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Longitudinal and transverse impedance of an iris in a beam pipe
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The use of iris loaded cavities to accelerate high current bunched beams makes it important to
understand the impedance and wake 6elds caused by an iris in a beam pipe. In this paper we present
a method to calculate both the longitudinal and transverse impedance of a circular iris of radius
b and thickness g in a circular beam pipe of radius a for ultrarelativistic particles. An integral
equation is derived for the transverse electric field at the junction between the iris and the beam

pipe and a variational expression is obtained for the impedance, using the transverse 6eld as a trial
function. Accurate numerical results are obtained for the longitudinal and transverse impedances
using a trial function with only a few adjustable parameters. By invoking causality we con6rm the
analytic behavior of the impedances in the complex frequency plane and obtain the corresponding
wake functions. We particularly explore the limit b —+ oo to compare with previous studies of the
impedance of a circular hole in a transverse metallic plane.

PACS number(s): 29.27.Bd, 41.75.—i, 41.85.—p

I. INTRODUCTION

An intense beam bunch traveling along or near the axis
of an iris loaded accelerator structure can be expected
to generate large wake fields. These wake fields, which
can be either longitudinal or transverse, can cause unde-
sirable forces either within the bunch or ft. om bunch to
bunch, which are capable of spreading the bunch or even
of causing disruptive instabilities.

As a first step in understanding these wake fields, we
consider a beam pipe of arbitrary (constant) cross section
in which a single iris of thickness g is located. A point
charge Q then travels along the axis, or near the axis, at
ultrarelativistic speed (P = 1,p » 1). We then calculate
the coupling impedance as a function of frequency, which
turns out to be closely related to the Fourier transform of
the wake function (which is the wake field a fixed distance
s behind Q, averaged over the transit through the iris).

Short distances correspond to high frequency and vice
versa. The increasing use of short bunches and the in-
terest in single bunch instabilities makes it important to
understand and calculate the coupling impedance at fre-
quencies above the cutoK of the beam pipe.

Let us outline our method of calculating the longitudi-
nal and transverse coupling impedances. For the longi-
tudinal impedance, we consider the charge density of the
moving charge to be
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p(z, y, z; t) = Qb(z) b(y) b(z —ct)
OO

=Qb(z)b(y) d(o e' ' s"', (l.l)
2KC

where k = u/c. The current density can then be written
in the ft. equency domain as

J,(z, y, z;k) = I()h(z)b(y)e '"', (1.2)

Z(k) = — d x E(x; k) . J'(x; k).
0

We then consider the combination

(1.4)

]10]']s(k) + s; (k)] = —J d'x s(a k) .s'(m k)

d x E„'(x;k) -Z(x;k), (1.5)

where the subscript p denotes the geometry with the

where Io ——Q/2n' and where we eventually return to the
time domain by multiplying by exp(j(ot) and integrating
over all real u.

We now use the source current in Eq. (1.2) and
solve for the fields it generates by matching solutions to
Maxwell's equations in the beam pipe (~z~ & g/2) with
outgoing boundary conditions to solutions in the iris re-
gion (~z~ & g/2). (The center of the iris is located at z = 0
and all surfaces are ideal conductors. ) This procedure
will be described in detail in Sec. II. The longitudinal
impedance is then defined as Clj

OO

Z(k) = —— dz E,(0, 0, z;k)e'"'.
Io

This can be written as a volume integral by using Eq.
(1.2). Specifically
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beam pipe alone (without the iris). Since Z~(k) is imag-
inary (in fact it vanishes for p -+ oo), Eq. (1.5) gives the
increment to the ixnpedance due to the iris. We expressJ' and J in Eq. (1.5) in terms of E and E~ by means of
Maxwell's equations. Integration by parts then permits
us to express the longitudinal impedance as an integral
over the surface [2, 3] of the iris:

E„=—e ~"'V~y„, ZpHp ——x x E„. (1.7)

Here z is the axial unit vector, i.e. , z = (0, 0, 1), and
y„(z, y) is constant on the surface of the beam pipe and
is consistent with the line charge singularity of Eqs. (1.1)
and (1.2). For example, apart &om a constant,

g„(r,8) = —ln r (1.8)

for a circular beam pipe. The azimuthal magnetic 6eld
Hg is obtained by field matching, as will be described in
Sec. II.

In a similar manner we can obtain the transverse cou-
pling impedance. Starting with the axial dipole drive
current

J, = Ieb(y) [b(z —6) —b'(z + 6)]exp( —jkz) (1.9)

we can write the transverse impedance as [3]

Zi(k) = — d z E(a;k) J'(z;k), (1.10)

evaluated in the limit of small A. As with the longi-
tudinal impedance this can be converted to the surface
integral

4k' ]IQ~ ZJ (k) = ds n E„'(R;k) x H(a;k),
11'1S

but in this case g„(z,y) vanishes at the surface of the
beam pipe and is consistent with the dipole singularity
of Eq. (1.9). For example, apart from a constant,

iIo[ Zii(k) = dS n E'( zk) x H(z;k), (1.6)
1r1S

where the 6elds without the iris have only the transverse
components

lations. To obtain the variational form it is necessary
to use the integral equation to modify the expressions
for the impedance. We also expand X~ in terms of a
complete set in the iris opening and obtain the general
form of the impedances via matrix inversion when the
complete set is truncated. In Sec. V we show how the
result is simpli6ed when the iris thickness vanishes. The
calculations are then particularized to a circular beam
pipe and iris opening in Sec. VI for the longitudinal
impedance and in Sec. VII for the transverse impedance,
and numerical results are presented in Sec. VIII, where
we show that the results converge rapidly with the matrix
order. In Sec. IX we proceed to the limit of large beam
pipe radius, so that we can obtain the longitudinal and
transverse impedances of a hole in a plate of 6nite thick-
ness. In Sec. X we examine the implications of causality,
obtaining the general behavior of the impedance at low
and high frequency as well as the wake function. Finally,
in Sec. XI we summarize the results and compare with
previous calculations in the literature.

II. CENERAL ANALYSIS FOR THE FIELDS

A. Fields in the pipe region ]z[ & g/2

Let us introduce a general expression for the electro-
magnetic 6elds in the pipe region. We 6rst write the nth
normal mode for the electric fields in this region as e„(r),
which is normalized as

f (2.1)
S1+S2

The corresponding normalized magnetic 6eld is repre-
sented as

dS e„e„=h„„.

In our general derivation we consider a beam pipe of
arbitrary cross section as well as an iris hole of arbitrary
cross section, both homogeneous in the axial direction.
The planes involving the iris sidewalls are perpendicular
to the beam pipe axis and the origin of our coordinate
system is set at the center of the iris hole region. The
cross-sectional area of the iris hole is denoted by Si while
S2 represents the sidewalls of the iris. We use latin letters
as the subscripts of the quantities defined in the pipe
region, i.e., ~z~ & g/2, and greek letters for those defined
in the iris region, i.e. , [z~ & y/2.

y„(r, 8) = —cos 8
qr a2$

(1.12) h„=axe„. (2 2)

for a circular beam pipe of radius a. Needless to say H
in Eq. (1.11) must be obtained for the drive current in
Eq. (1.9).

In Sec. II we present general field matching techniques
by which we can obtain X and H for both the longitudi-
nal and transverse impedance calculations. In particular
we obtain integral equations for the transverse electric
field X~ in the transverse planes where the beam pipe
and iris meet (z = kg/2). In Sec. III we obtain expres-
sions for the longitudinal and transverse impedances in
terms of E~ at z = +g/2. In Sec. IV we show that
these impedances can be written in variational form, en-
suring good convergence in subsequent numerical calcu-

The source fields are written as outlined in Eq. (1.7),

E~ = ZeH~~ x z = Aee ' 'Vgy(r). (2.3)

Here Zp is the kee-space impedance, Ap is constant, z'

denotes transverse coordinate, e.g. , r = (z, y), and the
source-field potential y(r) satisfies the proper boundary
condition on the pipe surface. Note that we now drop the
subscript p. The forms of Ap and g, of course, depend on
which impedance we consider, i.e., longitudinal monopole
impedance or transverse dipole impedance. The total
field is the superposition of the source fields in Eq. (2.3)
and pipe fields which can be expanded as a sum over
the normal modes. In the following analysis, we use the



50 LONGITUDINAL AND TRANSVERSE IMPEDANCE OF AN IRIS. . . 1503

simplified notation V as the transverse gradient operator
V~. Therefore, the transverse total fields E~ and H~
in the region z & g/2 can be expressed as

—jkz~ + + —jP (z—9/2)
p

(2.4)

ZpHi x s
Ap

jaz~ + p -jp (z-9/2)

giczg + g g jP„(z+9/2)
n n

(2.5)

where a„ is the constant expansion coeKcient and A„=
Zo/Z, where Z„ is the impedance of the nth mode. Sim-
ilarly, the total fields in the region z & —g/2 are given
by

[e &"&~'Vo+m on S,
on S2,

(2.11)

E„=E~(z = g/2) on Si + S2. {2.12)

After substituting Eqs. (2.4) and (2.11) into Eq. {2.12)
and multiplying both sides by e„,we perform the surface
integration over Sq + S2 to obtain

are = 'an+ brae
—jkg/2

where we have used the orthogonality (2.1) and

(2.13)

where u(r) is an unknown vector function. Noting that
X~ must vanish on the iris wall S2 because of the bound-
ary condition, the field in Eq. (2.4) and E„are totally
continuous at z = g/2 and then

ZpHi x s
Ap

= e-j'V~ — W„t „e„ejP-('+9/2), (2 7)

dS V(0 —y) e„d—S Vy e„,
Si Sg

(2.14)

where b„ is the constant expansion coeKcient. In Eqs.
(2.4)—(2.7) the sign of the wave number P has been cho-
sen so that only outgoing waves are taken into considera-
tion. We should also note that e„ includes both TM and
TE modes.

u„= dS u. e„.
Sg

For the field in Eq. (2.9) and E„,we have

E„=E~(z = g/2) on Si.

(2.i5)

(2.16)

B. Fields in the iris hole region ~z~ & g/2
After substitution of Eqs. (2.9) and (2.11) into Eq.
(2.16), multiplication by e„, and integration over Si, we
have

In the iris region we introduce the orthonormal mode
e„(r) normalized as u. = a„e-&P-»2+ b„e»-&/2 (2.i7)

f dS e„e„=b'„„.
Sg

(2.6)

In this region, there exist waves propagating in the pos-
itive and negative axial directions simultaneously. Writ-
ing the source field potential as 0 (v') and expanding the
fields as a sum over normal modes, the transverse total
fields in the region ~z~ & g/2 can be expressed as

where

u„=— dS u e„.
Sg

(2.16)

We now repeat the analysis at z = —g/2. Introducing
the unknown vector function e(r), we write the electric
field at z = —g/2 as

= e ~"'Vo + ) {a„e ~~"'+ b„e~~"')e„,
p

(2 9)
e~~9/2VO. + e on Sg

gp 0 on S2. (2.19)

ZpHg x s = e ~ 'V +0) A„(a„e ~~"' —b„e~~"')e„,
p

(2.10)
b„=v„+(„e~"s~, (2.20)

Matching of the fields in Eqs. (2.6) and (2.9) to that in
Eq. (2.19) leads to

where a„and b„are constant and A„= Zo/Z„. Here Z„
is the impedance of vth mode in the guide within the
iris. The source field potential n(r), which is difFerent
for the longitudinal and transverse impedances, satisies
the proper boundary condition on the iris surface.

e2P~9/ + $ e 2P~9/2

where

v„=— dS e.e„,
Sg

(2.2i)

(2.22)

C. Field matching v„=— dS e-e„. (2.23)
We now match transverse fields in the transverse plane

at the position z = g/2. We first write the electric field
at this position as

Equations (2.13), (2.17), (2.20), and (2.21) permit us to
write a„,b„,a„, and b„ in terms of m(r) and v(r).
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D. Integral equation for u and e

We now match the magnetic fields at z = g/2 and
z = —g/2 on Si. Specifically, at z = g/2 we have, from
Eqs. (2.5) and (2.10),

where the equations naturally separate into one involving
m+, the even (in z) part of u and v, and ur, the odd
part of u and v. It is straightforward to show that ( = 0
for TM modes. [See Appendix, Eq. (A16).] For future
reference we also define

) A„a„e„=e ~"ui V'(o —y)

+) A (a e '~"ui2 —b„e'~"ui )e .

(2.24)

dS Vy e„.
S2

III. IMPEDANCE INTEGRALS

(2.34)

Similarly, at z = —g/2, we have

) A„b„e„=e '"ui V(0 —y)

+) ), (a e aPul —
b eiPul )e

(2.25)

If we now use Eqs. (2.13), (2.17), (2.20), and (2.21) to
express all coefBcients in terms of u and e, we obtain the
two integral equations

Z(k) =.
— dS n (E~'l' x H),

on iris
(3.1)

where n denotes the unit (inward) normal on the beam
pipe and iris and the constant parameter C is

As outlined in Eqs. (1.6) and (1.11), both the longitu-
dinal (monopole) and transverse (dipole) impedance can
be defined in terms of the surface integral

dS' m+(r') K+ (r', r) = P+ (r),
S1

(2.26)
iIoi for the longitudinal impedance
4kB iIoi for the transverse impedance.

~ ~ ~

~

~

(3.2)

dS' tv (r') K (r', r) = P (r), (2.27)

The integral in Eq. (3.1) is performed on the iris surface
and can be separated into two parts:

where

Z(k) = Zg(k) + Z, (k),

with

(3.3)

K+ (r', r) = ) A„e„(r')e„(r)

+j) A„e„(r')e„(r) tan(p„g/2), (2.28)

Zi(k) —= — dS z. [(Ei * x Hi),
S2

(s)~—(Ei x Hz)z=ui2]i (3.4)

K (r', r) = ) A„e„(r')e„(r)
Z2(k) = — dS nz (Ez

' x H),|-" s,
(3.5)

—j) A„e„(r')e„(r)cot(P„g/2), (2.29)
where we have written the surface of the iris hole as S3
and ng is the unit normal on Ss. Substituting Eqs. (2.3),
(2.5), and (2.7) into Eq. (3.4), we obtain

P+(r) = —) A„f„e„(r)cos(kg/2)

+j) („e„(r)sin(kg/2), (2.30)

Zg(k) = no ).&~X~ (~ +

. &kgb—m sin l

—
i

(3.6)

P (r) = ) A„g„e„(r)sin(kg/2)

where we have used Eqs. (2.13), (2.20), and (2.33) to
express the result in terms of m+ and m . The constant
parameter gp is

+j) g„e„(r)cos(kg/2). (2.31) no =—2i&oi'/Zo& (3.7)

Here

and

dS V(y —0.) e„
S1

(2.32)

and y„has been defined in Eq. (2.34).
Let us next transform Zz(k) into an integral form. De-

noting the z component of H~ as H„Eq. (3.5) together
with Eq. (2.3) can be rewritten as

m = m+ + jm, m = m+ —jm (2.33)
dS (V' (H )]

'"' (3 8)
Zp 2Ap
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V. Hi ———

Note that Z2(k) is independent of the transverse field
components and is clearly related only to TE modes. We
6nd H, by integrating the Maxwell equation

(3.9)

over z. Using Eq. (2.10) for H~, this leads to

SQH . .A„' = j) —"(a„e ~~"' + b„e~~"')z (V x e„)
A p

Z(k) Z+(k) Z (k)
90

ZQ ZQ ZQ
(3.18)

Note that these terms are essentially the second terms on
the left-hand side of Eqs. (2.26) and (2.27) using the two
term separation of the kernels in Eqs. (2.28) and (2.29).
Replacing them by the 6rst term on the left-hand side of
Eqs. (2.26) and (2.27) as well as P+(r) and P (r), we
6nally obtain

(3.io)

Substituting this equation into Eq. (3.8) and performing
the z integration, we have

where

TM

G(k) = ) (3.19)

Z2(k)

6„+ sin

where

sin (k —P )—g
I/

(k+ P„)- (3.11)

and

Z+ (k) dS m+. P+,
Si

ds~- P-.
Zp

(3.20)

F„= dE nq (Vy x z)z (V x e„),
Cq

(3.i2)
Finally, we note that G(k) is a sum only over TM

modes, since it is straightforward to show that („=0
for TE modes. [See Appendix, Eq. (A19).j

which is a line integral along the iris hole boundary de-
noted by Cg. As shown in the Appendix, F„can be
rewritten as

F„=(P„—k )(„.
Substituting this equation into (3.11) and using Eqs.
(2.17), (2.21), and (2.33), we obtain

Z2(k)

TE-j).c.

kg kg
sin ~v cos

2
"

2
tan to+pg

2

kg . kg P„gcos ——A„sin —cot "
xu„,

2
"

2 2

(3.i4)

) („m+ = dS V(y —o) m+,
v S1

) („ur„= dS V(g —o) ur
Sg

where

(3.i5)

au+ = dSm+ e„, m„= dSm -e„.
Si Si

The other terms in Eq. (3.14) can be written as

(3.i6)

dS V(y —o) dS' cos(kg/2) j) A„e„(r)e„(r')
Sx Si

where we have used the fact that („=0 for TM modes
and that A„= P„/k for TE modes. Because e„ is a
complete set in Sq, we can write

IV. VARIATIONAL RESULT
FOR THE IMPEDANCE

We are now in a position to write Z+(k) and Z (k) in
variational form. Speci6cally

dS m+ P+
s, )Z+(k)

ZQ
++

dS dS' m+(ri) K+ (rl, r) m+(r)~Sg Sg

(4.1)
is an extremum when m+ satisfies Eq. (2.26). Thus it is
possible to get an accurate value for Z+(k) by expand-
ing m+ into a truncated complete set in Sq and solving
the resulting matrix equation. Of course an analogous
expression is obtained for Z (k).

We now use the variational form in Eq. (4.1) and a
trial function for m+ of the form

tO T = Cv v 7 ) (4.2)

where the f„ form a complete set (not necessarily or-
thogonal) in the region Sq. If we truncate the sum in
Eq. (4.2) and minimize Eq. (4.1) by varying c„, it is
straightforward to show that the result is equivalent to
substituting Eq. (4.2) into Eq. (2.26), multiplying by
f„(r), and integrating over Sq to obtain

x tan(p„g/2) . m+(r') + sin(kg/2) j) A„e„(r)e„(r)
) M„„c„=P+,

P

where

(4 3)

(3.i7) P+—: dS P+. f„,
Sg

(4.4)
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c =) (M ')„P+, (4.6)

M„„:— dS dS' f„(r') . K+(r', r) f„(r)
S1

(4.5)

Equation (4.3) is a matrix equation whose solution is

where we have set m+ = m. The explicit term de6ned in
Eq. (3.19) remains unchanged. Note that the numerator
in Eq. (5.2) depends only on TM modes because of Eq.
(A19) while the denominator contains both TM and TE
modes. The final result for Z+(k)/Zp differs froxn that

++

in Eq. (4.7) only in the replacement of K+ by K in Eq.
(4 5)

&om which one obtains directly

Z+ =) ) P+(M ')„„-P+
0

p, V

(4.7)

The calculation of Z /Zp proceeds in an analogous man-

ner with K+ being replaced by K and P+ in Eq. (4.4)
being replaced by

P„= dSP f„
S1

(4 8)

The signi6cance of the variational form is that the re-
sult for the impedance will be quite accurate since the
error will be proportional to the square of the error in
ux+. The error in 2xx+ comes only from the truncation
in Eq. (4.2), so the accuracy of Eq. (4.7) can be easily
tested by comparing the results of diH'erent size trunca-
tions. In this way we will be able to obtain numerical
results good to three or four signi6cant 6gures with only
modest size matrices. This will be described in detail in
Sec. VIII in the numerical calculations.

Finally we note that the accuracy which is obtained
&om a given number of terms in Eq. (4.2) will depend
on the particular complete set f„which is used. Past
experience [4] suggests that a form which has the correct
singular dependence at the iris corner has some advan-
tage. But in the present work it proves to be more than
suKcient to use e„, the complete set of TM, TE modes
in the iris pipe.

V. ZERO- THICKNESS LIMIT

In the zero-thickness limit, i.e., g -+ 0, we can set
m = 0 because u = e. In addition, the contribution of
the iris hole to the impedance vanishes as do the second
terxns in the right-hand side of Eqs. (2.28) and (2.30).
In this case, de6ning the new integral kernel as

VI. CIRCULAR IRIS IN A CYLINDRICAL BEAM
PIPE—LONGITUDINAL IMPEDANCE

We now particularize the previous analysis to a circular
iris of radius 6 in a cylindrical beam pipe of radius a and
obtain explicit expressions for the quantities which enter
the calculation of the longitudinal coupling impedance.
We start with Eq. (2.3) and set

y(r) = 0(r) = —lnr, Ao = ZoIo/2&.

The constant rip in Eq. (3.7) has the value 1/2~2.
TE modes do not contribute to the longitudinal

impedance. The solutions of Eqs. (Al) —(A4) for the
normalized TM modes are

Jp(s„r/a) Jp(a r/b)
~vs„Jx(a„) ' "

~ms„Jx(a„) '

where J„(z) denotes the Bessel function of nth order,
s„~„l is the nth (vth) zero of Jp(s) = 0, and the mode

e„~„l is obtained from Eqs. (A5) and (A6). The propa-
gation constants are given by

P (k2 2/ 2)1 2 ~

( 2/ 2 k2)1 2 (6.3)

P~ = (k' —s'„/b )
'(' = j(s'/b' ——k') '('. (6.4)

Using Eqs. (6.1) and (A5), we have from Eq. (2.14)

2~sr Jp(s„b/a)
s„J1(s„)

Noting that A„= k/P„ for TM modes, substitution of
Eq. (6.5) into Eq. (3.19) leads to

G(k)=4 ) (6.6)- P„s„Jx(s„)
Dropping the TE terxns in Eqs. (2.30) and (2.31), we

have

Ag . A:P = —cos —) —(„e„,
K (r', r)—:) A„e„(r')e„(r), (5.1)

kg . kP = sin —) —(„e„.
2

(6.7)

the variational part of the impedance can be given by

Z+(k)
~0

(TM

Q A„(„dSe„(r) m(r)
s,

f
++ )

dS dS' 2o(v') K (r', r) . ux(r)
S1 S1

We now use the complete set e„as the expansion basis
in Eq. (4.2). This leads to

kg . kP = —cos —) —(„K„,

Z (k)
Z0

(5.2) agP = sin —) —(„K

where

(6.8)
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K„„= dS e„e„(longitudinal impedance).
Si

For TM modes

2b s Jp(s b/a)
a2 Ji(s„)[s —(s b/a) ]

(6.9)

(6.10)

M„„=) —K„„K„„+—tan
~

"
~
b» (6.11)

The matrix elements M„„can similarly be obtained.
Specifically, using Eqs. (2.28) and (4.5), with f„=e„,
we find

Substituting Eqs. (A5) and (A6) together with Eqs.
(7.4)—(7.7) into Eqs. (2.14) and (2.32), we have

~8m Ji(p„b/a)/bp„Jp(p„) for TM modes
0 for TE modes,

~

~

~ ~ ~

I0 for TM modes

~2vr(a —b )(q2 —1) ~ /ba for TE modes.

(v.s)

From Eqs. (3.19) and (7.8) we obtain for the explicit
term

with tan(P„g/2) being replaced by —cot(P„g/2) in the
calculation of Z (k). Finally, we fold Eqs. (6.8), (6.10),
and (6.11) into Eq. (4.7) to obtain an explicit expression
for Z+/Zp and the corresponding expression for Z /Zp.

VII. CIRCULAR IRIS IN A CYLINDRICAL
BEAM PIPE TRANSVERSE IMPEDANCE

For the transverse impedance we again start with Eq.
(2.3) and set

y(r, 8) = ——— cos 8,
G P

8z . k Ji(p„b/a)
b' „-P .p Jo(p ).

We now have

t'kg) ™k T, . (kg)P+ = —cos
I

—
I ) —&~K „+j sin

&2) „~-

t'kg) ™k T . /kg&tP„=sin
(

—
~ ) —(„K„„+j cos

~

—
~
(„,

2 &
- P„

" "" 2 )
where

(v.io)

(v. ii)

(7.12)

( 11
o (r, 8) = ——— cos 8,

6
(7.1) K„„—: dS e„e„(transverse impedance).

Sg

In addition, for f„=e„we have

(7.13)

Ap ——ZpIp 6,/x. (7.2)

In this case, using Eq. (3.7), the constant gp has the
value

2iApi2

4kb, 2Z2/Ip]2

1
2+2k

(7.3)

1 rJi p„— cos 8 for TM modes,
p„Jp p„"a

(7.4)

1 r
Jy q~ — sin 0

gq.' —1Ji(q )

for TE modes, (7.5)

Denoting the nth (vth) zeros of Ji(s) and dJi/ds as p„~„l
and q„~„~, respectively, we can write the scalar mode
functions in the pipe region as

M„=) A„K„„K„„+jA„ tan
~

"
~
b„„(7.14)E2)

(v.i5)

in the result for Z+, where n, p, , v now include both
TM and TE modes. For Z, the matrix elements
are obtained as before by replacing tan(P„g/2) by
—cot(P„g/2). Finally we fold Eqs. (7.11)—(7.14) into
Eq. (4.7) to obtain an explicit expression for Z+/Zp and
the corresponding expression for Z /Zp.

To complete this section, we give explicit expressions
for K+„ for TM and TE modes. Specifically

1. n:TM, v: TM

7 2b p„Ji(p„b/a)
a' Jp(p-) [p.' —(p-b/a)']

'

2. n: TM, v: TE

T, 2Ji (p„b/a) 7.16
Qq.' —ip Jo(p )

3. n: TE, v: TM

and in the iris region as K„„=0, (7.17)

1 rJi p„— cos8 for TM modes, (7.6)
pv 0 pv

1 r
Jq q„— sin 8 for TE modes.

q„' —1J,(q„)

4. n: TE, v: TE

2bq„q Ji(q b/a)

agq2 1gq2 1Ji (q ) [q2 (q b/a) 2]

(7.i8)

(7.7) where Ji(s) = dJi(s)/ds.
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where G~~ (k) is given in Eq. (6.6). The impedance Z+(k

y
'

p 'cation
Z~~ (k)j is obtained from Eq. (4.7

II =) ) P (M ) „P+,

) and the matrixwhere PP is given in Eqs. (6.8 and 6.10
en s „„are given in Eq. (6.11).

Ash a~0 , it is clear that the contributions to the
sums over n in Eqs. (6.6), (6.8), and 6.11 come

i arge n Moreover th. e sum over
n can now e converte
placements

rte to an integral over a b thrte a y e re-

0 2- M ct, ) M — dt's
a mbn=1 0
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»» 'l
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(9.4)

FIG. 9. Real andan imaginary parts of the tran J, (s„) —=

Pals

In this way we obtain
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) Js2(s„b/a). s2 J2(s )

do. 2 kbJ,'(n)
k2b2 —a2 (9 6)

a dA
ReGjj (k) = 2vrEn ——2vr —Js(2A),

b as

ReG~(k) = 2vr
~

1—Ji(2kb) j

(9.14)

(9.15)

t ln(o/b), 0 & r & b

[ln(a/r), b & r & a

into the complete set Jo{s„r/a), leading to

(9 7)

a do. 2 kb
Gjj (k) = 2x ln —+ 2x Jo (a) —1

k2b2 n2

(9.8)

We also find

where we have separated Gjj(k) into one term containing
a logarithmic divergence as a/b m oo and another which
is convergent in that limit [5]. The first term can be
evaluated by expanding the function

Efforts to obtain similarly simple expressions for the
imaginary parts have not been successful.

X. WAKE FUNCTION, CAUSALITY,
AND SUM RULES

In Eq. (1.3) of Sec. I we defined the longitudinal
impedance Zjj(k) in terms of the electric field in the fre-

quency domain. Another quantity which is of frequent
interest is the longitudinal wake function which we de-
fine as

(10.1)

P+ = —2v xcos{kg/2) 8„,
P„=2~csin(kg/2) S„, (9 9)

representing some sort of average a distance ( behind the
test charge. As it turns out [1], this implies the transform
pair

where

S„—= nda kb J02(n)

0 Qk2b2 —a'(s2 —a') (9.10)
and

OO

Wjj (() = — dk e~ "~
Zjj (k) (10.2)

and

P„g (ssP„+ —s2P„+ I

M„+„=—tan b„„+2 (9.11)

These forms permit one to obtain results directly for
a/b -+ oo rather than performing the calculations for sev-
eral large values of a/b, also avoiding the averaging pro-
cess needed for large a/b. But consistent results have al-
ready been obtained for large a/b and we have not found
it necessary to implement the process outlined in this
section.

The large a/b limit for the transverse impedance can
be obtained in an analogous manner. We now have

bZi (k) b Zi+ (k) Z~ (k)
Zp 2'lr k Zo Zo

Gg k (9.12)

where we have included a factor b to make Eq. (9.12)
dimensionless. Replacing p„b/a by a as before, we find
the convergent result

Zjj(k) = d( Wjj(() e
p

(10.3)

Zjj(—k) = Zjj(k) (10.4)

or

RIj(—k) = RIj(k), Xjj(—k) = —Xjj(k), (10.5)

where Zjj(k)/Zp = R (k) + jXjj(k) and we have removed

the constant term (1/vr) ln(a/b) from Rjj(k), as defined
in Eq. (8.2). These equations yield a real wake function
in Eq. (10.2). Therefore

where the integral in Eq. (10.3) extends only over posi-
tive values of j,

" since the wake function ahead of source
charge must vanish in the limit p m oo because of causal-
ity.

Since we expect Wjj(() to be finite and to vanish as
( ~ oo, Eq. (10.3) tells us that Zjj(k) must be analytic
in the lower half k plane. In addition, Wjj{() as defined
in Eq. (10.1) is real, so that we must have

da kbJi (a)
p n Qk2b2 —n2

(9.13)

OO

Wjj (()/Zo ——— dk[Rjj (k) cos k( —
Xjj (k) sink(],

jt p

The limiting forms for P„+ and M„+„ for the transverse
iinpedance are similar to those in Eqs. (9.9)—(9.11), but
they are not given here because they are somewhat more
complicated since n and v refer to both TM and TE
modes for which the expressions difFer.

Finally, we give simple expressions for the real parts of
Gjj(k) and Gi {k) obtained from Eqs (9.8) and {9.13) by
using integral representations for J02(A) and Ji (A). They
are

OO

Wjj (()/Zo ——— dk Rjj (k) cos k(
Q

OO

dk Xjj(k) sink(,
Q

(10.7)

(10.6)

where the constant term in Rjj (k) makes no contribution.
And the requirement that Wjj(t,') = 0 for g & 0 allows us
to write
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, k'X
RII(k) = ——P dk'

7i p
(10.8)

enabling us to obtain the wake function &om either the
real or the imaginary part of the impedance.

The analytic behavior of
ZII (k) in the lower half k plane

allows us to invoke the Kramers-Kronig relations
bR~(k) w A(kb) '+ B(kb) (10.20)

where A and B are dimensionless numbers. Since

see that R~(k) is proportional to k as k M oo. At the
same time, the large k behavior of Eq. (10.16) requires
more careful consideration. In particular, we try

, RII(k')
XII(k) = —P

7r p
(10.9)

�

1k' —kI
k'2 —k2 2k k'+ k p

we have

(10.21)

where P stands for the principal value of the integral
which follows.

Similar results are available for the transverse wake
function and impedance. In this case, however, there is
an extra factor k in the de6nition of the transverse
impedance and we therefore have [7]

Bb /2 dk' ( 1 1k.
o ~kl i k' —k k'+ k)

(10.22)

Setting k' = u, we And

and

OO

W~(() = — dk k Z~(k)e~ "~
2'

kZg(k) = d( W~(()e ~"~.
p

(10.10)

(10.11) Thus we have

(10.23)

2ab-'/'
P du

hark p
u2 —k u2+ k

B
(kb) s/2

The transverse impedance is again analytic in the lower
half k plane, but this time we must have

bZ~(k) A (1 —j )B
Zo kb (kb)s/

(10.24)

or

Zi( —k) = —Zi(k)

Ri(—k) = —Ri(k), Xi(—k) = Xi(k),

(10.12)

(10.13)

Close examination of the behavior of R~(k) and X~(k)
confirms the validity of Eq. (10.24) for large k.

In a similar way we can examine the behavior of RII(k)

where Z~(k)/Ze = R~(k) + jX~(k). This leads to -0.10-

and

OO

Wg(t,')/Zo ——— k dk Rg(k) cos k(
7l p

OQ

k dk X~(k) sink(
7r p

(10.14)

0

-0.12-

y -0.13—

-0.14—

vr p
k'2 —k2 '

Xi(k) = —P dk'
k'2 —k2

(10.15)

(10.16)

-0.15—

-0.16—
I

0.0 0 5
I

1.0
Q' b

I

2.0

From Eqs. (10.15) and (10.16) we can readily determine
the behavior of R~(k) and X~(k) as k ~ 0. Specifically

-0.04—

2 I dk'
Rg (0) = 0, X~ (0) = — R(k')

p
k'' (10.17) N~ -0.08—

C)

y -0.10—

li [R (k)/k] = dk' . (]0.]6)
k-+o p

For large k, Eq. (10.15) reduces to -0.14-:„/

OO

R~(k) m — dk'X(k').
mk

(10.19)

I

6
Qb

I

10

Since the integral on the right-hand side converges, we
FIG. 10. Longitudinal wake function in units of Zo/b for

a/b = 100 and y/b = 0 and l.
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and XII (k) as k + oo. Specifically we fin

Ri():) w f dk' )im k'X~(k') —i.'Xi(k')

(10.25)

We have used our numerical results for Z'(k) and
II

Z~(k) to obtain the longitudinal and transverse wake
functions using Eqs. (10.7) and (10.14). These are shown
in Figs. 10 and ll for a/b = 100 and g/b = 0, 1. Similar
results can be obtained for other values of g/b if needed.

OQ

Xjj(k) ~ dk'Rjj(k'),
Q

(10.26)

OO

Wjj (0)/Zo ——— dkRII (k),
Q

(10.27)

a result which is consistent with the first form in Eq.
(10.7) with ( = 0.

For the transverse impedance the asymptotic behavior
for large k is contained in Eq. (10.24). In this case the
behavior for small ( is most easily obtained &om the
second form in Eq. (10.14) and is

b Wg(() 2b/B dk . 2b

0.4-

0.3—

g/b 1—g/b 0

0.2-

~01

0.0-~~
-0.1—

-0.2-
I

0.0
I

0.5
I

1.0
Qb

I I

1.5 2.0

0.10-

0.05—

@0.00-

Zl

~-0.05—

~-0.10—

-0.15-

where the additional term in Eq. (10.25) makes the result
for Rjj(k) fiiiite.

Finally we examine the behavior of the wake functions
for small (,', a region important for short bunches. Using
the second form in Eq. (10.7) and recognizing that the
behavior at small ( depends on the behavior at large k,
we obtain from Eq. (10.7)

XI. SUMMARY

We consider the fields generated by a point charge trav-
eling at v = c near the axis of a beam pipe of constant
cross section which contains an iris or collimator of con-
stant cross section and length g. Using standard field
matching techniques with appropriate boundary condi-
tions we derive an integral equation [Eqs. (2.26) and
(2.27)] for the tranverse electric field at the two junc-
tions of the iris and the beam pipe. Both the longitudinal
and transverse coupling impedances are then written in
terms of this electric field [Eqs. (3.18) and (3.20)]. By
judicious manipulation of the integral equation we are
able to write a variational form for both the longitudinal
and transverse impedance, with the trial function being
the transverse electric field at the interface between the
iris and the beam pipe.

We then specialize our analysis to a circular iris of ra-
dius b in a beam pipe of circular cross section of radius
a and expand the trial function into a complete set of
functions of r and 8 satisfying the appropriate boundary
conditions in the iris region. The variational format leads
to extremely rapid convergence of the numerical calcula-
tions —in fact, we get results acurate to +1% with only
a few terms in the expansion. Numerical results are pre-
sented for g/b = 1 and a/b = 2, 5, 10, 100, and 1000.

Our interest in high values of a/b is directed toward
expanding on earlier results for a hole in a plate of
zero thickness [8]. In this work an expression is ob-
tained for the longitudinal impedance as a function of
p = (1 —P2) i/2, the relativistic factor, for values of
kb & 1. Of particular concern is that this expression di-
verges as p -+ oo, a result we confirm for P = 1 when we
let a m oo. But we have subtracted the term (1/7r)(b/a)
&om Zjj(k)/Zo in Eqs. (8.1) and (8.2) and present well
convergent result for the difference. Moreover we give
complete results for both the real and imaginary parts of
the longitudinal impedance for finite g/b and a/b. In ad-
dition we give the corresponding results for the transverse
impedance where the divergence is no longer present. Of
particular interest is G(k), the "explicit" term in the
impedance in Eqs. (3.18) and (3.19) which is readily
evaluated for the longitudinal impedance in Eq. (6.6)
and for the transverse impedance in Eq. (7.10).

The explicit term for the longitudinal impedance

1 1 a
Rjj(k)—: 2 Gjj (k) ——in-

explicit 2'K b

-0.20-
2

I

6
Qb

10

is plotted separately in Fig. 1 and the explicit term for
the transverse impedance

b
bR,„pi;„.t(k) = G~(k) (11.2)

FIG. 11. Transverse wake function in units of Z /b f()or

a/b = 100 and g/b = 0 and 1. is plotted separately in Fig. 5. As can be seen in these
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figures, the explicit term, which is independent of g/b,
captures the main features of the correct result and is
accurate to approximately +50%%uo.

Finally we examine the causality relations which apply
for p —+ oo and obtain sum rules and asymptotic behavior
of both the real and imaginary parts of the impedance
for k —+ 0, k + oo. These are then used to calculate the
wake functions which are exhibited in Figs. 10 and 11.

Introducing the integral

dS V {Q [z x V()T —y)]) (A10)

(A11)

and noting that we consider here TE modes only, Eqs.
(2.32) and (A6) give
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On the other hand, applying the divergence theorem to
Eq. (A10), we find

dE ng [z x V(o —y)]@

APPENDIX = K„+ dE ng (z x Vo.)g . (A12)

V2 ~ 2 k2 (Al)

The orthonormal modes e„and e„can be derived from
the scalar functions satisfying the Helmholtz equation. In
the pipe region we have

Since the term z x Va is proportional to the source mag-
netic field within the iris hole, the second term on the
right-hand side Eq. (A12) clearly vanishes. Thus, from
Eq. (All),

while in the iris hole region

V " = —k (A2)

tCv = O.'v = v*

Therefore, we obtain, from Eq. (A8),

F = (P„ —k )( .

(A13)

(A14)

Here we use the symbol P to denote TM modes and the
symbol g for TE modes. The boundary conditions for
these potentials are given as follows:

We now show that („=0 for TM modes. Substituting
Eq. (A6) into Eq. (2.32), the TM mode contribution to
(„ is given by

Bg„P„=0 " = 0 on the beam pipe surface C~,
BAp

(A3) (. = —
$ «4. (x —~)

0
C„

+ dS g„V (y —o), (A15)
vP„=0 " = 0 on the iris hole surface Cs,

BAg
(A4)

—Vg„ for TM modes
z x V@„for TE modes,

where 8/Bn„and 8/Onh, denote the difFerentiations in the
normal directions, respectively, on the beam pipe surface
and on the iris hole surface. The electric Beld in these
modes is written as

),'„=0 for TM modes. (A16)

In a similar manner we can show that („=0 for TE
modes. Substituting Eq. (A5) into Eq. (2.14) we have

where we have used Green's first identity. The Brst term
on the right-hand side of Eq. (A15) vanishes because
of the boundary condition (A4). In addition, since the
source Beld potentials satisfy the Laplace equation, the
second term is obviously zero. Thus

—Vg„ for TM modes
z x Vg„ for TE modes. (A6)

Let us first try to simplify the integral in Eq. (3.12):

F —= dE nh . (Vy x z)z. (V x e„).
Cq

Since V x VP„= 0, this integral vanishes for TM modes.
Substitution of Eq. (A6) into Eq. (A7) leads to

)9$„8(o —y) 0$„0(cr —g)
s,

dS W. ~X W. ~X

s, 0& ON OQ 0

Integration by parts leads to

g„=-$ «)~-~)„"— « „„B@„)9$„
Ce

(A17)

(A18)

F„=(P —k )~„,

where we have used Eq. (A2), defining

(A8)
where the subscript 6 corresponds to the iris hole surface.
Here E is the coordinate along the perimeter of the iris
hole, and we have used the fact that y = 0 at the beam
pipe surface. Since e = 0 on the iris hole surface, we find
that

K~ = dI rig . (Vg X Z)'tp~.
Cq

(A9) („=0 for TE modes. (A19)
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