thus, if we define

for j+j'+n even.

~ I
I'-2n

, 0

fn+q' j) —&j'+j n&—
for j+j'+n odd,

I,j'!j!n!) i 2 ) i 2
for j+j'+n even,

(B12)

then the contribution &om the space-charge term is given by

7[K,A i] =
2LMep j=p j'=0

(B13)

Collecting all the terms yields the following differential equation for the coeKcients A

dgA" = mA" + gm(m —1)A", + ' nA" + gn(n —1)A" '
2A 2a

~n ~mA" i+ gm+1A" +i

2

u ~m ~nA" i+ gn+1A"+ i — /2a~m) A~ i) Ao I"„—mPA"
2LME'p j=0 k=p

which, after normalization, gives Eq. (4.12).

(B14)

APPENDIX C: REDUCTION OF THE FOKKER-PLANCK EQUATION
FOR TWO-DIMENSIONAL CYLINDRICAL BEAMS

In polar coordinates the distribution function W(r, 8, u„, us, t) satisfies the Fokker-Planck equation

Vg u2s i—
8, +u„8„+—8s+

~
K„+—

i
8„„+ Ks-

r ( r )
(Cl)

where Z„and 8„,are the Fokker-Planck collision operators defined in Eq. (4.5) for the radial and azimuthal velocities,
respectively. We first expand W in terms of the functions @ (u„) and Q„(us), which are the eigenfunctions of the
operators l'.„„and l:„,:

W(r, 8, u„, us, t) = ) ) A „(r,8, t) g (u„) g„(us) .
~=O n=0

Inserting this expansion into the Fokker-Planck equation and using the properties of the Gauss-Hermite functions
yields the following set of difFerential equations for the coeFicients A (r, 8, t):

dqo. m n
8&A~ ~ = gm(m —1)A~ 2 „+(m+n)A + gn(n —1)A „2 — — 2nK„+ 8„—— A—~20.' 2A. T

n — 1 m+1 n+1 0+1 1—20.Kg+ —Bg A g
— 8 + +en+1 n 8+an n+12(1 T 2&i T 2' T

m 1 m+1 1+ —Q(n+1)(n+2) —A i „+2 — Qn(n —1) —A +i „2—(m+ n)PA20! T 20! T
(C3)
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where K„and Ke are the radial and azimuthal compo-
nents of the acceleration

K„=—u) r ——6„4, ,

where Ei(x) is the exponential integral function and C is
Euler's constant.

Case (ii) p = 0, q g 0. The space-charge potential is
given by

1
Kg —————Og4Mr

(C4) —0„(r0„4 ) = ——e " Lq(ar ),
which has the solution

(C13)

and 4, is the space-charge potential obtained from Pois-
son's equation

—B„(r8,4,) + —o)sC), = ——n(r, &, t) . (C5)

The coeKcients A „are then expanded in terms of the
Gauss-Laguerre functions

+oo oo

A „(., O, t) = ) ) A"„~(r)e*",
p= —oo q=o

(C6)

from which we obtain the density

+Oo OO

n(r, 8, t) = L ' ) ) A~o'oqgP(r)e'"

p= —oo q=o
(C7)

In order to proceed further in reducing the 2D Fokker-
Planck equation we need to obtain an expression for the
radial and azimuthal accelerations in terms of the expan-
sion coefficients A"'q„. This requires solving Eq. (C5),
where the density is given by Eq. (C7). If we define C'q

as the solution of

Co
4~&

@0-:=2.,
1

e 'Iq i(ar)=
4aq

e " ILq(ar )
—Lq i(ar )I

yO yO (C14)

a ar
p!

2—Q, T'
e (C15)

The Hankel transform 'Rz[f (r)] and its inverse 'R [F(y)]
de6ned as

&.[f(r)1 = f(r) r J~(yr) « = F(y)
0

+, '[F(y)) = F(y)»&(yr) dy = f(r),
0

have the property that

(C16)

(C17)

Case (iii) p ) O, q = 0, (for p ( 0, replace p by ~p~).
The space-charge potential is the solution of

2
—B„(r8„4o) ——4'o =

V' O" = —(Pe'" (C8)

then the space-charge potential corresponding to the den-
sity (C7) is given by

—8„(r0„4)——C = —y R„[4] .
p'

p r r2 (C18)

+oo oo

) ) A~;C~
p=--q=o

(C9)

+oo oo

K„= ~ r — ) ) A~()'qoB„C'~e'"IMap' p=--q=o

+oo oo

) ) A"'4~ "- ""'
IMe p= —oo q=o

(C10)

Case (i) p = q = 0. Poisson s equation simplifies to

—c)„(r(9„4o)= ——e
'7r

which can be integrated directly:

(C11)

and the radial and azimuthal components of the acceler-
ation are, respectively,

If we apply 'R~ to Eq. (C15), we obtain

a (a)'l '~
—y'&p[c'o] = -- I—

~ qp!)

2&+'~ ( p! )

r"+ e ' J„(yr) dr

y" exp
/

——
[

y')
& 4a)

1 (a &5('

2&+'qr q p) )
x y exp

I

——
~
J„(yr) dy,4a)

which yields

(C20)

(C19)
C)~o(r) is obtained by applying the inverse Hankel trans-
form to 'R~[i~o]:

Oo(~) =/ &e(@ol~.(ee)e~e

4o = —Ei(-ar ) —C —ln(ar )j4m'-

~ @o 1,-a.'
(C12) 1

0„4o =
4vrr

(ar')
c)~o = — p(p, ar ),4~ pI

- Xi2ar2 p p

2e —p(ar ) "p(p, ar )
Pe

(C21)
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where p{p,x) is the incomplete gamma function.

«se (iv) p & 0, q g 0 (for p ( 0, emplace p by lpl). The space-charge potential is the solution of

2
—B„(r0„4")——4~ = —Q

a q.
s. (p+q)!

(ar )~i e " L"(ar ) . (C22)

We apply the Hankel transform to Eq. (C22) to obtain 'R„[4~]:

1 1 (q —1)!
(p+q —1)!

1 1

gq(p+q)
- 1/21 q.

2vrr (p+q)!

(ar )ri e " L~, (ar )

(ar )"i e " L~(ar ) — L z(ar )
2q+S &

1 !
'R„[4 ] = —— a i r + e " J~(yr) L (ar ) dr

y2 7r (p+q) ~

q! i ye+29 2 ( y2 )
(p+ q) t (2al/2) p+zq+lqt

Then we apply the inverse transform to obtain 4":

(C23)

2aT
2q+p

2/q(p+q) ' (C24)

Collecting all the terms we obtain Eqs. (5.8) and {5.9) for the radial and azimuthal components of the acceleration,
respectively.

We now de6ne the operator

2' OO

7 [f(r, 8)] = — d8e '" dr r e " qP(r) f(r, 8)a 0

and apply it to Eq. (C3) where

(C25)

A „(r,8, t) = ) ) A~ ~„(t)Q, (r) e'~', (C26)

and in the expressions for K„and K given by Eqs. (5.8) and (5.9) we use sums over p" and q". Since 7 [e'" s gP, ] =
b(p —p')b(q —q'), applying 7 to the successive terms in Eq. (C3) yields

r[8gA „I= $ ) (A~ ~ tB,gt~, + (d, A~ ~„)r p~, )„
P'= —oo q'=0

&lpl +q
I

A"-',-+ gq(lpl+q)A"', .' +
a

(C27)

7 [A 2 „]= A~'~
2 „, 7[A „]= A~'v„, 7[A „2]= A~'„, , (C28)

OO

7[~- --..-] = a"') A" .. -l —+q'+&
I J,", + v'(q'+&)(lpl+q'+&)J' +, , (C29)

OO

7 [8„+,„]= 2a'~' ) A'~+, „—
l

—"+q'+ 1
l

J",+ g(q'+ 1)(lpl+q'+ 1)J", , (C30)
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A

r
a1/2 g Ap O' Jp

m —1n qq' ~

ql —p

A

r
/

q'=0
(C3&)

Am 1n—+2
r

a1/2 p q' p—a Am —1 ~+2 Jq q/

q'=0

Am+1, n —2

r
ql p

(C32)

e/eAm, n —1

r
~pal/2 X Ap~q Jp

m, n —1 qq'
q'=0

~8 4m n+1
r

= 's "~' ) A"'„„J,', ,
q'=0

7[K„Am 1,„]=—ur a ~ ) A' 1„K",
q/ —p

~2a1/2

ap

+oo oo +oo oo

) ) ) ) AP«' A" &, „HAPP, P„S(s s' s"-), -
p/ oo ql 0 pll oo qll 0

u„a
7 [KgA „1]= —i

2ap ) ) ) ) Ao, o Am n 1' q, q„—b(p S)' S)" )
—. —

p'= —oo q'=0 p"=—oo q"=0
(C35)

The constants I, J, K, M, and N are def1ned as

2'
Ipp, p, = dre' QgP, Q„5/2a

qtq Iq

(ls I+q)'(ls 'I+~')'(Is "I+~")'

- 1/2
—»

(
1/2)lpl+Ip' +Ip"

I

—1 L, lpl(z) I lp I (~) I lp l(~) (C36)

~(ls "I «') &

q'q"
.(Is I+~)'(ls'I+~')'.

- 1/2
—* (~1/2)lpl+Ip'l —11lpl(~) I IP l(~)

q ql
0

~(ls "I,*) ) (C37)

JP JPP (0)

ql qI I

(ls I+~)' (ls I+~')'
(C38)

II II

«(I el+ I)
(C39)

II II

«;;, ;„=2b —&(s")) Ib(v")J;; (s") + (&
—~(v"))

~v ((+n
I
+~«)

(C40)

Collecting all the terms yields the following set of difFerential equations for the coefBcients Ap q„:
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gm(m —1)A ' 2„+(m+n)A '„+g~(~ —I)A"',„
s A

+ '
(]pl+2~)A"',.—2v g(lp]+~)A'-', .'

a

+ —m A"'
& p+2 q'+1 +n J",—2 q'+1 q'+ p+1 J",

ql —Q

+ —m+1 A"'+q p +2 q'+1 —n+1 J",—2 q'+1 q'+ p +1 J",+q
qt Q

+ —) J,(p'm(n+1)(n+2)A~'n, „+z —p'n(n —1)(m+1)A n+z

ql —Q

—i p nA"'~„, + n+1A"'~„+,

—~m(uz ) A~v, „K~,,
ql Q

+OO OO +OO OO

P ) ) ) Anoon 1(p—p' —p") (2~mA ' &„M, „—1~nA ' ~N~~, n„)
a 2aQ

Pl OO ql Q Pll OO qll Q

(m+n)PA"„,
which after normalization gives Eq. (5.11).

(C41)
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