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We report results showing that spatially periodic Bernstein-Greene-Kruskal (BGK) waves, which are
exact nonlinear traveling wave solutions of the Vlasov-Maxwell equations for collisionless plasmas, satis-
fy a nonlinear principle of superposition in the small-amplitude limit. For an electric potential consist-
ing of N traveling waves, @(x,1)= ,i,q)‘”(x-v,»t), where v; is the velocity of the ith wave and each
wave amplitude ¢'” is of order € which is small, we first derive a set of quantities & (x,u,¢) which are
invariants through first order in € for charged particle motion in this N-wave field. We then use these
functions g(”(x,u,t) to construct smooth distribution functions for a multispecies plasma which satisfy
the Vlasov equation through first order in € uniformly over the entire x-u phase plane for all time. By in-
tegrating these distribution functions to obtain the charge and current densities, we also demonstrate
that the Poisson and Ampere equations are satisfied to within errors that are O(e*/?). Thus the con-
structed distribution functions and corresponding field describe a self-consistent superimposed N-wave
solution that is accurate through first order in €. The entire analysis explicates the notion of small-
amplitude multiple-wave BGK states which, as recent numerical calculations suggest, is crucial in the
proper description of the time-asymptotic state of a plasma in which a large-amplitude electrostatic wave
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undergoes nonlinear Landau damping.

PACS number(s): 52.35.Fp, 52.35.Mw, 52.35.Sb

I. INTRODUCTION

The nonlinear Vlasov-Maxwell model of kinetic theory
[1] presupposes that a sufficiently rarefied plasma can be
adequately described by a set of smoothly varying distri-
bution functions f,(x,u,?), a=1,2,...,M, which
characterize the distribution of each of M species over
the single-particle (x,u) phase space. By coupling the f,
to Maxwell’s equations, one arrives at a self-consistent
model for the plasma dynamics;

V-E=4mp(x,t)=473 q, [d’u f, (1)
vx3+%%—?=o, ’ @
V-B=0, 3)
vxn—%%—f=47”j(x,t)=47”§qafd3u uf., @
a;ft a +u-Vf,,+%’;—E-V“f,,=O, (5)

where Egs. (1)-(4) are Maxwell’s equations, p(x,¢) and
j(x,?) being the charge and current densities, and Eq. (5),
the Vlasov or collisionless Boltzmann equation, describes
the local conservation of particles in the (x,u) phase
space. This model is particularly appropriate for plasmas
in the collisionless regime, wherein the effects of particle-
particle interactions are dominated by collective plasma
dynamics. Since any set of distribution functions F,(u)
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which yields vanishing charge and current densities
satisfies Eqs. (1)-(5), there exists an infinite manifold of
solutions describing spatially uniform field-free collision-
less plasma equilibria, the so-called “Vlasov equilibria.”
In an actual physical system the states corresponding to
these equilibria in fact represent ‘“metaequilibria” which
should, given enough time, evolve toward thermal equi-
librium. But often the time scale over which thermal
equilibrium is attained is very long compared to that over
which collective plasma processes occur. Thus, on the
time scales relevant to these collective phenomena, Egs.
(1)-(5) appropriately treat the Vlasov equilibria as true
stationary states of the plasma.

Simplified models appropriate for particular cases of
physical interest can be derived from the full set of Egs.
(1)=(5). One of the most frequently employed models de-
scribes a plasma embedded in a strong, homogeneous
magnetic field where the macroscopic particle motion is
constrained to take place predominantly along the direc-
tion of the field. For nonrelativistic processes in such
plasmas the collective dynamics are primarily electrostat-
ic, i.e., are driven by the nonuniform distribution of
charge, and Eqgs. (1)-(5) can be reduced to one-
dimensional nonlinear Vlasov-Poisson-Ampere equations;

9f,  Of, 4, _9f,
+ — —_—
Y u o +maE8u 0, (6)
0E _ o
a—4w§qaf_mdu fas @)
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where E(x,t) is the self-consistent longitudinal electric
field (the component of E along the ambient B field). The
distribution function f, in Egs. (6)-(8) is obtained from
that in Egs. (1)—(5) by integration over the components of
velocity transverse to B.

The theory of longitudinal plasma processes developed
on the basis of Eqs. (6)-(8) has been applied broadly to
the study of plasma phenomena in diverse settings. Since
these equations are inherently nonlinear, however, much
of our understanding of wave processes in near-
equilibrium plasmas, including the well-known
phenomenon of collisionless damping of small-amplitude
waves in a broad class of plasmas, follows from Landau’s
classic analysis [2] of the initial value problem for Egs.
(6)-(8) linearized about a charge and current neutral
equilibrium F,(u). Landau arrived at an expression for
the time-asymptotic value of the kth spatial Fourier
mode of the electric potential,

= \ A
Prlt) ~ c(Xpde™ ', ©)
t—
where ¢, (A ) depends upon the initial perturbation of the
plasma, and A, is that root of the Landau dispersion rela-
tion

4r o 9a Fou)

Dp(k,A)=1-"73 § - deu —or=0 0
with the least negative real part. (In the complex u plane,
the Landau contour L runs from — o to + « along the
real u axis, but is deformed to pass under the pole at
u=iA/k.) The time-asymptotic behavior of Eq. (9) de-
pends solely upon the distribution functions f,(u) of the
Vlasov equilibrium, since these determine, through the
function Dy(k,A), whether Re(X, ) is positive or negative.
Importantly, the linear analysis predicts the time-
asymptotic exponential damping [Re(X;)<0] of all
sufficiently small and smooth perturbations of so-called
“single-humped” equilibria, for which 3,(¢%/m,)F,(u)
has a single maximum as a function of u [3]. One exam-
ple of great practical importance is the thermal equilibri-
um plasma in which each species has a Maxwellian veloc-
ity distribution

F(u)=ny(m,/27kT ) %exp(—m u®/kT,) .

Experiments [4,5] have substantiated the reality of Lan-
dau damping in laboratory plasmas; moreover, Dawson
[6] has given a simple physical explanation of the
phenomenon in terms of the resonant transfer of energy
between the wave and the particles of the plasma. In
general, insights gained from the analysis of the linear-
ized model have contributed greatly to the understanding
of plasma dynamics in a wide variety of settings ranging
from laboratory plasmas in thermonuclear fusion devices
[7] and particle accelerating machines, for instance, to
naturally occurring near-earth, interplanetary, solar, and
astrophysical plasmas [8].

Analysis of the full nonlinear Vlasov-Poisson-Ampere
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system [Eqs. (6)—(8)] is extremely difficult, not only be-
cause of nonlinearity, but also because of the existence of
the continuous manifold of equilibria. Consider the prob-
lem of determining the subsequent evolution of a plasma
that is perturbed slightly from one of these equilibrium
states. Since the equilibria form a continuous manifold,
in any neighborhood no matter how small of a particular
Vlasov equilibrium F,(u), there always exist other equili-
bria. Thus it is always possible, even for a perturbation
that is arbitrarily small, that the state of the plasma after
the perturbation will in fact be closer to some other equi-
librium in the manifold than it is to the original. This
suggests, at the very least, that any analysis based upon
linearization about the original equilibrium, which at-
tempts to determine the plasma dynamics solely from the
properties of that equilibrium, is going to be inadequate.

In fact, it has been demonstrated conclusively that nei-
ther Landau’s linearized analysis, nor any of the other
prominent and physically equivalent linear analyses
[9,10], tells the complete story even of small-amplitude
plasma waves. That nonlinear traveling waves of small
but constant amplitude can exist in many plasmas was
first recognized by Bohm and Gross [11] as long ago as
1949. Such waves, which do not exhibit Landau damp-
ing, are distinguished by the existence of plasma particles
that are trapped within the electrostatic potential wells
formed by the wave. This particle trapping phenomenon,
which is ignored by traditional linear theories, opposes
wave damping through modification of the space-
averaged plasma distribution functions. By formalizing
the methods of Bohm and Gross, Bernstein, Greene, and
Kruskal [12] in 1957 characterized a class of basic exact
undamped nonlinear solutions of the Vlasov-Maxwell
equations, which have become known variously as BGK
modes, BGK waves, or BGK equilibria. These authors
showed that it is possible to choose the distributions of
such trapped particles appropriately so as to create elec-
trostatic plasma waves with an essentially arbitrary rela-
tionship between frequency w and wave number k. In re-
cent years Holloway and Dorning [13] have provided de-
tails for a rigorous theory of these waves in the small-
amplitude limit, and in particular have given a precise
nonlinear description of the particle distribution func-
tions. For BGK waves of small amplitude, it turns out
that the relationship between o and k is less arbitrary,
and is given in the limit of zero amplitude by the Vlasov
dispersion relation [1,11,13]

F,(u)
_ 2 2 e
1—(4m/k )za (qa/ma)Pfduu_w/k o, an

where P denotes the principle value, and the functions
F,(u) describe the equilibrium plasma state in the ab-
sence of waves. Practical methods have recently been
developed [14-16] and used to characterize the full spec-
trum of such undamped waves that can exist nearby
physically relevant plasma equilibria. To develop the
background for the rest of this paper, we shall briefly re-
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view the theory of small amplitude BGK waves in Sec. II.
In this paper we shall consider interactions which
occur between a discrete set of spatially periodic small-
amplitude BGK waves, in the case when the waves have
appreciably different velocities. The analysis, which
focuses primarily on the interaction of two spatially
periodic small-amplitude BGK waves, is motivated by a
desire to explain the results of recent large scale numeri-
cal simulations of the one-dimensional Vlasov-Maxwell
equations. Due to the essentially nonlinear phenomenon
of particle trapping, which remains important at any
wave amplitude, a linear superposition of two spatially
periodic BGK waves does not yield a solution, even in
the limit of zero wave amplitude. We shall demonstrate
this fact explicitly in Sec. III. Nevertheless, recent nu-
merical simulations of the Vlasov-Poisson system per-
formed by Demeio and Zweifel [17] strongly suggest that
superpositions of such waves are necessary to the proper
description of the time-asymptotic state obtained when a
large-amplitude electrostatic wave suffers nonlinear Lan-
dau damping. Superimposed wave states also appear
time asymptotically in the evolution of the two-stream
and bump-on-tail instabilities. In each of these three
cases, numerical studies indicate that the final state elec-
tric fields are, to a very good approximation, simple
linear superpositions of two traveling electrostatic waves,
which suggests the possible existence of a nonlinear su-
perposition principle for small-amplitude spatially
periodic BGK waves. The main goal of this paper is to
develop this nonlinear superposition principle through
the explicit construction of the distribution functions of a
self-consistent superimposed two-wave state.

Central to this nonlinear superposition problem is the
nonintegrable Hamiltonian system that describes the
motion of a single charged particle in the field of two spa-
tially periodic electrostatic waves. We shall consider this
dynamical problem in Sec. IV, and obtain a clear qualita-
tive picture of the phase flow in the single-particle phase
space. To describe this flow quantitatively, at least ap-
proximately, we use perturbation methods to develop two
first-order invariants, generalizations of the single-
particle energy, which capture the gross features of the
dynamics, including the primary resonance regions corre-
sponding to each of the two waves. After developing
these invariants in Sec. IV, we then exploit them in Sec.
V to construct smooth distribution functions for a two-
wave state. These functions satisfy the Vlasov equation
uniformly through first order in the wave amplitudes and
also generate, through the charge and current densities
which enter into the inhomogeneous Maxwell equations,
the correct self-consistent field. The result, which we
generalize to the case of N waves in Sec. VI, shows that
small-amplitude periodic BGK waves of sufficiently
different velocity do satisfy a nonlinear superposition
principle in which the fields superimpose linearly while
the distribution functions combine according to a more
complicated but well-defined rule. In Sec. VII we shall
review the large scale numerical simulations of Demeio
and Zweifel [17] and discuss the relevance of the superpo-
sition principle developed here to the description of the
asymptotic plasma states these authors observed.
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II. SMALL-AMPLITUDE BGK WAVES

In this section we shall briefly summarize the theory of
spatially periodic small-amplitude BGK waves as it is
developed in Refs. [13-16]. In searching for single trav-
eling wave solutions to Egs. (6)—(8) of the form

Sfox,u,t)=f (x—vt,u—v), (12)
E(x,t)=E(x—wvt) , (13)

we shall be particularly interested in solutions that are
“nearby” a Vlasov equilibrium with smooth distribution
functions F,(u), 1ie., solutions for which both
h,=f,—F, and E are small everywhere. It is con-
venient for analysis to transform Egs. (6)—(8) to the wave
frame with variables £=x —vt and w=u —v. Then,
upon introducing the electric potential @, and writing
f.(&,w) in terms of its even and odd parts with respect to
w [13],

e w)=1f,(&w)+ (€, —w)], (14)
f?x(g’w)=";'[fa(§’w)—fa(§s_w)] s (15)

we find that Egs. (6)-(8) separate into two independent
pairs of equations:

fa _49a dp ¥fa_

Yk m, dE ow (16)
d _ .
_&%—47r§qafdwfa , (17)
and
af?x qa ﬂ afg _
U m d A O (18)
0=473 q, [ dw wf? . (19)

Any space-dependent equilibrium solution of Egs.
(16)-(19) that is nearby the velocity-shifted equilibrium
F}(w)=F,(w+v) will be a traveling wave nearby the
equilibrium F (u) in the original frame. Thus the trans-
formation to the wave frame allows us to consider a
time-independent problem. We initially concentrate on
Egs. (16) and (17) because these determine the most im-
portant quantitative properties of small-amplitude non-
linear waves.

Recall that the Vlasov equation (16) states that the to-
tal time derivative of f%, vanishes when evaluated along
any actual particle trajectory. Thus it is possible to satis-
fy Eq. (16) by writing the distribution functions f¢ as
smooth functions g¢, of the conserved single-particle ener-
gy 6,=1im w+q,p, or f(E,w)=g(E,) [12]. Since
we are interested in exact small-amplitude solutions to
Egs. (16) and (17), however, we must be careful to choose
g¢ so that, when @ is small, f¢ (&, w) is but a small devia-
tion from the even part F3° of the shifted equilibrium
[18]. The appropriate definition is

8(E)=gL(E)=F5[(26,/m)"?], (20)
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since this reduces to F3°¢ for @(§)=0. [Equation (20)
defines g ¢, only for 6,>0. Since &, can be negative when
@(£)70, we must extend the definition of g¢ to include
negative values of its argument. Any smooth non-
negative extension will suffice [13].]

By substituting this representation for f¢ into Eq. (17),
we obtain a nonlinear differential equation for ¢(£);

d? d ,
e __ 9 4, @1)
g2 de ¥

where the “mechanical potential” A (@) is

A(@)=4m3 qaffdw’f_:dwgé’“%maw”qacﬂ') :
a

(22)

Equation (21) has the form of Newton’s equation, and
thus possesses a first integral H=1(dp/d&)*+ 4 (¢p).
In fact, by analogy with the classical mechanics of a sin-
gle particle, with £ corresponding to the time variable,
the set of solutions of Egs. (16) and (17) is determined en-
tirely by the shape of A,(¢), which, in turn, depends
both upon the phase velocity v and the distribution func-
tions F,(u) of the underlying plasma equilibrium. Before
analyzing Eq. (21), we first return briefly to Egs. (18) and
(19) for the odd parts of the distribution functions. In
BGK form, we may express f2(&,w) as

go(6,), w=0
0 )= \
falgw) (), w<0, (23)
where again, since we are interested in near-equilibrium
solutions, we choose g% so that f?(&,w) reduces, when
@(£)=0, to the odd part F7°(w) of the velocity-shifted
equilibrium. The choice for g analogous to that for g,

gUE)=gro(E)=Fuo((26 . /my)"?) (24)

is not quite right, however, since particle trapping in the
electrostatic potential of the wave requires f,(§,w) to be
even in w in the neighborhood of w=0 (u =v). This fol-
lows from the condition that f (£, w) be continuous along
the line w=0, for there 6,=q,@, and Eq. (23) implies
fo(E,0)=g%(q,p)=—g%(q,9)=0. Since this condition
must hold over the entire range of values of ¢, we must
smoothly modify the definition of Eq. (24) so that
g%(6,)=0 for 6,<(q,@lmax- Equation (18) is then
satisfied, and Eq. (19) becomes a constraint:

zqafo‘”dw wg%(E,)=0 . (25)

The details of the modification procedure for g can be
found in Ref. [13]. It is shown there that, for any solu-
tion @(§) of Eq. (21), the freedom involved in the
modification of g, can always be exploited so as to ensure
that (i) the constraint of Eq. (25) is satisfied, (ii) the distri-
bution functions f, are non-negative, and (iii) the odd
parts f7 uniformly approach those of the equilibrium
F»°(w) as @(£)—0. Since the details involved in the
demonstration of properties (i)—(iii) are rather technical
and, from a physical perspective, not terribly illuminat-

ing, we shall omit them here. The important point is that
corresponding to any solution of Egs. (16) and (17) is at
least one, and usually many, physically reasonable solu-
tions of Egs. (18) and (19). In what follows we shall
therefore ignore Eqgs. (18) and (19) and focus entirely on
Egs. (16) and (17), which determine the form of ¢(£) for
any near-equilibrium uniformly translating wave.

Returning to Eq. (21) and now explicitly considering
BGK waves of small amplitude, we expand 4, (¢) to ob-
tain

1 1
3! 4!

where, from Eq. (22) and the definition of g ¢,

— AV +— AW+, (26

i d'
Ax J:"—A (¢)I(p::0

dl
lef v

The first two terms in the Taylor series of 4, (¢) vanish:
A9 =0 from Eq. (22), while

A4V =413 q, [dw F2¢(w)=0, (28)

i—1

FXe(w). (7)

since this is the charge density of the Vlasov equilibrium
F;(w). Hence the shape of A4,(¢) near ¢=0, and thus
the form and velocity of the small-amplitude traveling
wave solutions, is typically determined by the coefficient
A4'‘? of the quadratic term in Eq. (26).

If 4% is positive, there exists a well of finite depth
with minimum at ¢@=0, and, by analogy with particle
motion in a confining well, a corresponding set of period-
ic solutions ¢@(&) which represent periodic traveling
waves @(x —v1) in the laboratory frame. Thus at any ve-
locity v where 4! >0 there exist spatially periodic trav-
eling waves of arbitrarily small but constant amplitude
[13-16]. In the small-amplitude limit, writing A4 ‘¥ as
«%(v) to conform with earlier notation, Eq. (21) becomes

—% +ii(v)
g
so that the wave solutions are sinusoidal with wave num-
ber k =«(v \/A 2 ) and frequency o =k«(v)v. [If the
coefficient K2( v)= A‘f vanishes or is negative, then Eq.
(21) possesses other types of small-amplitude wave solu-
tions, such as solitary waves [14—16]. We shall not make
further reference to such nonperiodic solutions in this pa-
per.]
The relation k =«k(v) is of particular importance since
when squared it may be written

vip=0, (29)

ki=k(v)

1 d
= d —-———-FV7e
47§’q"f Yo dw @

’

F
=47 3 q,P [du—"—, (30)

v

which, for v=w/k, is just the Vlasov dispersion relation
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Eq. (11). In the linear theory of weakly damped waves
the Vlasov dispersion relation gives the relationship be-
tween frequency and wave number for weakly damped
waves. Thus, to every weakly damped wave solution of
the linear theory there corresponds an exact nonlinear
and undamped small-amplitude BGK wave with the
same frequency and wave number. These waves do not
appear in the traditional linearized analyses [1,9,10] of
Egs. (6)-(8), since those analyses approximate the deriva-
tive df,/0u in the Vlasov equation by dF,/du, and
therefore require the condition

oh,, dF,,
ou du

, (31

where h,=f,—F,. For the BGK waves discussed here,
however, particle trapping in the electrostatic potential of
the wave demands that 3f , /0u |u=v=0 or, equivalently,
that

oh,
du

dF,,
u=v_ du

) (32)

u=v

in violation of the above condition. Equation (32) follows
from the requirement of continuity of f, along the line
u=wv [see the discussion following Eq. (24)], and
expresses the fact that £, remains a locally even function
of u about u=wv, even as h, goes to zero. Thus these
waves do not behave as predicted by the linear theory
since they violate the conditions for its applicability [13].
Physically, the existence of this large class of small-
amplitude BGK waves implies that small-amplitude plas-
ma waves that arise as a result of weak perturbing
influences can persist, even in so-called linearly stable
plasmas.

III. FAILURE OF LINEAR SUPERPOSITION

The nonlinearity involved in the phenomenon of parti-
cle trapping is somewhat peculiar, since its effects do not
become negligible even as the wave amplitude approaches
zero. This behavior also spoils any attempt to build
multiple-wave solutions from single waves by linear su-
perposition. To see this, suppose that (f'),¢'"), and
(f?,9?) are the distribution functions and electric po-
tentials corresponding to BGK waves with velocities v,
and v,, where h)=f? —F  are small deviations of the
distribution functions from those of a Vlasov equilibrium
F,. The linearly superimposed state then is

FE=F +h +h®
L (1) (33)
pr=¢V+¢?,

in which the distribution functions are given by their
equilibrium values plus the deviations '} and 7 ?) corre-
sponding to each separate wave. [The expression
FE=rD+ 2 would clearly be incorrect since it would
include the background equilibrium distribution func-
tions F,(u) twice.] The linear superposition given by Eq.
(33) satisfies both the Poisson and Ampére equations
[Egs. (7) and (8)] exactly by virtue of their linearity,
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while the Vlasov equation becomes
d | o o |39 D ag? g’ |
dt |,”“ m, | 9x du ox du |’

where (d /dt); denotes the time derivative evaluated
along particle trajectories in the superimposed field
<pL(x,t). For small-amplitude waves, the deviations hﬁ,”
and potentials ¢'” each are of first order in a small pa-
rameter €, as is the left side of Eq. (34). That the right
side of Eq. (34) appears to be second order in € suggests
that (L, is an approximate superimposed solution
that grows more exact as e—0. However, since BGK
waves trap particles even at small amplitudes, as dis-
cussed in Sec. II, the single-wave distribution functions
f ﬁf) must each satisfy for all € the condition given by Eq.
(32) in accordance with the formation of a small plateau
at the wave velocity in the space-averaged distribution
functions. However, this implies that in the neighbor-
hood of either phase velocity v, or v,, the right side of
Eq. (34) actually is only first order in €, and thus remains
important even as the wave amplitudes become very
small. Thus the linear superposition fails due to the
unusual nonlinearity involved in the phenomenon of par-
ticle trapping.

Thus we see that the simple linear superposition fails to
give a new solution even for waves of arbitrarily small
amplitude. But the manner in which this superposition
fails is instructive; for the trouble comes not from the
linear Poisson or Ampere equations, but from the Vlasov
equation, which suggests that it may be possible to find a
solution of the slightly more general form:

=P +rP+ it (35)

¢(+)=¢(1)+¢(2) , (36)

where fi™ is an interaction term. Such a term would at
once modify the distribution functions in the neighbor-
hood of each component wave velocity, so that f{'’
would satisfy the Vlasov equation uniformly through first
order in €, and yet would contribute to the charge and
current densities only at higher than first order so that
the Poisson and Ampere equations would remain satisfied
in the small-amplitude limit. If a solution of this type
could be found, it would then provide a nonlinear super-
position principle for small-amplitude BGK waves in
which the electric fields superimpose linearly while the
distribution functions combine according to the nonlinear
prescription given in Eq. (35).

If we substitute Egs. (35) and (36) into the Vlasov, Pois-
son, and Ampere equations, we find three conditions on
" which must be satisfied if (f"),¢' ")) is to be a uni-
formly valid solution through first order in €. These con-
ditions are

B BfM g, aght Afi
+u -
ot dx m dx Jdu

a

9a [agh P | ag® hY
m, | 0x Odu dx du

+o(e), @37
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du fit=o(e) , (38)  eralizations of the two single-wave energy invariants
§‘Iaf Ja EV=m g (u—v;)*/2+q,9"(x,1) to the two-wave case.

3. [duufit=o(e) . (39)

The first of these is an inhomogeneous Vlasov equation
for £, which in this case is linear since we neglect terms
of higher than first order in the electric potential. The
second and third equations express constraints on the in-
teraction term f'™ necessary to avoid altering the first-
order field, thus assuring self-consistency through first or-
der.

To solve the inhomogeneous Vlasov equation for fn
requires integrating along the characteristic curves,
which in this case are the particle trajectories in the
linearly superimposed field ¢'*'=¢V+¢*. Thus at
least an approximate knowledge of these trajectories is re-
quired to find fI*. Supposing these trajectories are
known, then Eq. (37) can be inverted to give f'™ apart
from its arbitrary initial solution fi™(x,u,t=0). Upon
substituting f f;“ into the constraints [Eqgs. (38) and (39)]
the strategy is then to choose the initial distribution
f™(x,u,t=0) in order to satisfy these constraints. If
this can be accomplished, then an approximate self-
consistent nonlinear solution describing superimposed
BGK waves is thereby obtained.

In Section V, we shall construct a uniformly approxi-
mate two-wave solution, although we shall not use the ex-
act procedure suggested above, opting instead for a relat-
ed but more direct method that does not require explicit
calculation of f™. Nevertheless, the preceding discus-
sion should make it clear that the critical ingredient in
constructing a superimposed two-wave solution, if such a
solution exists, is understanding the nature of particle
trajectories in the superposed field ¢'*’.

IV. PARTICLE DYNAMICS

In the case of a uniformly translating wave
@=g@(x —t), it is the existence of the single-particle en-
ergy invariants &,=m (u—v)?/2+q,p(x —vt) which
gives the BGK method its power, since it allows the
Vlasov equation to be solved exactly —one merely writes
folx,u,t)=g,(&,) for any set of smooth, non-negative
functions g,. In a more general field ¢(x,?) the situation
is far more complicated. If the field ¢(x,?) has a nontrivi-
al time dependence that cannot be transformed away by a
simple shift in reference frame, then the single-particle
Hamiltonian H,=&,=m,u?/2+q,¢(x,t) is not con-
served since OH,/9dt#0. Accordingly, f,(x,u,t)
=g,(6,) does not satisfy the Vlasov equation since the
energies &, are no longer constant along particle trajec-
tories. The failure of the simple linear superposition

L @) given by Eq. (33) is therefore not surprising,
since the distribution functions are written there in terms
of quantities that are not invariant in the field ¢f. A
more appropriate procedure for developing a two-wave
solution is first to find invariant quantities for the two-
wave field, and then use these invariants to construct dis-
tribution functions. Thus we search for the proper gen-

Consider the Hamiltonian system with Hamiltonian

H,(x,p,t)=p*/2m +epV(x,t)+epP(x,t) , (40)

which describes the dynamics of a charged particle in
the field of two small-amplitude electrostatic
waves, ¢ (x,t)=—@,cos(k;x —wt) and @'?(x,t)
= —@,cos(k,x —w,t), where @,, P, are O(1). For
definiteness we shall consider the case in which
v=w,/k{)>(v,=w,/k,). For €=0, the Hamiltonian
H,(x,p,t) reduces to the free particle Hamiltonian for
which the dynamics is of course fully integrable. For
€70, the Hamiltonian system corresponding to Eq. (40) is
only nearly integrable, and, in addition to invariant
curves, the x-p phase plane is riddled with stochastic re-
gions associated with the transverse intersections of the
invariant manifolds of hyperbolic fixed points [19]. It is
therefore impossible to find global invariants for this sys-
tem, i.e., to find smooth invariant functions that are well
behaved over the entire phase plane when €#0. Never-
theless, approximate invariants, valid over restricted re-
gions of the plane, can be developed via perturbation
methods. This approach will suffice here, however, since
the stochastic regions occupy an area of the x-p plane
that is exponentially small for small wave amplitudes,
and the effects of these regions can thus be ignored in this
limit.

If Hamiltonian perturbation theory is applied straight-
forwardly in order to find the modified trajectories when
€70, one immediately finds that at first order the expres-
sions for x(z) and p(t) contain resonant factors
(po—m,v,)" ! and (p,—m,v,)”! which become singular
as the unperturbed velocity u,=p,/m, approaches ei-
ther wave velocity v, or v,. These are the so-called reso-
nant denominators associated with the resonant interac-
tion of the particle with the primary waves. For the mo-
ment consider velocities in the neighborhood of v;. In or-
der to avoid the appearance of the singular factor
(po—m,v;) "}, and thus obtain an expression useful for
velocities near v, [although (py—m,v,)” " will still ap-
pear], it is necessary first to perform a preparatory canon-
ical transformation of the system before applying pertur-
bation theory [19]. The transformation is little more than
a Galilean shift into a frame of reference moving with the
first wave—nevertheless, it is useful to employ a formal
approach so as to ensure that the transformation is
canonical.

We define a function F,(x,J,?) which generates a
canonical transformation from the old variables (x,p) to
new canonical variables (0,J) as

Fz(x,J,t)=J(klx—wlt)+mav1x—%mav%t . (41)

In Goldstein’s notation [20] “F,” is a generating function
that depends upon old coordinates and new momenta.
The transformation is canonical when defined through
the relations
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6 oF; kx —wt

= e—= —w ,
oJ (42)
L B

pP= x - ’

on the condition that the new Hamiltonian is related to
the old as

=H(x(6,J),p(6,J),t)+—

H(6,J,t) EY
(k,J+mv)?
= ——I——Fl—— —oJ —1mvi—eq,pcosd
k,
— €4 ,PCOs , 2o+k 2(vi—w, )t (43)

This expression may be simplified algebraically (dropping
the tilde notation) to

H(6,J,t)=Hy(6,J,t)+eH,(0,J,t), (44)
where
ki
— 2
H, 2mmJ ,
(45)

ka
_‘9+k2(‘V‘_‘V1)t

H,=—q,p,c0s0 —q,P,cos k.

which completes the preparatory transformation.

We shall use the Lie Transform formalism [19] to ap-
ply perturbation theory to the system described by the
Hamiltonian in Eq. (44). In this formalism, the relation

dx(x,€)
de

induces a family of canonical transformations,
parametrized by €, from the old_variables x =(6,J) to
new variables X(x,e)=(8(0,J,¢),J(6,J,€)). Here [f,g]
is the Poisson bracket operation

of dg _df dg
Lfo81=3 a7 "o a6 ° “7

and the Lie generating function w =w(x,€) depends on €
as well as on the old variables. The identity transforma-
tion is given by the “initial condition” X(x,e=0)=x. By
expandmg both X(x,e) and w(x,€) as power series in ¢,
ie, X=x,+€ex,+0(e?) and w=w,(x)+0(e), it is
straightforward to obtain the first-order relation between
the new and old coordinates as

=[X,w] (46)

X(x,€)=x+€[x,w,(x)]+0(e?) . (48)

To first order, the perturbation calculation proceeds by
finding w,(6,J), which satisfies the equation

We are free to choose H 1, the first term in an expansion
of the new Hamiltonian, for convenience. To motivate
our choice, observe that the Poisson bracket in Eq. (49)
reduces to

k? dw,
a6 ’

[wy,Ho]= (50)

which vanishes on the line J=0. Thus along this line the
equation for w, is

awl

o =H,+q,p,cosd

k,
0+k (Vl ‘Vz)t

+q,P,cos x,

(51)

Since the term containing cos@ does not depend explicitly
on ¢, it follows that for J=0 the function w, must con-
tain a term proportional to ¢ cosf. The appearance of
this secular term, which becomes unbounded with time,
would limit the usefulness of any result to short times.
Thus, to avoid this secularity, we choose H 1 to eliminate

the term in H, that is its source. That is, we choose
H,(6,J)=—q,pcosO , (52)

in which case the new Hamiltonian is

H(8,J)=Hy(8,7)+€H (0,])+0(e)
ko, 1 2
= 2maJ —€q,,cos0+0(€) . (53)

The equation for w; [Eq. (49)] then becomes

dw, kfjawl_ _
a m, oo Ja¥1°%

k2
_9+k2(‘V1'—'V2)t ,
ki

(54)

for which a solution is

qa¢1

ky
n _9+k2(V1—V2)t
kl

k
12 J+k2('V1_'V2)

a

(55)

The Lie generating function w; contains all information
concerning the first-order solution, since it generates the
first-order canonical transformation through Eq. (48).
Written out explicitly, we have

0=0—¢€[w,,0]+0(€?)

kik, 9.9,
=0—¢ 7
S L S,
m, 21TV,
.| k2 2
Xsin —k—0+k2(v1—v2)t +0(€”) (56)
1

and
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J=J—€[w,;,J]+O0()
kik, 9.9,
=J—¢€ 3 cos
M k‘J+k< )
m IALSTI 4]

a

1

k2
7(—9+k2(vl—vz)t

+0(e?) . (57

The portion Hy(8,7)+€H ,(8,J) of the new Hamiltonian H (8, J ) is an invariant through first order in €. For future
use it is convenient to write th1s invariant, which we shall call &' ‘' in terms of the original variables x and u. A little

algebra, using Egs. (42), (53), (56), and (57), gives

— 9.9
H=1m, u—v,—e——ﬂ—cos(kzx—mzt)
my(u—wv,)
- kl .92
—eq,pcos |k x — wlt_e?.m_(Tv—){
5 —

which when expanded for small € becomes
H=1m,(u—v)*—e€q,pcos(k x —wt)

2

u—wv €

—an (poOS(kzx Cl)2t )+ o

(u '_V2)2

(59)

As long as we restrict u to values far from v,, then the
terms written as O[€*/(u —v,)?] in this expression are
uniformly of order €. In fact, as long as u —v, is O(€?),
where p < 1/2, these terms are o(¢€) and thus higher order
than the terms retained explicitly in Eq. (59). The first
two terms on the right are recognizable as the single-
wave energy invariant &'} for a particle in the field of the
first wave, while the third term gives the lowest-order
correction to 6! due to the influence of the second wave.
Thus for u not too close to v, we have a first-order invari-
ant for the two-wave field:

v
Lpscos(kyx —awyt) . (60)
—

u
w1 — (1)
6a —Ga 6qau

By repeating this entire procedure, but shifting first to a
reference frame translating with the second wave, we ob-
tain a corresponding first-order invariant 6 ) associated
with the second wave. The resulting pair of ﬁrst order in-
variants, which reduce for €=0 to free-particle kinetic
energy invariants 6)=m _,(u —v,)?/2, are together con-
cisely expressed as

— . u— .
E)=60+eq,——¢(x,1)

(61)
i,j=1,2,cyclic .

We would like to piece these invariants together in
such a way as to provide a nonsingular invariant covering
of the x-u plane. To do this, we observe that these two
invariants are equal through first order in € along the
time-dependent curve

sin(k,x —w,t)

+0(e?) , (58)

ug(x,t)=v,,+(2e/m )¢ (x,1)—@P(x,1)],  (62)

where v,,=(v,;+v,)/2 and 6v=v;—v,. Although nei-
ther 6’ nor &7 is a global first-order invariant by virtue
of the respective singularities at the phase velocities v,
and v, 6, &'V is nevertheless well behaved for u > u «(%,1),
as is 6((,2’ for u Su,(x,t). Thus & and 62 taken to-
gether piecewise in this manner provide the desired in-
variant covering of the x-u plane for particle species a.
These invariants will be the key elements used in Sec. V
in the construction of distribution functions for a two-
wave state.

The quantities &’ and 62’ only approximately de-
scribe the dynamics of particles in the two-wave field. To
exhibit the exact dynamics we have plotted in Fig. 1, for
the Hamiltonian system corresponding to the Hamiltoni-
an of Eq. (40), numerically generated successive intersec-
tions of various particle trajectories with a Poincaré sur-
face of section defined by stroboscopic sampling at times
t,=nT,n=---—1,0,1,... . This figure corresponds
t0 q,P1/My=q,P,/m,=1, €=0.1 for the specific case
k,=2k, =20, k,=3k, and w,= —3w. Here T=27/w
is the period of the two-wave field, and the particle veloc-
ity u is plotted vertically versus the spatial phase p=kx
mod27. The closed invariant curves centered near the
component wave velocities v, =w/k and v,= —w/k cor-
respond to particles trapped by either of the two indivi-
dual waves, while the snakelike invariant curves at larger
velocities correspond to untrapped particles. Figure 2
shows some of the level curves of the approximate invari-
ants 6. and &) evaluated on the same Poincaré sur-
face; clearly, é“( and 6’(2’ capture the gross features of
the particle dynamics, mcludmg the first-order resonance
structures, although they do not capture the noninte-
grable character of the true dynamics which is reflected
in the stochastic layers (dark areas corresponding to sin-
gle tra {ectones) The contours of the first-order invari-
ants 6.1 and &2 also do not exhibit small island struc-
tures corresponding to higher-order resonances. This
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FIG. 1. The orbits of a Poincaré map constructed by strobo-
scopically sampling numerically generated particle trajectories
in the two-wave field @(x,t)=—ecos(2kx —2wt)
—ecos(3kx +3wt). Phase plane coordinates are (i,u), where
¥=kx mod2.

higher order structure could be accounted for by continu-
ing the perturbation calculation to higher order, but for
our purposes here we shall not require such detail.

V. MULTIPLE-WAVE DISTRIBUTION
FUNCTIONS

The approximate invariants &’ and & i,z) given in Eq.
(61) can now be used to construct distribution functions

FIG. 2. Level curves of the first-order invariants _6_( " and
&, , or equivalently, of the two-wave distribution function f,'’,
when evaluated on the Poincaré section. Curves were generated
for u = u(x,t) with Z‘f(;), and for u <u(x,t) with é°
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for a two-wave state. If g are the BGR functions for
single waves such that f“)(x u t)“g“’(é’fj’), then we
define the distribution functions £’ for the two-wave
state as

g VED),
ggm(g;z)) i

u>u,(x,t)

P (x,u,t)= (63)

u=Zu,lx,t).

Here g'" is a condensed notation for the pair of functions
{g "’“’,ga“)} which actually specify a BGK representa-
tion as discussed in Sec. II. In other words, to build
two-wave distribution functions we use the function g“)
of the first wave and the associated invariant &, &' above
the curve u,(x,t), and the function g?' of the second
wave and &, gd below u,(x,#). We have not arrived at the
definition of Eq. (63) by the application of any well-
defined methodology. Rather, it is an educated guess
which we can shall now show a posteriori possesses the re-
quisite properties.

This definition clearly gives distribution functions that,
through first order in ¢, satlsfy the Vlasov equation since
they are written in terms of 6’ ) and 6 . For instance,
since the Vlasov operator may be mterpreted as the total
time derivative evaluated along particle trajectories, we
calculate, for u >u ,(x,t) for instance,

(+)
9,,8 92039 3

Vi@
ar " ax m, Ox OJu (6

f(+)_____

(8“)) 6(1)

=o(e) (64)

where dg a‘ /dn denotes the derivative of ga with respect
to its argument, and the final line holds since &, & is itself
a first-order invariant. A similar result holds for
u <uy(x,t) since gm is invariant. In addition, the
Vlasov equatlon is also satisfied to first-order along
u=uy(x,t since 6. and &2’ meet smoothly there as
shown in Fig. 2. ThlS figure, incidentally, also doubles as
a plot of the level curves of £’ when evaluated on the
Poincaré surface.

As discussed in Sec. III, if these distribution functions
are to describe a self-consistent solution to the Vlasov-
Poisson-Ampere equations, they must yield charge and
current densities p(x,f) and j(x,t) which generate the
correct self-consistent superimposed electric potential
@' V=9 V+¢?. Thus the distribution functions of Eq.
(63) must satisfy, from Egs. (7) and (8),

') ©
_—aLZ a3 q, [ " du fH +ole) (65)
a o
and
2 (+)
o _ ® (+)
PeEP 4ﬂ§qaf_wdu ufit +o(e) . (66)

That the above conditions for self-consistency are indeed
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satisfied through first order can be demonstrated by a
lengthy calculation using the detailed definitions of the
single-wave BGK functions g!? for small-amplitude
waves which were discussed briefly in Sec. II, and in
more detail in Ref. [13]. This calculation has been done
and is available [16]. But this result can also be obtained
more simply. We saw in Sec. III that the linear theory is
adequate outside the regions where particles are trapped
by each individual wave. Thus, outside these regions in
which u satisfies m (u—v;)?/2<2¢lq,p;| for i=1,2,
the functions f\"’ agree through first-order with the
linearly superimposed distribution functions fL=F_(u)
+h V() +h P (E2). On the other hand, since both
F) and fL differ from the equilibrium F, by terms of
order ¢, the difference between f!") and fL inside the
trapping regions satisfies f")—fL=0(e). And since
the widths in velocity Au'? of the trapping regions satisfy
Au'?=0(€'"?), the integrals in Egs. (65) and (66) can be
calculated correctly to first order in € simply by replacing
fLF) everywhere with fL. The errors accrued in the in-
tegrations over the trapping regions as a result of this re-
placement will be only O(e*/?). Since each component
wave independently satisfies the Poisson and Ampere
equations, which requires that each pair (w;,k;) and
(wy,k,) be a root of the Vlasov dispersion relation of Eq.
(11), integration over fZ thus verifies that f{" is a self-
consistent solution through first order in €.

VI. NONLINEAR SUPERPOSITION

Thus, we have obtained a self-consistent superimposed
solution which describes a plasma state containing two
small-amplitude periodic BGK waves. This solution em-
bodies a nonlinear superposition principle, in which the
single-wave potentials are superimposed linearly,
¢L=¢V+ ¥, while the distribution functions £’ are
constructed from the single-wave distributions by the
nonlinear rule given in Eq. (63). The conditions under
which this superposition principle holds may be surmised
by more detailed consideration of g(a” and 6. Over the
regions in which they are used in the definition of Eq.
(63), these quantities are approximate invariants, with er-
rors that are at most O(e2/8v?). For & and &'’ to be
true first-order invariants thus requires that dv=0(¢€),
where s <1. Reverting to the physical wave amplitudes
@'V and @'? (each of which is of order €), this condition
takes the form

g;‘(gﬁ,”) » u=ug,(x,t)

v, =(i
¥ (x,u,t)= g (ED) , w1 (6t)Su S,y (x,t)

v =
g8 EM), uzuy ) y(xt).

The demonstration of the self-consistency of the state
described by these distribution functions follows the same
line of argument used in the two-wave case. There is
nothing particularly problematic in the transition from
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(;)“’,(p(z’<<(ma/qa)8vv2 N (67)

which must hold for all species in the plasma. Physically
this reflects the fact that two waves interact less strongly
the larger their relative phase velocity, since for large &v
particles trapped in one wave feel only a high frequency
perturbation from the passing field of the other, and thus
their motion is on average affected very little.

Extension of the preceding development to the non-
linear superposition of N small-amplitude waves is
straightforward and leads to a simple generalization of
Eq. (63). Suppose that the velocities of the N waves are
arranged in ascending order v, <wv,...<vy_;<vy, and
that the electric potential associated with each wave is
¢''=—€p;cos(k;x —w;t). By direct extension of the de-
velopments for the two-wave case, the N first-order in-
variant quantities Eﬁ;’, i=1,2,..., N for particle motion
in the N-wave electrostatic field 'V (x,t)= ¥ ¢'"(x,1)
are

gi,”=%ma(u —v,)?—€q,p;coslk;x —w;t)
u—v; _
—€q, 3 — @jcos(k;x —w;t) . (68)
j#Fi J

As in the two-wave case, it is possible to use these invari-
ants to construct a set of distribution functions £V for
the superimposed state that satisfy the Vlasov equation
uniformly through first order in €. To do this we first
define a set of N — 1 boundaries u;; ,(x,?), i=1,2,N — 1,
which will serve to delimit regions over which particular
members of the set of N invariants 6\, i=1,2,...,N
will be used to define the functions fV. Each u;, ,,(x,t)
is defined as a curve between the velocities v; and v,
along which & and & E,H” agree to first order in €. (For
simplicity we have omitted the index a which should ap-
pear on each u;;,, since these curves generally are
different for each particle species.) A straightforward
calculation using Eq. (68) gives

ui’i+l(x,t)=%(vi+vi+1)

90 YN @jcos(k;x —w;t)

+2e (69)
m, ng Vi+Vi+1—2Vj
Thus, we define the N-wave distribution functions as
i=2,3,...,N—1 (70)

[

two to N waves, at least if N does not become too large.
To estimate roughly how large N can become before
difficulties arise, we must consider two separate condi-
tions. First, the various wave velocities and amplitudes
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must be such that the quantities 3{;" given in Eq. (68)
remain true first-order invariants in the N-wave field.
Second, the sum of the O(e*/?) residual contributions to
the electric potential which come from the N resonant re-
gions centered at the wave velocities must be o(€). We
consider these two conditions in order below.

As in the two-wave case, the invariant &\ is identified
as a part of the new Hamiltonian that is obtained by car-
rying out the perturbation calculation through first order
in € after shifting to a frame of reference translating at
velocity v;. The full form of this new Hamiltonian in the
N-wave case is

H=1m(u—v;)*—eq,p;cos(k;x —w;t)

u—v;
—eqaéu_ ~p,cos(k;x —aw;t)
JFi J
+20 Lz
JFi (u-vj)
=&+ 30 € , (71)
JH*i (u"‘Vj)2

which has as a special case the result g %iven by Eq. (59) for
the two-wave case. If the quantity 6\ is to be invariant
through first order over the region in which it is used in
the definition of £V, given by Eq. (70), then it is neces-
sary that the remaining term in Eq. (71) be o(e) when
evaluated in this region where u is close to v;. It is in
general difficult to develop an accurate estimate for this
residual term. We can roughly estimate its value, howev-
er, by replacing u —v; with the smallest relative velocity
that occurs between any pair of waves. Calling this
difference 8v, and proceeding under the conservative as-
sumption that the contributions for different j add in-
phase, we then estimate

2
H=8"+0|N-1)55 |, (72)
“ "5
and we require
o
(N—1)—=o(e) (73)

&

in order that 6 be invariant through first order. In
terms of the physical wave amplitudes ¢'”, all of which
are order ¢, this condition can be expressed as

7,9" 1

<< —
m ,8v? N-1

and must hold for all species a and wave indices
i=1,2,...,N. This condition reduces for N =2 to that
of Eq. (67), but for larger N requires the wave amplitudes
to decrease, for fixed 5v2, like 1/(N —1).

Now consider the O(e*/?) residual contributions to the
electric potential which come from the N resonant re-
gions. When there are N waves, it is possible that the sum
of these contributions from the various waves may be
large compared to any one of these terms by itself.

(74)
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Again, supposing conservatively that these contributions
add in-phase, the total residual contribution will be
O(N€¥/?), and if this is to be negligible compared to the
first-order terms it is necessary that Ne3’?=o(e), or
N=o0(e /2. This condition can be written in terms of
the O(€) physical wave amplitudes ¢'” as

(0
9.4 > <<L2 , (75)
m,vy N

where v, is the thermal velocity for species a. Like Eq.
(74) above, Eq. (75) must hold for all @ and all wave in-
dices i=1,2,...,N. Each of these conditions indicates
that, if the superposition is to hold, the wave amplitudes
must decrease as the number of component waves in-
creases, the latter being a stronger condition on the @'
with respect to the number of waves, and the former giv-
ing an additional condition on the ¢'? with respect to the
relative velocities between pairs of waves.

VII. APPLICATIONS

The superimposed solutions constructed here are
relevant to the time-asymptotic plasma states observed in
Vlasov-Poisson simulations of nonlinear Landay damping
and of the growth and saturation of instabilities associat-
ed with the one- and two-sided bump-on-tail distribu-
tions. Based upon earlier work, Shoucri [21] has conjec-
tured that in each of these cases the plasma approaches a
BGK traveling wave, i.e., a self-consistent plasma state of
the form [f,=f,(x —vt),E=E(x —vt)], which implies
the existence of a special frame of reference in which the
distribution functions and field are time independent.
While this idea is supported by some numerical evidence,
especially in the case of the two-stream instability (which
occurs in the presence of two counterpropagating beams
of sufficient density and velocity), it cannot in general be
correct. For if (f,(x,u,t), E(x,t)) is a solution to the
Vlasov-Poisson system, then, since these equations are in-
variant under spatial reflection (x,u)—(—x,—u),
[fol—x,—u,t), —E(—x,t)] is also a solution. By the
uniqueness of solutions of the Vlasov-Poisson system, it
then follows that a plasma described initially by
refection-symmetric distribution functions
Saolx,u,0)=f,(—x,—u,0) will always remain in a
reflection-symmetric state. Accordingly, the distribution
functions and the electric field will satisfy

Sfolx,u,t)=f (—x,—u,t), (76)
E(x,t)=—E(—x,t) (77)

for all time. In other words, space-reflection symmetry is
preserved by the dynamical evolution, and if present ini-
tially, must always be present. Equation (77) implies, in
particular, that at x =0 we have E(0,z)=—E(0,¢)=0,
i.e., there is always a node in the electric field. The ex-
istence of such a node is clearly inconsistent with the
BGK form E=E(x —vt), which describes nodes propa-
gating at velocity v. Indeed, the only BGK mode toward
which a plasma in a reflection-symmetric initial state
could evolve is one for which v=0, which is a non-
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propagating final state. A simpler way to state the fore-
going argument is to say that a reflection-symmetric plas-
ma state cannot approach with time a single BGK wave
of nonzero phase velocity, since to do so would break the
reflection symmetry and thus violate the dynamics
specified by the Vlasov-Poisson system.

In the light of this observation, the proposition that a
plasma with a space-reflection-symmetric initial condi-
tion will asymptotically approach a single BGK wave is
no longer tenable; the simplest logical generalization then
is that the plasma instead approaches a superposition of
such waves. Demeio and Zweifel [17] proposed this idea,
emphasizing, however, that such superpositions are
themselves not solutions of the Vlasov-Poisson equations.
Nevertheless, the available numerical evidence concern-
ing the phenomenon of nonlinear Landau damping, as
well as those of growth and eventual saturation of the
one- and two-sided bump-on-tail instabilities, suggests
that the notion of superposed BGK waves is apparently
necessary to the proper description of the observed time-
asymptotic states in each of these cases. The results of
the most recent and perhaps most accurate simulations of
the Vlasov-Poisson system with periodic boundary condi-
tions have been reported in Demeio and Zweifel [17], and
similar results have also been obtained by Klimas [22].
In all the cases of interest here, the initial state of the
plasma is given, in dimensionless units, by

Sfo(x,u,0)0=[1—kEcos(kx)]Fy(u) , (78)
E(x,0)=Esin(kx) , (79)

and is therefore reflection symmetric if and only if Fy(u)
is an even function of u.

The phenomenon of nonlinear Landau damping of an
electrostatic wave is observed by taking Fy(u) to be the
Maxwellian  distribution Fo(u)=(27)" " 2exp(—u?/2)
which, being single humped, is linearly stable. Demeio
and Zweifel chose k in order to stimulate the longest
wavelength mode for the system, which in the case of the
Maxwellian is also the most weakly damped, and used
€=0.1, which is sufficiently large for particle trapping to
predominate before wave damping is complete. Their re-
sults show that, while a small quantity of energy leaks
into other modes, the main electric field mode has much
larger amplitude than any other throughout the entire
process. After initially damping in agreement with the
linear theory and then exhibiting the damped amplitude
oscillations predicted by O’Neil [23], the field finally set-
tles into a standing wave pattern, which indicates a su-
perposition of two counterpropagating waves of equal
amplitude and speed. In agreement with the symmetry
property of the initial condition, the nodes of the field do
not propagate; thus the asymptotic state is clearly not a
single traveling BGK wave. The simulation also shows
that the electron distribution function forms two phase
space vortices centered at velocities £v,, where v, is the
phase velocity corresponding to wave number k as calcu-
lated from the Landau dispersion relation to the linear
theory. Since these waves are weakly damped, v, =w/k
is also given by the Vlasov dispersion relation. It seems
clear that such vortices correspond to particles that have
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become trapped in the electric potentials of the two coun-
terpropagating waves. In fact, all evidence suggests
strongly that the asymptotic state is well described by
two superimposed small amplitude undamped BGK
waves which propagate in opposite directions with equal
speeds and amplitudes. The simulation was followed for
a long time without any significant further change ap-
parent in the state of the plasma.

Similar behavior is observed in the growth and satura-
tion of linear instabilities. If a beam of sufficient velocity
and density is added to the Maxwellian, then the distribu-
tion becomes linearly unstable for a certain range of wave
numbers. This is the so-called one-sided bump-on-tail
distribution, typically described by a distribution func-
tion of the form
nP_ e ¥ 22

Ny —(u=vy?/¥?
e )
vV

Fo(u): “/—2—:
o

(80)

where v, is the translational velocity of the beam and Ny,
n,, and v, satisfy the normalization condition
n,+n,v,=1, where n, and n, are the host plasma and
beam number densities, and v, is the beam thermal veloc-
ity in units of the host plasma thermal velocity. Since
Fo(u)#Fy,(—u) in this case, the initial state is not
reflection symmetric. Again stimulating the longest
wavelength mode, which is the only unstable mode,
Demeio and Zweifel find that the field initially grows as
expected from linear theory, exhibits decaying amplitude
oscillations, and then settles into a steady state. In this
case the nodes of the field do propagate, so that interpre-
tation in terms of a single BGK wave is perhaps possible.
However, the electron distribution function, in addition
to exhibiting a vortex at the phase velocity of the unsta-
ble mode, also develops another much smaller vortex at
the phase velocity of the most weakly damped mode (ac-
cording to the linear theory). The existence of this
second vortex rules out interpretation in terms of a single
BGK mode. Instead, it appears again that the asymptot-
ic state can be most easily described by the superposition
of two BGK waves, although this time the wave ampli-
tudes are unequal as evidenced by the different sized vor-
tices.

The two-sided bump-on-tail distribution is identical to
the one-sided bump-on-tail except that another counter-
propagating beam is added so as to restore the symmetry
Fy(u)=—Fy(u). The simulation in this case shows
behavior very similar to the one-sided distribution, with a
period of linear growth followed by amplitude oscilla-
tions and eventual saturation, except that the final state is
a standing wave with nonpropagating nodes, and is well
described by a superposition of BGK waves of equal am-
plitude and speed propagating in opposite directions.
Again this agrees with the implications of the symmetry
argument presented above.

We have to this point overlooked a certain interpretive
difficulty. The Vlasov-Poisson model suffers from an in-
consistency that is caused by the development with time
of structure in the distribution function on ever finer
scales. This is the so-called “filamentation” problem
which is a significant obstacle to the implementation of
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accurate long-time numerical simulations. Filamentation
is a real dynamical phenomenon, not merely a numerical
artifact, and reflects the underlying infinite-dimensional
Hamiltonian structure of the Vlasov-Maxwell system
[24]. In fact, the existence of this Hamiltonian structure
raises an important question—what precisely do we mean
when we speak, as we have, of the plasma approaching an
asymptotic state? For Hamiltonian systems do not have
attractors and therefore cannot, strictly speaking, have
asymptotically stable final states.

The answer to this question results from carefully dis-
tinguishing what is physics from what is mathematics.
Filamentation reflects, after a certain period of evolution,
an unfortunate and inconsistent property of the otherwise
very useful Vlasov-Maxwell model for collisionless plas-
mas. For the fundamental assumption of this model is
that smoothly varying distribution functions are sufficient
to accurately describe such a plasma. If so, then it is cer-
tainly inconsistent for the dynamics to introduce features
which vary on scales shorter than the shortest scale over
which f, has meaning, a distance that typically is of the
order of the Debye length A, =(kT, /4mne?)'/2, In com-
paring the time-developing state of a Vlasov-Poisson
solution to a proposed smoothly varying distribution
function it is appropriate, therefore, to ignore structure
that develops on scales smaller than the resolution of the
model. Such fine scale structure, which distinguishes
among a very large number of microscopic states which
correspond, however, to a single macroscopic physical
state, can conveniently be removed by interpreting the
distribution function in a coarse-grained sense, in which
J. is averaged over regions that are not too small relative
to the Debye length A,. In fact, since any measuring de-
vice has a small but finite resolution that averages details
on finer scales, coarse graining corresponds closely to the
measurement process by which distribution functions
would be obtained, at least in principle, from a physical
plasma. In our preceding discussion of the relevant nu-
merical studies of the Vlasov-Poisson system we have ig-
nored the fine scale structure in two ways, first by focus-
ing on the electric field, which does not suffer from the
filamentation problem, and second by ignoring the small
scale variation of the distribution function that occurs
within the phase space vortices that have formed. When
this fine scale structure is ignored, the evidence is clearly
very strong that the plasma in each of the important
cases cited does indeed approach (in a coarse-grained
sense) an asymptotic state that is well described by the
superposition of small-amplitude BGK waves—-although
the exact, fine-grained solution of the Vlasov-Poisson
equations for the distribution functions may continue to
evolve, becoming ever more phase mixed in the trapped
particle regions.

VIII. SUMMARY AND CONCLUSIONS

It is generally accepted that the description offered by
the linear theory is incorrect for a plasma that is
sufficiently far from equilibrium. What is not widely
known, however, is that the linear theory does not give
an adequate description even for plasmas that are arbi-

trarily close to equilibrium. From a mathematical point
of view, the validity of the linear approximation rests
upon the condition

|3k, /3u | << |dF ,/du| , (81)

where h,=f,—F,. But, as we have seen, this condition
is not an automatic consequence of the smallness of either
h, or @(£). In fact, there exist nonlinear traveling wave
solutions of arbitrarily small amplitude that do not exhib-
it damping or growth, even when the linear theory sug-
gests that they should. The distinctive feature of these
waves, as opposed to those described by the linear theory,
is that some of the plasma particles are trapped within
the potential wells formed by the electric potential @(£).
A close analysis shows, in fact, that the linear theory has
no implications concerning the properties of these waves
since, due to particle trapping, the distribution functions
fa=F,+h, must necessarily satisfy (df,/du)|,—,=0,
or ®h,/3u)l,-,=—(dF,/du)|,—,, even as the wave
amplitude approaches zero. Thus, the condition given by
Eq. (81) for the applicability of the linear approximation
is clearly violated, and indeed there are waves of arbi-
trarily small amplitude to which the linear theory does
not apply.

In this paper we have explored the interactions that
occur between small-amplitude spatially periodic BGK
waves when the relative velocity between the waves is not
too small. Our study of this problem was motivated by a
desire to explain the results of recent large scale numeri-
cal simulations of the Vlasov-Poisson system, and to un-
derstand in particular the asymptotic plasma states ob-
served in the evolution of several fundamental nonlinear
plasma phenomena, including nonlinear Landau damping
and the growth of various linear instabilities. Due to the
essentially nonlinear phenomenon of particle trapping,
which remains important at any wave amplitude, a linear
superposition of two spatially periodic BGK waves does
not yield a new solution, even in the limit of zero wave
amplitude, as was demonstrated in Sec. III. However,
large scale numerical simulations performed by Demeio
and Zweifel show final states that contain superpositions
(in some sense) of two plasma waves, where the total elec-
tric field is, to a very good approximation, a simple linear
superposition of two traveling electrostatic waves. More-
over, each of the waves maintains constant amplitude
and, as indicated in the contours of the distribution func-
tion, contains trapped particles. These results strongly
suggest that there perhaps exists a nonlinear superposi-
tion principle for small-amplitude BGK waves. Here we
have developed this nonlinear superposition principle by
explicitly constructing the distribution functions for a
self-consistent superimposed two-wave state.

Our approach was to first understand the appropriate
particle dynamics, and only then to attack the self-
consistent plasma problem. By focusing on the nonin-
tegrable Hamiltonian system for the motion of a charged
particle in the field of two spatially periodic electrostatic
waves, we were able to develop through perturbation
methods two first-order invariants, generalizations of the
single-particle energy, which capture the gross features of
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the dynamics, including the primary resonance regions
corresponding to each of the two waves. We then used
these invariants to construct smooth distribution func-
tions for a two-wave state, and demonstrated that these
functions satisfied the Vlasov equation uniformly through
first order in the wave amplitudes and also generated,
through the charge and current densities which enter into
the inhomogeneous Maxwell equations, the correct self-
consistent field, again through first order. The result was
also generalized to the case of N waves for N not too
large. The self-consistent multiple-wave solution shows
that small-amplitude spatially periodic BGK waves, the
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velocities of which are not too close, do satisfy a non-
linear superposition principle in which the fields superim-
pose linearly while the distribution functions combine ac-
cording to a somewhat more complicated but explicitly
derived rule. This principle explains, in part, the asymp-
totic plasma states observed in the large scale numerical
simulations mentioned above.
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