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We discuss and give evidence for the existence of a new mechanism for quantum dynamical
tunneling. It may occur when a quantum system's underlying classical dynamics are far from
integrability. In these circumstances, we show that the dominant tunneling contributions arise
through chaos-assisted processes. This leads to behavior that is drastically difFerent from that
found in integrable and quasi-integrable systems. In particular, one can observe a marked crossing
mechanism when a chaotic level passes nearby the tunneling ones, and the distributions of splitting
(due to tunneling) can be modeled using properly designed ensembles of random matrices. Such
tunneling should be amenable to experimental detection.

PACS number(s): 05.45.+b, 03.65.Sq, 05.40.+j

I. INTRODUCTION

74~~eling may be defined as a quantum mechanical
manifestation of a classically forbidden process, taking
for granted that there exists a well defined classical ana-
log of the quantum system of interest. Two paradigms
in one-degree-of-freedom (1d) systems are the transmis-
sion through potential step barriers and the small energy
splittings within pairs of symmetric and antisymmetric
eigenstates of the double well potential. In these cases,
tunneling occurs in the sense that classical trajectories re-
main on one side of a potential barrier whereas quantum
mechanically it is possible to go through. As for many 1d
isolated, conservative, tunneling systems, the magnitude
of such effects have long been well understood and are
derivable in a number of ways.

In multiple-degree-of-freedom systems, the subject is
much less advanced in understanding and suffers &om
a number of complications. An important warning sign
that this might be the case starts with the recognition
that the very nature of classical dynamics itself is far
more diverse in its realm of possibilities, i.e., regular mo-
tion, chaotic motion, or the two intimately intertwined.
Even in the relatively simpler case of integrable dynam-
ics, tunneling is not yet fully understood in spite of a
long history and some very promising recent works [1,2].
The explanation, in a sense, lies in the fact that multidi-
mensional tunneling is a far richer phenomenon. To start
with, a potential barrier is no longer needed in order to
split or divide the phase space. In integrable systems,
for instance, almost all trajectories are trapped on d-
dimensional surfaces in the 2d-dimensional phase space
(invariant tori). A certain subset of these invariant tori
provides the support for a semiclassical quantization of
the system through Einstein-Brillouin-Keller (EBK) the-
ory [3]. The Kol'mogorov-Arnol'd-Moser (KAM) theo-
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rem [4] ensures that if the integrability is slightly bro-
ken, most of the invariant tori remain, albeit distorted
and embedded in an intricate background of feeble reso-
nances and chaotic motion. A generalized tunneling may
then occur between tori whether or not the perturbation
gave rise to a potential barrier. In addition, tunneling
may also be important at all energies since the trapping
of classical motion is not restricted to occurring below
some barrier.

The generic dynamics for few-degree-of-&eedom sys-
tems is really the mixed case for which the phase space
is shared between "chaotic seas" containing no invariant
tori and "regular islands" filled densely with invariant
tori. In a semiclassical treatment, a special role is played
by the tori fulfilling the EBK quantization conditions

J; = 2vrh n;+—
4)

where the

J; = pdq
C;

(2)

are the action integrals taken on d independent closed
paths C; on the torus. The Maslov indices v; are in-
tegers which count the number of caustics encountered
by the C;. To each of these, quantizing tori, what has
been termed a "quasimode" by Arnold [5] can be associ-
ated. That is a quantum wave function which fulfills the
Schrodinger equation to any order in 5; see, for instance,
Maslov [6]. These quasimodes are in general also good
approximations of the actual wave functions, but in some
cases, as for the double well system, the exact eigenfunc-
tions are actually linear combinations of two (or more)
quasimodes quantizing at or near the same energy. As a
consequence, a quasimode constructed on a given torus
may after a very long time evolve onto another torus, de-
spite the classical trajectory being indefinitely trapped
on the original one. This effect has been dubbed "dy-
namical" tunneling by Davis and Heller [7]. It frequently
occurs in simple systems such as models of the nuclear
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motion of small inolecules [8].
Another point which makes the tunneling in multiple-

degree-of-freedom systems (or time-dependent 1d sys-
teins [9]) richer is the possible coexistence mentioned
above of chaos and regular motion. Our aim in this pa-
per is to show that in this mixed phase space situation a
new tunneling mechanism exists in which chaos-assisted
processes dominate. Indeed, in the treatment of 1d tun-
neling as well as multidimensional tunneling for (nearly)
integrable systems, the two quasimodes at or near the
same energy are rightfully treated as an isolated system.
We shall see that in the presence of chaos, the in8uence
of the neighboring chaotic states, which encompass all
the complexity of the classical motion in the chaotic re-
gion, cannot, in general, be ignored. This leads to much
larger and erratic tunneling rates without a simple iden-
tifiable dependence on 5 and causes a great sensitivity
to the variation of an external parameter. In particu-
lar, there will be a characteristic "crossing mechanism"
as a chaotic level passes by the regular ones with the pa-
rameter's variation. In this simple case, the tunneling
process is a three level problem. If no chaotic state plays
a predominant role, one faces a multilevel mechanism.
We shall show that a correct description of the statis-
tical properties of the tunneling can be modeled with
an ensemble of random matrices. The resulting Gaus-
sian ensembles describing the chaotic levels are based on
those used to interpret the spectral Quctuations of mixed
phase space systems [10]. The good agreement between
the predicted and observed splitting distribution is an-
other manifestation of the major role played by the sur-
rounding chaotic motion in the tunneling process. It will
be seen that it is necessary to understand the magnitude
of the mean square tunneling matrix elements and the
transport properties inside the chaotic regions (i.e., how
quickly a typical classical trajectory goes &om the neigh-
borhood of a t»nueling torus to that of its twin partner)
in order to predict the splitting distributions. This is con-
sistent with the observation made by Bohigas et al. [11]
on the bicircular billiard.

Before entering the heart of the topic we shall present a
slightly difFerent procedure for calculating the tunneling
splitting in the double well which will have the advan-
tage of emphasizing its two-level character. We will then
make a comparison with what would be expected if a
third state were to enter the problem. The system of
two coupled quartic oscillators with a mixed dynamics
will be investigated. The tunneling behavior will then be
shown to be incompatible with the usual two-level treat-
ment, but to 6t well with the multilevel one. This will
stress the major role played by the surrounding chaotic
dynamics.

II. ISOLATED vs EMBEDDED
TUNNELINC DOUBLETS

A. The double vrell revisited: Isolated doublets

To begin, we redo the standard calculation of the split-
ting in the symmetric double well because it is important

for our purposes to manifest explicitly the reduction to
a two level (isolated doublet) systein. Other approaches
may lead to more compact, more familiar discussion, but
they also, at least implicitly, depend on the isolated dou-
blet image. Consider

= p'
H(p, q) = + V(q),

(o. & 0),

where p stands for ih—8/Bq in the quantum version. For
a given energy E, we shall in the following denote by p(q)
the two valued function

p(q) = +/2m[E —V(q)],

p(q)dq = 2 Ip(q)ldq = 2~~(n, + )
+1

X X
I

X)

FIG. 1. Illustration of the double well and of the semi-
classical solution of the corresponding Schrodinger equation.
The upper part of the Bgure shows the double weH poten-
tial of Eq. (3), the semiclassical energy Es obtained using the
EBK quantization condition Eq. (5) for n = 3 (n = m = 1
and h = 0.1), aud the corresponding classical turning points
which are projected down by the dotted lines to the absolute
values of the wave functions. The solid line is the semiclassical
solution 4'~ given in Table I. There are gaps near the turning
points where the approximation tends to in6nity. The heavy
dotted curve is the corresponding exact (uon-normalizable)
solution of the Schrodinger equation.

where the sign ambiguity will not matter [note that p(q)
is complex when E ( V(q)], and use ~p(q) ~

where we need
to be more speci6c.

For E & o.qo, the classical motion is coafined in one of
the two wells, q being in the range [xi, x2] or [

—x2, —xi]
with xi ——(qo2 —gE/a) i~~ and x2 ——(q2+ gE/a) i~2; see
Fig. 1. To each energy E fulfilling the EBK quantization
condition
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or

+1

p(q)dq = 2 Ip(q) Idq = 2mh(n+ 2)

can be associated two quasimodes %~ and @„living, re-
spectively, in the left and right wells. I et us consider
more carefully why they are not actual eigenfunctions of
the quantum operator H. In the classically allowed re-
gions (i.e., q C [xi, x2] for @„,q E [

—z2, —xi] for 4'i) and

sufficiently far &om the turning points, kxq, kz2, 4'~,

and 4„aregiven by

(1 7r&
@'. = a(q) cos

I

— Ip(q) I "q —
I

(for q & [»»])
gh 4)

(1e, = a(q) cos
I

— Ip(q)ldq+ —
I

gh

(for q C [
—zg, —zi]),

where

(,
exp —S(q)

I p(q) I &h )
corresponding to the two possible values of 8, together
with the Langer connection formula [12] (which we recall
in Appendix A), one obtains, far from the turning points,
the "semiclassical" solutions of the Schrodinger equation.
The continuation of Eq. (6) is given in Table I where

(10)

is the action integral taken between the two turning
points Ex'. A comparison between such a semiclassical
solution of the Schrodinger equation and the correspond-
ing exact one is displayed in Fig. 1. 4„and 4~ de6ned
in this way are, however, not proper wave functions since
they are not normalizable. 4'~, for instance, grows ex-
ponentially when q is greater than z2. To remain in the
quantum Hilbert space, one must therefore eliminate this
behavior in some way, for instance, by multiplying 4'~ by
some function yi (q) such that

1 for q ( 0
v (q) =

S(q) = p(q) dq. (8)

/2~le(~) I

'

with u the angular frequency of the trajectory. They can
be continued outside their respective allowed region in
such a way that they fulfill (in the semiclassical approxi-
mation) the Schrodinger equation on the whole real axis.
Let us introduce S(q) the action function defined by

and pi(q) decreases smoothly in the range 0 ( q ( zi.
Defining in the same way rp„(q) = &pi( —q), the functions

@i = vi(q)@i, @'. = v. (q)'4 (12)

are now proper (normalized) quantum states, but no
longer solutions of the Schrodinger equation. One can,
however, use a simple form of Maslov's commutation for-
mula 8.5 [6], which in our case states that for any smooth
function y one has in the semiclassical approximation

An additive constant is of no importance here so we omit
the lower bound of integration, but S(q), as p(q), should
be considered as a two valued function. Using the fact
that between each turning point the semiclassical approx-
imations of the Schrodinger equation are linear combina-
tions of the two functions

~S(q)/h g gS(q)/h

(H —E)y(q) = ih-
elp(q) I

dq pip(q) I

[S(q) is the action function defined in Eq. (8)]. For the
matrix element e connecting @~ and 4„,this leads to

TABLE I. Semiclassical solutions of the Schrodinger equation associated with the Hamiltonian
of Eq. (3). The wave functions 4'i and 4'„continue (using the Laager connection formula given in

Appendix A) along the whole real axis with the semiclassical approximations of Eq. (6) defined,
respectively, in the left and right wells. a(q) is given by Eq. (7) and g by Eq. (10). See Fig. 1.
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a(q) «s
I h lp(q)l dq+
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lp(q)l dq
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e ~ cos
I

— lp(q)l dq+
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0+ —— (C~+ 4„),4 = (0, —0,)
2

" '
2

and the tunneling splitting AE = 2e are thus sim-

ply obtained by projecting the Hamiltonian on the two-
dimensional space 4~ 4„,generated by 4~ and 4„,and
diagonalizing the two by two matrix H2 (—:H projected
on%& g @„),

( @g ) ( E e
&)

)t' eg 't

&
' E~ ~~. )

(17)

B. The three-level mechanism: Embedded doublets

The usual (regular) tunneling can be referred to as a
"two-level mechanism" due to the fact that all the tunnel-
ing information is contained in Eq. (17). It might occur,
and me shall see that it does when mixed dynamics is
involved, that some other nondegenerate state 4+, say,
of the same symmetry as 4'+, interacts sufficiently with
4+ that it cannot be neglected. We suppose here that,
as for the double well considered above and the quartic
oscillators mhich we shall study in Sec. III, the eigen-
functions are classified into symmetry classes. It is an
important point that there is no corresponding 4' (4+
is not part of a doublet). Denoting v the matrix element
connecting 4+ and 4+, and E' the mean energy of the
latter, one can rightfully see that even if the direct cou-
pling e were to vanish (i.e. , e « v /~E —E"~), indirect
tunneling occurs between the two quasimodes 4'~ and 4 .
Indeed, with e -+ 0, the Hamiltonian H projected on the
three-dimensional space generated by 4~, 4„,and 4+,
has the following simple form in the symmetrized basis:

fe ) fE" 0 0 ) (e
H, 4+ —

i 0 E" v
~

@+E. ) &~.-)
For convenience, assume e is still sufEciently small that
v « (E' —E )2. One finds a splitting y = vz/~E' —E"

~

between the tmo quasidegenerate eigenvalues. Obtain-
ing the time evolution of, say, 4~, is also immediate:

Noting that @&'@„~p~is independent of q and equal to
u exp( f/5—)/8' in the support of dp, /dq, one finally ob-
tains

hu)
e = exp( —(/5),8am

which is independent of the precise choice made for p~
and y„.[In fact, one can check easily that y~ and &p„can
be chosen with even fewer constraints than we imposed.
For instance, one may allow 0 ( p~ & 1 in the range
xq & q & zz without changing Eq. (15).]

The actual eigenfunctions

under the action of U(t) = exp( —iHt/fe), the antisym-
metric component just picks up a phase exp( —iE"t/h)
and the propagation of the symmetric, regular compo-
nent follows &om the standard treatment of the two-level
problem. There will be a weak oscillation of probability
amplitude transfer from 4'+ to 4+ and back of magai-
tude 6[= )v/(E' —E"))] and period tp [= 2xh/[E' —E"~].

At the end of each period, U(to)4+ results in just an
acquired overall phase exp [—i(E' —g)to/h] where, rela-
tive to U(to) 4, there is an extra phase fixed by y. Thus
after n periods,

ir(~t, )e =.—~'""~"(e +a*""~"e
)

As the relative dephasing of 4+ and 4' increases with
time, the initial state is resonantly tunneling back and
forth between 4'~ and @„without ever fully appearing on
4+. The image is that during each time step to, a small
piece of one quasimode breaks ofF and is transferred to
4+. By the end of the period to, that small piece has
moved onto the symmetric partner quasimode. The total
elapsed time to tunnel completely &om one quasimode to
another is x/y to/2b, which is just a simple cornbina-
tion of the squared amplitude and oscillation period.

The Hamiltonian, Eq. (18), thus describes a tunneling
process. However, the embedded doublet will have some
fundamental diHerences with respect to the isolated dou-
blets. The most fundamental distinction concerns the
behavior of the tunneling rate under the variation of an
external parameter A. Indeed, one expects a smooth be-
havior of the splittings in the two-level case, whereas in
the three-level case there will be a marked crossing mech-
anism as the two lines E'(A) and E"(A) approach each
other which will translate into a large enhancement of
the tunneling rate. The tunneling behavior overall wiB
be very erratic. It mill be seen in the following section,
with the example of a system of two coupled quartic os-
cillators, that the tunneling process for sufBciently non-
integrable dynamics cannot be accounted for by the iso-
lated doublet mechanism. There will exist diabatic states
not associated with any regular motion that play an es-
sential role. The morphology of these "chaotic" states
is quite different Rom the quasimodes (quantized tori),
which are much more localized in a phase space sense.
When a chaotic state lies close in energy to a regular
doublet, it will be shown that the three-level mechanism

applies, with 4 and @+being regular states constructed
on symmetric invariant tori and 4+ a chaotic state. The
resultant splitting distributions cannot be confused with
what is observed for regular systems.

III. TUNNEIINC IN A MIXED SYSTEM

Before continuing with a more elaborate modeling of
chaos-assisted tunneling, it is worth 6rst examining an
explicit example in order to demonstrate its presence and
key features. A system of two coupled quartic oscillators
provides an excellent realization [10]. They are governed

by the Hamiltonian
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H = p2/2+ V(q),

V(q) = a(A) (q~/b + bq2 + 2Aq~q2) .
(20)

A specifies the coupling of the two modes, b g 1 low-
ers the symmetry from that of a square to a rectangle
(in practice we take b = m/4), and a(A) is an adjustable
constant used in simplifying the quantum calculations.
This system is quite ideal in many respects for a study of
chaos and tunneling. By varying A from 0 to —1 we can
select the desired degree of chaos since the system is inte-
grable (separable) for A = 0 and is essentially chaotic for
A = —1. The homogeneous nature of the potential both
simplifies the quantum and classical calculations as well
as the ensuing interpretations of the semiclassical me-
chanics. The classical study is performed on the energy
surface E = 1 and the dynamics on any other surface is
obtained through a simple rescaling.

Quantum mechanically we may solve Schrodinger's
equation in two difFerent ways that in this case are equiv-
alent to within a rescaling. One can either solve it in
the standard way for the quantizing energies (E~) or fix
E = 1 and solve for the quantizing values of Planck's
constant (hz). In fact, with our choice of a(A), it is

true both that (E /) = (5. ) and that the Thomas-
Fermi term of the level density is independent of A.
[a(A)~/ = 2mK[(1 —A)/2]/3nli, where K(z) is a com-
plete elliptic integral of the first kind; see [10].] Even
though the quantum solutions are actually found in the
usual way, it is perfectly justified maintaining that we
are working quantum mechanically (and classically) at
E = 1 and with h ~ 0 in moving up the spectrum.
We shall stress the h dependence by continuing with this
viewpoint. With a little effort we were able to calculate
up to the first 30000 eigenvalues for interesting val-
ues of (A, b) so that 5 is approximately 170 times smaller
at the top of the spectra as compared with the ground
states. The precision of the levels is good to approxi-
mately 10 —10 of a mean spacing. The details of
the numerical computations can be found in [10].

A useful way to study the classical dynamics is through
the construction of surfaces of section. Here we fol-
low trajectories and record their phase space coordinates
(q2, p2) every time they cross the qq ——0 plane with pos-
itive moment»m p~. The invariant tori appear as sim-
ple closed curves and the chaotic regions appear as filled
in black areas outlining the impenetrable KAM islands.
Figure 2 illustrates a section for one value of the coupling
A (A = —0.25). In the same way as in the double well
system, the trajectories belonging to island la are sym-
metric but distinct from those belonging to island 1b;
see Fig. 3. Thus, to each torus in the upper island
which fulfills the EBK quantization conditions, Eq. (1)
(d = 2, vq ——2, and v2 ——4), corresponds a twin symmet-
ric partner which also satisfies them. For a significant
range of the parameter A (A C [

—1, A'], A' —0.20), a
similar behavior occurs for all the other regular islands.
It implies that, to the EBK approximation and in this
range of A, all the regular levels occur in degenerate pairs
with different refiection symmetries (ey 62) = (+,+) (e;

J) ~& 0.53
w(

J ~034
I

0.018

associated with P; . q;,' —q;, p; '. —p;, i = 1, 2),
as dictated by the symmetry of these islands. On the
contrary, the dominant chaotic region (the majority of
the phase space) does not have a symmetric but distinct
corresponding partner region. It is invariant under re-
Bection and no quasidegeneracies are expected for the
chaotic states [13]. This makes it possible (see [14,10]) to
perform in a simple yet clear fashion the separation in the
quantum spectrum between the regular levels (those asso-

FIG. 3. Con6guration space dravring of symmetry related
tori &om islands la and lb for {(A,b) = (—0.25, z/4)). The
outline is the equipotential curve.

FIG. 2. (a) qz —— 0 surface of section
for ((A, b) = (—0.25, z/4)). The blackened region is a sin-

gle connected zone of chaotic motion. The KAM regions are
the open areas. The large islands, denoted la and 1b, are part
of a 1:1resonance island chain and are symmetric versions of
each other. (b) The island la magnified. Included are the
tori with (at E = 1) Jz ——0.018 (the smallest to quantize in
our spectrum), Jq ——0.34, and Jq ——0.53; see Fig. 4.
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ciated with an invariant torus) and the chaotic ones (the
remaining states). /nant»~ n»~bers (nq, n2) can also
be determined so that via the EBK quantization condi-
tions of Eq. (1) the torus associated with a given regular
state is entirely specified. For island 1 of the case dis-
played in Fig. 2, the maxima nq and nz in the spectrum
we calculate are approximately 20 and 265, respectively.

In practice, the re~~lel levels are not exactly degener-
ate since t»»»cling takes place between the quasimodes
constructed on symmetric tori. Very little practical the-
ory exists concerning the evaluation of the direct coupling
in more than ld systems. However, the work of Wilkin-
son [1] gives a satisfactory description, which although
derived for a limited class of Hamiltonians, its main fea-
tures should be relevant on a more general footing. The
main point we shall retain is that, to leading order, the
splitting b Eg due to the direct coupling e is given by an
expression such as,

az, = x.-«", (21)

where, as in Eq. (15), A has a smooth behavior in h, and

f is the imaginary part of an action integral taken on
a complex path. In other words, g is a purely classical
quantity and if one is able to tune h, and to observe the
splitting between states constructed on exactly the same
tori, the data should gently fall on a line of slope —1 in a
logm EE vs 1/5 plot. This has been done explicitly and
verified by Wiikmson for some nearly integrable systems
[15].

With the quartic oscillators, one can in the same man-
ner take advantage of the homogeneity of the potential to
obtain a tuning of h. Indeed, those tori which are quan-
tizing are doing so for an infinite set of quantum nurn-

bers (assuming one fixes the energy to E = 1 and looks
for the quantizing values of 5). One may thus observe
how the splitting changes keeping the classical mechan-
ics strictly identical but for different values of (nz + 1/2),
which plays the role of 1/h. Figure 4 shows the results
obtained for a set of three tori from the (—0.25, z /4) case.
For each of them there exist fiuctuations of several orders
of magnitude. A simple 5 dependence such as Eq. (21) is
excluded. Nor does any obvious indication of predictable
dependence on A exist. It is impossible for this behavior
to be interpreted in terms of a two-level mechanism if A
and f are to have a classical significance.

By observing the behavior of the splittings under varia-
tion of an external parameter (here the coupling constant
A), one can see that there is a crossover in the behavior
from the two-level to multilevel mechanism where the
system changes &om having nearly integrable dynamics
to mixed dynamics. Figure 5 illustrates, with surfaces of
section, the changing dynamics as a function of A. For
A = 0 (integrable), the invariant tori of the uncoupled

quartic oscillators are symmetric under the action of P~
and P2 and their intersection with the Poincare section
appears as concentric closed curves centered around the
origin. There is therefore no associated quasidegeneracies
in the quant»m spectr»m; there may be close lying lev-
els though &om quantizing tori that happen to be close
to satisfying a resonance condition. As A decreases from
zero, the system starts in the quasi-integrable regime,
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the little chaos present is narrowly conined and devel-
ops only over long time scales. h in our spectra is much
too large to detect that the system is nonintegrable and
there are no irregular states forming yet, even though res-
onances are beginning to develop. In particular, the 1:1
resonance (islands la and 1b) is large enough to quantize
directly even for A very close to zero. Therefore, the levels
quantized in their interiors are becoming more and more
degenerate under further perturbation as the resonances
grow; this is an example of level attraction, so to speak
[8). The growth of islands 1 ceases for a value of A near

—0.20 where the last original torus is destroyed.
At this point the chaos is becoming pervasive and many
irregular levels begin to exist; aQ the remaining tori now
occur in pairs. Beyond A', only one large chaotic region
remains, the irregular levels take over as the overwhelm-
ing majority, and the islands begin to shrizk, essentially
disappearing for A & —0.5.

In Fig. 6, we show the splittings for three t»~~cling
pairs (associated with islands 1) as a function of A f'rom

before the islands' creation (A = 0) to well beyond their
destruction (A = —0.60). In so doing, the quantum n»m-
bers (nq, n2) are fixed for each level thus de6»ing via
Eq. (1) a one parameter fatal&y of tori. As desired, with
the variation of A, 5 changes little for a given level; in
the figure the three levels shown are given in the order of

FIG. 4. Logarithm of the tunneling splittings, rescaled to
unit mean spacing, for three tori versus

nz {(A,b) = (—0.25, +/4)). nz plays the role of h . The
points are connected by dashed lines for easier viewing. A
zero value indicates that the pair could not be easily located.
At E = 1, (a) torus Jq = 0.34, (b) torus Jq ——0.53, and (c)
presumed cantorus Jz ——0.68 just outside the KAM region
and 2/5 resonance. Also given in Ref. [10].
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decreasing h. One sees near A = 0 the quasi-integrable

regime where the splittings behave smoothly and they
have no relation to the proximity of other levels; this con-

firms the same physics as the above mentioned Wilkinson
calculation. A quasidegenerate pair is rightfully consid-

ered as an isolated two-level tunneling system and, not

surprisingly, we find that the exponential 5 dependence
given in Eq. (21) is loosely verified. For example, com-
pare Figs. 6(a) and 6(c), which were selected in order that
they derive Rom the exact same family of tori. Their ap-
proximate factor 3 difference in the slopes of the initial
roughly linear portion of the curves matches the factor 3
diff'erence in 5 between their quantizations at any given
value of A.

Beyond the quasi-integrable regime, which shrinks
with 5, the tunneling becomes sensitive to the noninte-
grability of the system. It happens that under perturba-
tion of the Hamiltonian, the quasidegenerate pairs cross
the paths of other, mostly irregular levels; the number
of crossings grows faster than the level density as 5 ~ 0
and could only be marked on Figs. 6(a) and 6(b).

It turns out that in the neighborhood of the cross-

ing, the tunneling is actually described by the three-level
mechanism of Eq. (18). Suppose that near the crossing
point, EE = E'—E" varies linearly with the coupling pa-
rameter A, i.e., AE = c(A —Ao), and the tunneling matrix
element is locally constant. The three parameters v (tun-
neling matrix element), Ao (crossing point), and c (slope
of the crossing) can then be determined by any three
values of the splitting b(A) corresponding to three values
of the coupling near the crossing point. The parameters
are extracted by inverting b = Qb, E + 4v —b,E to
its quadratic form and using its first two exact discrete
derivatives. This is illustrated in Fig. 7 where the value of
the deduced v is plotted directly below the local portion
of the spectrum used in its extraction. The result is a
plateau in the neighborhood of each crossing which con-
firms that the above picture of the isolated avoided level
crossing is appropriate. The neighborhood of the peaks
are thus clearly described by a three-level mechanism.

Unlike the quasi-integrable regime, crossings with
chaotic levels here most of the time have a strong effect
on the resultant splittings leading to the observed 6uc-
tuations and the direct tunneling component is orders of

FIG. 5. qq ——0 surface of sections show-

ing the changing dynamics with A (b = s'/4).
The system becomes increasingly chaotic as
A decreases. Also given in Ref. [10].

2
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PIG. 6. Logarithm of the tunneling splittings, rescaled to
unit mean spacing, for 3 cases of Sxed quantum numbers

(nz, n2) versus A. 5 decreases by an exact factor 3 between

(a) and (c). The arrows indicate the avoided level crossings,
occurring (+) between the symmetry (ez, eq) = (+, +) levels
and (—) between the (—,—) ones. The (nq, n2) values are (a)
(0,14), (b) (0,24), and (c) (1,44). Also given in Ref. [10].

magnitude too feeble to be detected. On the contrary, it
can be checked that crossing another regular state (which
here means crossing another regular doublet) has little
effect on the splittings. The predominance of the em-
bedded doublet mechanism is therefore characteristic of
the existence of a chaotic component in the phase space.
In fact, a heuristic explanation of this behavior follows if
one assumes that the connecting matrix element between
a quasimode (such as the one constructed in Sec. IIA)
and another state decreases exponentially with the dis-
tance in "phase space" separating them. Quasimodes on
which the tunneling states are constructed are localized
on invariant tori that must lie far apart. Regular states
are localized on invariant tori, which cannot be close to
both tori on which the tunneling states are constructed.
They are thus only very slightly connected to tunneling
states. On the contrary a chaotic state is roughly speak-
ing delocalized in the whole chaotic region and thus (see
again Fig. 2) is in contact with both islands to which
the tunneling states belong. Its distance &om the tori
on which the tunneling states are built is thus more or
less the distance between these tori and the border of
the regular island which contains them. This distance
is much smaller than that separating the two tunneling
tori. It is therefore natural that the connecting matrix
elements with neighboring chaotic states are orders of
magnitude larger than the direct term and therefore that
the chaotic region is assisting and playing the major role
in the tunneling process.

IV. STATISTICAL MODELING

y594 regular level chaotic levels

159.2
S

159.0

4.0

CO
~~E

2.0

0.0
0.345 0.350

FIG. 7. Stability of the extraction of tunneling matrix el-

ements. In the upper box a regular level (quantized torus)
descends across the paths of many chaotic levels as A varies
over a narrow range. Shown in the lower box is the corre-
sponding value of the tunneling matrix element extracted by
the method discussed in the text. Near the avoided crossings
the obtained value shows a plateau whereas otherwise it is
erratic and often complex (put to zero in the figure). This
illustrates the range over which the system locally behaves as
described by the three-level mechanism. The avoided crossing
points are projected down for easier visual alignment.

We have seen that chaos-assisted. tunneling leads to
quite erratic energy splittings either as an external pa-
rameter is varied or as a function of h. En order for a
detailed, comprehensive theory to reproduce the precise
tunneling behavior, it must incorporate two major com-
ponents and do so from within a semiclassical framework.
First, the positions of the chaotic levels would have to
be accurately determined on the scale of a mean level
spacing. Despite the impressive recent progress toward
this goal [16], it is neither clear that this will soon be
possible nor that this is possible even in principle [17].
Second, the coupling matrix elements between the quasi-
modes and chaotic states must be calculable. This im-
plies a detailed semiclassical understanding of the in-
dividual chaotic eigenstates (assuming the tunneling is
"turned oK"), which again is neither at hand nor neces-
sarily possible; see, however, [18].

A complexnentary approach to tackling this question
is to pursue a statistical treatment of the tunneling pro-
cess. In this way a small set of essential pax~eters will
emerge which describe properties of the djstribution of
tunneling splittings. One natural application would be
to tunneling devices where the distribution of splittings
under venation of an external parameter or averagiIlg
over the disorder is more relevant, than individual values
of tunneling rates. However, even without disorder or
some other obvious motivation for an ensemble averaging
method (consider the quartic oscillators treated ahead),
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a statistical approach captures physics that would oth-
erwise be difBcult to uncover or explain. The sensitivity
of chaotic motion to perturbation almost guarantees that
statistical laws are in operation. The ensembles we will
use, though not "derived" from some fundamental start-
ing point, will be shown to reQect the statistical laws
provided that they are properly designed to account for
the relevant information, i.e., local mean square tunnel-
ing matrix elements and transport time scales.

We follow the spirit of the treatment of the spectral
Buctuations of classically chaotic systems for which it is
now well established that for many quantities the quan-
tum Hamiltonian leads to the same Quctuation proper-
ties as properly chosen random matrix ensembles [19].
For strongly chaotic systems, the ensemble is taken kom
aroong Wigner's "classical ensembles" depending on the
system's global symmetries; the Gaussian orthogonal en-
semble (GOE) corresponds to having time reversal in-
variance. For mixed dynamics, such as that found in
the quartic oscillators, internal structures in the chaotic
region exist. They give rise to classical transport lim-
itations which, as demonstrated in [20,10], strongly in-
Buence the quantum behavior, so that more structured
("generalized" ) ensembles must be introduced. For the
sake of clarity, we begin by supposing that the chaotic
states are correctly described by the GOE. The specific
efFects of classical transport limitation will be added in
Sec. IVB.

A. "Classical random matrix ensembles"

around E is correctly reproduced and it scales as N ~2.

In this way, N plays no other role and is of no impor-
tance. As long as N exceeds some fairly small number
(typically of order 10), all the interesting statistical prop-
erties of the ensemble have converged to the appropriate
N +o-o limit. Note that the (GOE)+ and (GOE) as-
sociated with E'+ and E', respectively, are independently
constructed in this simplified picture. In the same spirit,
it is reasonable to consider the case where the tunnel-
ing matrix elements that connect 4'+ or 4" are uncorre-
lated with the GOE structure. Then the elements can be
taken to behave as independent Gaussian random vari-
ables of uniform variance v since only the total suxn of
the squared elements can have any bearing on the sta-
tistical distributions. This follows necessarily &om the
properties of the orthogonal transformations that diag-
onalize the members of the GOE. Symbolically the en-
semble modeling the Hamiltonian would thus looks like

(k+)
@T«)

|' E" (~+} 0 0
(v+) (GOE)+ 0 0

0 0 E" (~)
0 0 (v ) (GOE) J

E'+
X

The + and —superscripts emphasize the independent
nature of the matrix elements in the different symmetry
classes.

If the chaotic region is supposed structureless, the fol-
lowing simplified matrix ensemble should capture the
typical Buctuation phenomena of the chaos-assisted tun-
neling process. We suppose, as usual, that the quaside-
generacies occur because the system under consideration
possesses some discrete symmetry. We denote @+ and
4" the symmetrized and antisymmetrized tunneling reg-
ular states under study, with respective mean energies
E" + e and E" —e. e results &om the direct coupling
in the two-level tunneling process. It is set to zero in
what follows since we are interested in the case where
chaos-assisted processes dominate. [An important prob-
lem is to determine e's magnitude to know whether direct
or chaos-assisted tunneling dominates. Though not dis-
cussed in this paper, both may occur in a single spectrum.
This actually happens in the quartic oscillators where
doublets &om one particular KAM island show smooth
direct tunneling behavior even though all the other dou-
blets &om the other islands have erratic, chaos-assisted
behavior. The smooth behaving islands happen to lie
much "closer" to each other in phase space. ]

Let E'+ and E' be the quanti~m Hilbert spaces associ-
ated with chaotic states in the corresponding symmetry
classes. The quantum Hamiltonian H projected on E'+
or E' will be modeled by a GOE. It is an ensemble of
N x N symmetric Inatrices whose matrix elements are
Gaussian random variables of uniform variance o. , ex-
cept on the diagonal where the variance is 2o,2. a must
be chosen such that the mean density of chaotic states

Per tuv batiee natem

As previously stated, a semiclassical theory to com-
pute the variance of the tunneling matrix element v is
still lacking; note that this is likely to be a much simpler
problem than trying to calculate each individual matrix
element. However, the matrix ensemble, Eq. (22), can be
studied now as a pure random matrix problem, providing
us with a definite prediction for the splitting distribution.
It has qualitative behaviors which can be understood on
a general footing. A simplifying feature, for instance, is
due to the fact that the matrix elements connecting the
regular states to the chaotic space are due to classically
forbidden processes. For tori deep within the KAM re-
gion the ratio v/D~ [where D~ is the mean energy spac-
ing for the (+) chaotic states] is always much smaller
than one. Leading order degenerate perturbation theory
will give an excellent approximation to exact results.

For a given chaotic spectrum (E~+, . . . , EN+,

E~, .. . , E~) and tunneling matrix elements

(ez, . . . , v~, vz, . . . , v~), the displacements b+ and b
of the regular states energies are given by

4+/D = —$ r„+—sgv(r„+))I/(r+) + 4(v+) /D (gg)
1

n=l

in which r+ is defined as r+ = (E+ —E")/D. The tun-
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neling splitting b is then the magnitude 8 = [h+ —h

As stated below Eq. (6.1) of [10] (see also [21]),the above
approximation can be understood as coming &om a sep-
arate contribution of each of the difkrent chaotic states.
One then uses the exact 2 x 2 diagonalization results term
by term and 6ually sums all the individual contributions.
If all levels are distant, the right-hand side of Eq. (23)
is equal to the Rayleigh-Schrodinger perturbation result
excluding higher order corrections. It moreover matches
smoothly the degenerate perturbation result when one
chaotic level approaches E" closely. The rarity of three
or more levels being found nearly degenerate leads also
to higher order corrections in the splitting distribution
and can be ignored.

Equation (23) implies the distinctive property that an
order of magnitude difference exists between a "typical
splitting" and, say, the root mean square deviation of the
distribution. The reason for this is that most often no
chaotic level approaches E" more closely than the typical
size v of the tunneling matrix element. In such a situa-
tion, Eq. (23) can be replaced by the usual nondegenerate
perturbative result

N ~ 22)- 1 (v. )

&=1 ""

which leads to a splitting of order b/D v /D . In rare
circumstances with probability of order v/D, a chaotic
level E+ does manage to be nearly degenerate with E".
The associated contribution to Eq. (23) is then of order
v/D (measured in units of the mean spacing) and dom-
inates the splitting. Such events give the leading con-
tribution to all moments of the distribution of order m
equal or greater than 2 because, roughly speaking, their
contribution is of order (v/D) (v/D) whereas the rest
of the splittings contribute (v/D)~

Consider the leading order calculation of the splitting
variance b2 (the bar indicates ensemble averaging). It
can be written as

= (~ ) +((~ ) +2((~+)(~ ) =2(b+~ l)' (25)

The last form relies on the uncorrelated relationship be-
tween the + and —GOE. Working, for instance, with h+,
one has, using Eq. (23),

= —) r+ —sgn(r+) (r+) 2 + 4(v+) /D2 r+, —sgn(r+, ) (r+, )
2 + 4(v+ ) /D2

(b+) 1

1= —) 2(r„+) + 4(v„+) /D —2jr„i (r„+)2+4(v„+)2/D2
n

1
4- —& r 4 —sgn(r+) (r„+)44-4(v„+)4/Ds r+—sgn(r+, ))/(r, +, )s + 4(s+, )s/Ds

ngn' w ss

The ensemble average is performed [22] by replacing
the v„byindependent Gaussian variables of variance v2

and by making the substitutions

r dT dT Rg T T (27)

I2 ——— dr dr'R2 (r —r') dtu dtu'I , e (v) +w')/2
4 2'
x r —sgn(r) Qr2 + 4v/2v2/D2

x r' —sgn(r')/r' 4-4rs'svs/Ds

where r (r') is the energy measured in mean spacing
unit and R2(r —r') the GOE two-point correlation func-

tion [23]. Therefore the ensemble average (h+)2 is the
s»m of two contributions Ii and I2,

the latter being of order (v/D)4 log (v/D). The variance
of the splitting to leading order is

h~ 64(v/D) s

3v/2m

Ig = — dr du/ 2r +4») v /D=1 e ~'/2
4 /27r

„2+4~2v2/D2
( 32(v/D) s

3v 27r
(26)

As just mentioned, it is easily seen that the contribution
arising kom spectra for which no chaotic state is closer
to E" than some arbitrary, small (but fixed) distance p,

(i.e., a proportion 1 —p of the configurations) is only of
order (v/D)4.

So two kinds of tunneling splittings can be distin-
guished in the random matrix model, just as is true of
the quartic oscillators spectr»g»: (i) small splittings of
order v2/D2, which correspond to nearly all events, and
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(ii) relatively large splittings (still quite small though) of
order u/D associated with chaotic state crossings. This
occurs extremely rarely, but gives rise to the dominant
contribution to the moments of the distribution of or-
der 2 or greater. Note that because the quasimode and
chaotic state may mix strongly here, it can on rare occa-
sions even be ambiguous as to which two levels form the
tunneling pair from the three of them. These two kinds
of splittings may be of a rather different character. In
particular we shall see that they react quite differently
to classical transport limitations.

(6),(7)

~(3)

«(] )

B. Classical transport efFects: Generalized ensembles

One source of the richness of mixed system dynamics is
that usually even the chaotic regions possess some inner
structure (significant time scales beyond a mixing time)
[24,25]. They play a noticeable role in various physical
situations and their effects have, for instance, been exten-
sively investigated in the study of chemical reaction rates
[26,27]. A large variety of mechanisms limiting the trans-
port may exist, among which one of the simplest occurs
when the transport is dominated by a limited number of
well separated partial barriers; see [10]. In such a situa-
tion, the chaotic part of the phase space can be divided
into a certain number of subregions Rq, R2, . . . , R„,in
which a trajectory seems to be trapped for a while be-
fore it eventually travels to a neighboring subregion. The
rate of communication between two regions R; and R~
can be characterized by the classical Qux 4;~ connect-
ing them, i.e., the phase space volume per unit time ex-
changed &om one region to the other. It is this kind of
transport that is found for the quartic oscillators system
in the mixed regime. Figure 8 illustrates the subregions
of the quartic oscillators as viewed from a surface of sec-
tion. As demonstrated in [10], the chaotic levels' spec-
tral Buctuations, as well as some statistical properties
of the wave functions, re6ect the transport limitations.
These properties are correctly described using a model-
ing of the chaotic dynamics in terms of "generalized en-
sembles, " the parameters of which are entirely fixed by
the classical motion. For each symmetry class, one may
summarize the construction of the generalized ensemble
as follows (see Sec. 5 of [10] for more details): (i) to each
region R;, associate a Hilbert subspace E'; inside which
the projection of the Hamiltonian matrix is taken as a
Gaussian ensemble (GOE);, such that the corresponding
mean spacing is proportional to the phase space volume
of R;; (ii) connect the blocks i and j by matrix elements
taken as independent Gaussian variables of variance n, .

such that the "transition parameter"

A- ~

U
D2

is fixed (D is the total mean spacing). The transition
parameter determines the properties of the ensemble as
stressed in [22]. It naturally emerges in perturbation
theory treatments of weakly broken symmetries, but is
more general. It arises here because the small classical

(1),(2),(3),(4)

FIG. 8. Chaotic subregions imperfectly isolated by par-
tial transport barriers for the case (A, 5) = (—0.35, s'/4): (a)
qi = 0 Poincare section; (b) qs ——0 Poincare section. The
regular islands are also outlined. Also given in Ref. [10).

Bux can be thought of as breaking the dynamical symme-
try which isolates the subregions R; and their respective
Hilbert subspaces E';. A;~ is related to the classical lux
4;, by [10,20]

1 g4~
4ir2 (27rh)~ if;f~

(30)

Here g is the proportion of states in the considered sym-
metry class, d the number of degrees of freedom, and f;
the relative phase space volume of region R;. Symboli-
cally, we shall refer to such an ensemble using (for n = 2)
the notation

I' (GOE) i Ai2A„'(GOE), , (31)

~atment of induced correlatione

We are considering a problem in which two KAM is-
lands are distinct, but transform into each other by a dis-
crete symmetry operation. Suppose there existed one or
more completely closed (perfect) transport barriers in the
chaotic region of phase space that prevented How kom
near one island to the neighborhood of its partner. The
chaotic subregions around each KAM island would be
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just as isolated, distinct, and symmetry related as the is-
lands themselves. Under these circ»~stances, they would
themselves give rise to quasidegeneracies in the spectrum
just as quantized tori pairs do. In addition, the tun-
neling matrix elexnents would be identical by the same
discrete symmetry consideration. The ensemble would
have the form of Eq. (22) except that (v ) = (v+) and
(GOE)+ = (GOE), matrix element by matrix element.
Under these circutnstances, Eq. (23) would give a zero
splitting. However, our interest is in imperfect transport
barriers. In this case the tunneling splittings are not zero,
only reduced. This occurs by the introduction of corre-
lations in the dHkrent symmetry classes of the chaotic
spectrum and in the tunneling matrix elements as well.

The simplest classical con6guration of interest incor-
porating some partial barriers is the one schematized in
Fig. 9. The two tunneling Cori belong to two regions Rq
and R~' symmetric with respect Rom each other. Trans-
port between Rq and Rq' takes place through a third,
slightly connected (symmetric) region R2. As shown in
Appendix B, the associated generalized ensemble has, for
the difFerent symmetry classes, the form

E" '(v)

( 0
(32)

Again (GOE)z indicates that the + and —(GOE)z's
are uncorrelated. In the limit that Aq2 -+ 0, the split-
tings are zero (perfect correlations). In the opposite limit
Aq2 m oo, the ensemble of Eq. (22) is recovered (absence
of correlations).

As far as the chaotic states are concerned, the vari-
ations of Aq2 not only modify the correlations between
symmetry classes, but also in general the various spectral
statistics that one may de6ne inside each symmetry class.
For the tunneling states, however, the value of Aq2 has lit-
tle iniuence on the distribution of displacements b+ and

To see this, let us consider the two extreme cases
A&2 ——0 and A~2 -+ oo. For simplicity assuage that R~
and R2 have the same phase space volume, i.e. , that the
mean spacing Dq and D2 associated, respectively, with
(GOE)q and (GOE)2 are the same (Dq ——D2 ——2Dt~t,
where Dt, t is the total mean spacing). To diagonalize
the chaotic part of the Hamiltonian for Aq2 m oo essen-
tially amounts, as compared to A~2 ——0, to transferring

half the variance of the C»~~ebng matrix elements &om
chaotic states associated to Rq to others associated to
R2.

Thus, in both cases, the tunneling state is connected to
a full GOB. Moreover, if one denotes by v @ the effective
(i.e., after diagonalization) variance of tunneling matrix
elements and by D,g the mean spacing of chaotic states
electively playing some role in the tunneling process, one
has

V2
v,p(Aq 2~ oo) = —,D,fr(Ay2 = 0) = Dy = 2Dtot .

Therefore, going through the whole range of variation of
Aq2 leads only to a factor ~2 change between the tunnel-
ing parameters v,&/D, fr(Ag2 ——0) and v,ff/D, fr(Ag2 ~
oo). This factor is extremely small as compared to the
range of variation spanned by the splitting distribution
(usually a few orders of magnitude). In addition, one is
interested in the distribution of h /Dt, t since D,g can
be given a meaning only for the extreme cases Aq2 ——0
and Aq2 -+ oo, but not in the whole range of variation
of Aq2. In log~o binning, this just consists in shifting the
distribution of b+/D, g a distance logM(2) to the right
for Aq2 ——0, which goes the other way round as what is
due to the change in the efFective tunneling parameter.
The resulting efFect of these two small mechanisms which
work in opposite directions is to leave the distribution of
b+/Dt~t essentially unchanged when going from Aq2 ——0
to Aq2 -+ oo. Indeed, when comparing a Monte Carlo
calculation of these distributions on Fig. 10, they appear
almost indistinguishable. It has been checked moreover
that this remains true for intermediate values of Aq2.

Returning to the distribution for b, the correlations be-
tween b+ and b become important. It is clear that for

Aq2 ——0, h+ is perfectly correlated to h and for Aq2 m oo

they are uncorrelated. For Aq2 ) 0 but small, we re-
call the most significant feature of ensembles modeling
weakly broken symmetries [22] —the transition in auc-

0.8
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0.4

R1

R)'
R2 imited flux

-10 —9 -8 —7 —6 —5 —4

log„(a'/D)
—3 —2 —I 0

FIG. 9. Schematic illustration of the phase space structure
linked with the ensemble of Eq. (32). Regions Rt and Rt
are identical by sy~~etry and are dynamically connected by
their Suxes leaking into region B~. The ellipses represent the
KAM regions.

FIG. 10. The distribution of b+'s motions deriving &om
the ensemble of Eq. (32) (with v/D = 0.01) for At& -+ oo
(solid line) and Atg ——0 (interrupted line). The two curves
are hardly distinguishable, in contrast arith the efFect on b

itself. See Fig. 11.
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FIG. 11. The distribution of splittings b for the ensem-

ble of Eq. (32) with v/D = 0.01. Partial transport barriers
broaden the distribution by having little effect on the large
splittings and reducing the small splittings due to induced
long range correlations in the chaotic spectra. Pictured are
the cases A ~ oo, which correspond to an absence of partial
barrier (dash-dotted line, sharper peak) and A = 0.1 (solid
line, broader curve).

tuation properties with increasing A sweeps from short
range out to long range. Here, for example, the corre-
lations between the + and —spectra disappear at short
range first while the long range structure of the spectrum
is still highly correlated. The weak splittings dependent
on the multilevel mechanism, and thus on xnany distant
levels, will be considerab1y afFected and reduced by corre-
lations induced by transport. On the other hand, for the
large splittings due to a chaotic level closer to E" than
v/D (which being due to a classically forbidden process is
smaller than A~~2, i.e., v/D && A~~2 && 1), little or no ef-
fect of the transport barrier is visible. Though the xnean
tun~cling xnay overall be smaller, the most significant ef-
fect renders the small splittings smaller and increases the
width of the splitting distribution. This is illustrated in
Fig. 11. Therefore the splitting distribution is not uni-
versal, depending on both the chaotic transport and the
tunneling matrix element variance.

C. The return of the quartic oscillators

In the preceding subsection, we have used the prescrip-
tion devised in [10] to construct random matrix ensem-
bles accounting for the efFects of partial transport barriers
that xnodel the splitting distribution. Note the model is
entirely specified by the classical dynamics, without &ee
paraxneters. The random matrix model predicts that the
partial barriers have little efFect on the distributions of
the displacexnents b+ and 8, at least on the scale they
span. On the other hand, the fact that classical trajecto-
ries are prevented to How &eely &om the neighborhood
of one torus to the one of its syxnmetric partner induces
correlations between b+ and b, yielding a noticeable
modi6cation of the splitting distribution (h = ~h+ —b [).
The qualitative way in which this distribution is modified
is interpretable &om the general behavior of transition

R5
R4

R5'
R6

FIG. 12. Schematic of the most important phase space and
transport structure of the quartic oscillators surrounding is-
lands 1 (see Fig. 8). The islands are represented by the el-

lipses. Trajectories must pass through either region R4 or R6
to travel from the neighborhood of one KAM region to the
other.

ensembles like the one of Eq. (31).
The relevance of the generalized ensexnbles to chaos-

assisted tunneling can be stringently tested with the cou-
pled quartic oscillators' spectrum. To uniquely construct
the ensexnbles, we need the structure of the chaotic re-
gion in phase space and the fiuxes 4;~. We also need the
mean square tunneling matrix element for which there
currently is no semiclassical theory. v2 could be taken
as a free parameter with interesting results, but a more
exacting procedure is available by extracting it directly
&om the spectruxn. This is discussed more fully below.
As a practical matter note that observing a distribution
which spans many orders of magnitude is made easier by
using the logarithm of the splitting (logos b„,„,), which
is done &oxn here on; nq, n2 refers to the number of quanta
on each cycle Jq and J2 of the quantizing torus.

Consider a single doublet labeled by (nq, n2). Its split-
ting can be calculated for a large number of values over a
narrow range of A. The point of keeping A's range narrow
is to ensure that the structures in the classical dynamics
change very little. The range A E [

—0.36, —0.32] is used
in the following so that use of the Quxes and structures
for A = —0.35 as detailed in [10] are representative of the
entire range. For h small (E large), the doublet will nev-
ertheless cross many levels; the range is thus small on the
classical scale but broad on the quantum scale. In our
calculation, we determined the lowest 4100 levels for 201
values of A to sufhcient accuracy, ~ 10 6D. It is found
that a single doublet deep &om within the KAM island
crosses, on average, around 20 chaotic levels in this inter-
val. A distribution of splittings can thus be constructed
from a single pair. Going a bit further to improve the
statistical significance, 17 consecutive pairs near the top
of the spectr»m were identified with nq ——0 and their
splittings were combined to forxn one distribution based
on 3500 values. A second set of 6 consecutive doublets
with nq ——1 were also put together. The distinction be-
tween the two groups is that the local collection of tori
associated with the nq ——1 group is 3 times further &om
the center of the KAM island than the nq ——0 tori. The
tori with nq ——2 or 3 proved to be too time consuxning
to work with since they were too close to or outside the
KAM-chaos interface for the size of 5 (energy).

The appropriate generalized ensemble incorporates the
classical phase space structure of Fig. 8 relevant to the
tunneling process, which is schematized in Fig. 12. The
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two groups of timneling tori To (nq ——0) and Tq (nq ——

1) are in two symmetric regions Rs and Rs. To travel
&om R5 to R5, a classical trajectory must 6rst jump into
either R4 or R6 before continuing to R5. There also exist
further outside regions Rq, R2, R3, and Ry, which are
only slightly connected at the considered energy and do
not play a noticeable role. In the same way as in Sec.
IV 8, it can be seen that the ensemble for the symmetry
class + or —is (see Appendix B)

5
fC

&~:)

( E" (v}
(v} (GOE)s
0 A~s

I, 0

( 4'p

5X

&~;)

0
A4+5

(GOE)4
0

A56
0

(GOE)s )

TABLE II. Relative volume f, of chaotic phase space of
the regions relevant to the tunneling process, together with
their connecting fiux (taken from [101). The fiuxes are cal-
culated for E = 1 and scale as E . From this table and
Eq. (30) (note g = li4) all the parameters of the ensemble
of Eq. (33) are specified, except for the variance v of the
tunneling matrix elements.

Region
4

Relative volume f,
0.13

0.21

Total Sux

4m 5

5++ 6

0.21

0.28

The superscript 6 specifies blocks which are independent
in the two symmetry classes. Its absence means that
the block is the same. In Eq. (33), (GOE)4, (GOE)s,
and (GOE)s are such that their mean spacings are pro-
portional to the the relative phase space volumes f;
(i = 4, 5, 6) of the associated regions and A4s and Ass are
related to the fiuxes Ci4s and 4 M through Eq. (30). The
necessary classical quantities are gathered in Table II.

We turn to determining the variance v2 of the tunnel-
ing matrix elements. It has already been seen in Fig. 7
that the crossings of regular and chaotic levels behave as
though they are isolated. A single realization from (v}
comes with each such crossing in the spectra. Following
the procedure mentioned in the last paragraph of Sec. III,
310 values of (v} were found for the To doublets and 110
for the Tq doublets. The largest values obtained in this
way are the most accurate since, not surprisingly, their
plateaux are typically the broadest. Those realizations a
few orders of magnitude weaker are more uncertain. A
method to calculate v2 is therefore more reliable if it is
based on the large members of (v}. Furthermore, recall
that diagonalizing the chaotic part of the Hamiltonian
transfers some timneling matrix elements from the block
connecting 8'5 to other ones. The spectrum itself re6ects
the redistributed (v} and not the one of Eq. (33). Be-
cause at the considered energy fiuxes are rather small,
this will only slightly lower the variance of the tunneling

matrix elements in the former block. It will create many
very small elements of (v} where previously the ensem-
ble had zeros. It is best to avoid the small realizations
altogether. Roughly speaking, only the fraction fs of the
larger tunneling matrix element values corresponds to a
crossing with a chaotic state living in R5. To be more
precise, the upper tail of the tunneling matrix element
distribution should correspond to fs times the tail of a
Gaussian distribution of width v, i.e., in a logarithmic
binning

e ~2 xln(10)
u(*) = fs

27l' V
(34)
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FIG. 13. Comparison of the quartic oscillator's tunneling

splitting distribution to the random matrix ensemble predic-
tions. The histogram displays the results for the quartic os-
cillators (a) of the Tp group of tori and (b) of the Tl group of
tori. The solid curve is the prediction of the generaliled ran-
dom matrix ensemble incorporating the transport information
(see text). The peaked dashed curve is a best fit using a single
GOE for the chaotic region (no transport barriers).

In practice, having only a few hundred crossings, it is
necessary to somewhat smooth the auctuations in the tail
of the distribution. For a wide range of the smoothing
width, the value of v obtained from a least-squares devia-
tion from the tail of the matrix element distribution and
Eq. (34) remains extremely stable and is independent of
the smoothing. It leads to a value of v/D approximately
1.1 x 10 2 for both groups TO and Tq. The reason why
the two values are nearly the same is essentially due to
the competing efFects of Tq being closer to the boundary
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of the island, but also at slightly smaller h (higher en-

ergy) on average. It is reasonable that the former eKect
compensates the first because the tunneling shrinks with
5, but Ti doublets cross the chaotic levels with a smaller
slope.

Inserting the obtained values into the ensemble of
Eq. (33) gives the comparison between the (logos b„,„,)
distribution and the Monte Carlo prediction displayed in
Fig. 13. Also shown is a comparison using a best value
of v for which the classical phase space structure has not
been implemented. In the former case one obtains a nice
correspondence between the predicted and the calculated
curve whereas in the latter, a clear discrepancy is ob-
served despite the use of a &ee parameter. This is strong
evidence of the relevance of the generalized ensemble in-
troduced to model the splitting distribution. It is also
another signature of the importance of the classical dy-
namics inside the chaotic zone as concerns the tunneling
process [11].

V. CONCLUSIONS

We have shown that the nature of the underlying clas-
sical dynamics deeply affects how tunneling takes place.
In principle, the vast range in complexity of dynaxnics
ixnplies a wealth of tunneling phenoxnena. Considering
that in multidixnensions even the simplest case, i.e., in-
tegrable motion, is not a fully resolved problem, there
rexnains a great deal to uncover.

From a dynamical point of view, most systems at some
fixed energy are mixed in that they contain both signif-
icant regions of regular and chaotic motion. The corre-
sponding quantum systems have classes of both regular
(quantizing tori) and chaotic eigenstates. Systems with
discrete symmetries xnay give rise to multiple copies of
the tori and then there exist states (quasimodes) which
are degenerate to any power of h. Tunneling lifts the de-
generacies either directly or through chaos assisted pro-
cesses. The roughest statement of the difference between
the two mechanisms is that chaos assistance involves oth-
erwise extraneous chaotic levels which act as interxnedi-
aries for the tunneling process. This is embodied in the
simplest way by the three-level xnodel described in Sec.
IIB. The system of coupled quartic oscillators were es-
pecially well suited to demonstrating these points.

Very little is understood about the magnitudes of these
mechanisms leaving open many interesting questions.
One of the more important is being able to predict, under
a given set of circumstances, whether one process (chaos-
assisted or direct) should dominate the other and if so,
which one. No attempt was made here to derive such a
theory, which is left for future study. Instead we focused
on giving evidence for chaos-assisted tunneling and de-
scribing its major features. Since this tunneling proceeds
through chaotic level intermediaries, one component of a
semiclassical theory must be the description of chaotic
eigenproperties. However, there are fundamental reasons
to suspect that this may be impossible. Whether it is
true or not, the necessary theory does not currently ex-
ist. On the other hand, the statistical eigenproperties
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APPENDXX A:
LANGER CONNECTION FORMULA

We recall the connection formula derived by Langer in
[12]. Consider the one-dimensional Schrodinger equation

—h2
E@+V(q)@ = E%,

2m
(A1)

have been discussed at length in [10,20]. Properties of
level fiuctuations, wave function localization, etc. have
all been linked to various features of chaotic phase space
and transport structures. Those ideas are extended here
to develop an interpretation of the splitting distribution
involving generalized ensembles within random matrix
theory; both three-level and multilevel mechanisms ap-
pear in the ensemble. With the transition parameter—
classical Sux relation Eq. (30), the classical transport
can be transformed into constraints on the random ma-
trix ensemble modeling the quantum system. (More com-
plicated kinds of transport problems than those which
arise in the quartic oscillators' spectra discussed here may
not be so easily transcribed into appropriate ensembles.
Other, new tunneling effects not mentioned in this work
may be found in conjunction with those cases. ) The only
problem (or rather parameter) remaining is to determine
the mean square tunneling matrix element v (or equiv-
alently v /D2) connecting regular and chaotic states. v2

can be extracted &om a spectrum though and the quartic
oscillators' spectrum clearly confirms that the splitting
distribution is given by the ensemble theory if and only
if transport properties and v2 information is properly in-
cluded. A theory of v2 is part of discovering whether
chaos-assisted tunneling is the most important process.
While this description is far from existing, tantalizing
glixnpses have been found in the spectra in which h, the
resonance structure of the KAM region, and the position
of the particular tori (that v2 is connecting to the nearby
chaotic zone) all play a role.

The realization and detection of chaos-assisted tunnel-
ing ought to be possible in a number of ways. Molecu-
lar systems have anharmonic potentials governing their
chemical bonds. As long as a sufficient density of states
with sufBcient anharmonicity can be observed without
breaking down the Born-Oppenheimer approximation,
chaos-assisted tunneling would take place between sym-
xnetric local modes. There are also a number of possibil-
ities with microwave cavities and low temperature meso-
scopic tunneling devices. The sensitivity of the tunneling
to the inQuence of the variation of an external paraxne-
ter should provide a clearcut signal of its existence in a
particular system.
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with a potential such that

+{q) +E for'q+q1 +(q) 5@ forq+ql

Far &om the turning point qq, the general form of the
semiclassical approximation to the solution of Eq. (Al)
is (except for a multiplicative constant)

imited flux

~u cos(S/h —x/4+ g) for q ( qq

~ (2 sin q ei~i~" + cos g e I I~ ) for q ) qq,

where p is given by Eq. (4) and 8 by

(A2)

Therefore g, which is the difference &om m/2 of the de-
phasing betweea the incoming and the outgoing wave on
the left of the turning point, is controlling the amplitudes
of the exponentially increasing and decreasing terms on
the right of qq. In Sec. II, the above connection formula
is used in its simplest form to construct two wave func-
tions; i.e., either g = 0 (only the decreasing exponential)
or g = m/2 (only the increasing one).

APPENDIX B:
CONSTRUCTION OF THE ENSEMBLES

R)

R)'
I

I

I

I

Limited flux

FIG. 14. Schematic of the phase space structures corre-
sponding to {a) the ensemble of Eq. {Bl)and {b) the ensem-
ble of Eq. {83). The dotted lines correspond to changes in
the barriers which were present in the classical conSguration
of Fig. 9.

In this appendix, we show that the ensemble Eq. (32)
is actually associated with the classical traasport config-
uration depicted in Fig. 9. This is done using essentially
the same kind of procedures that were used in [10] to
construct ensembles such as Eq. {31).Although this pa-
per is as self-contained as possible, a reading of Sec. 5 of
[10] simpMes the understanding of what follows. Some
notions, such as the introduction of a basis "relevant" to
the classical structure, are best gleaned there.

As stressed in the text, the splitting distribution as-
sociated with the ensemble Eq. (32) differs from the one
without transport Eq. (22) because of two distinct fea-
tures. First the distribution of the displacements b+ and
b of the regular energy levels are modi6ed. Second
they become positively correlated, so that the splitting
b = lb+ —b'

l
can be significantly smaller than lb+i and

lb l. Before turning to the construction of the ensemble
Eq. (32), let us consider two separate transport configu-
rations in which each feature is isolated.

1. Pure cases

The Grst of the above e8ects already exists if, starting
&om the classical con6guration of Fig. 9 one suppresses
the barrier separating Rq and R~, leading to the con6g-
uration shown in Fig. 14(a). On the other hand, in that
case all the classical chaotic regions are symmetric under
the symmetry P interchanging the two tunneling tori, so
that the b+ and b are decorrelated. The remaining par-
tial barrier can therefore be treated in exactly the same
way as in [10]. (This is nat because all chaotic regions

were symmetric in [10],but rather due to a lack of motiva-
tion to study the correlations between symmetry classes.
We simply identi6ed regions symmetric to each other. )
Namely, this means that, for each symmetry class, the
(GOE)+ of the ensemble Eq. (22) has to be replaced by
the more structured ensemble Eq. (31). Since tunneling
states remain connected only with chaotic states living
in region 1 one obtains

( E" {v+)
a+ = {.+) (GOE)',

0
(B1)

which is already the ensemble Eq. (32), except that the
correlations between the two symmetry classes are ab-
sent.

Correlations between symmetry classes are indeed in-
timately related to the difhculty a trajectory has to go
&om one region to its symmetric. This exists if, as in
Fig. 14(b), the region R2 of Fig. 9 daes not exist, but
small transport is allowed across the common boundary
of X., and

To then work out the induced correlations, let us con-
sider a basis of the chaotic space (ll, cr), l1', p)) (n, p =
1,2, . . .), which is relevant to the classical structure, i.e.,
such that the ll, a) "semiclassically" belong to Rq and
ll', P) "semiclassically" belongs ta R~. To take into ac-
count the discrete symmetry P relatiag the two tunnel-
ing tori, we shall moreover require that ll', a) = Pll, a)
(a = 1, 2, . . .). It is in such a "relevant basis" {see Sec. 5
of [10]) that (the chaotic part of) the Hamiltonian can
be modeled by a generalized ensemble such as Eq. (31).
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Therefore, noting @z and 4z' the tunneling states and
and E'~

' the Hilbert subspaces associated with Rq and
Rq', the Hamiltonian matrix expressed in the above basis
can be written as

( E" (vg)
( ) H;,

0 0
0 Hype

E" (",)
(v', ) Hf„,) ( &f' )

(B2)

Using now that H commutes with I' readily gives that

') (=( ))

and that Hf, z (= Hfz, ) is a symmetric matrix. Thus
Hjy

= Hy y can be modeled using a Gaussian ensemble
(GOE)D, which reproduces correctly the mean density
of states, and Hyp] —Hy] by an independent Gaussian
ensemble (GOE)~, the variance of the matrix elements of
which is fixed through Eq. (30) by the fiux 4 exchanged
between Rq and Rq'. Because, however, there are no
null matrix elements due to P, and using the very same
reasoning leading to Eq. (5.29) of [10], g should here be
replaced by g/2 in Eq. (30) (using in the definition of
the transition parameter A the mean spacing of a given
symmetry class).

'Dn'ning now to the symmetric basis [4'~ ——(@~ 6
4'~')/~2, [k, a) = ()l, a) 6 ~1', a))/~2], the Hamiltonian
matrix in the + or —symmetry class is modeled as

e~ ))
'(t' E"

E'+
~ ~ (v) (GOE)D 6 (GOE)~(4) ) & Z~ j

(B3)

If the barrier between R~ aad Rq' is ineffective, the ma-
trix elements of (GOE)D and (GOE)~ have the same
variance, so that their sum and difFerence are decorre-
lated. We recover in this way that if all regions are sym-
metric by P, there is no correlation between the differ-
ent syxnmetry classes. On the other hand, if the partial
barrier is efFective [i.e., if the transition parameter A~
associated with (GOE)~ is much smaller than one], H~

rh

and H are actually correlated. To be more precise, if
oae first diagonalizes the chaotic part of H+ and H, the
chaotic levels will appear extremely correlated if looked
at a scale larger than AA, but essentially decorrelatedX/2

on a range smaller than AA
X/2

2. Ensembles Eqs. (32) and (33)

The construction of the ensemble Eq. (32) is slightly
xnore involved than either of the two above "pure cases"
since the corresponding classical transport configuration
contains some regions which are syxnmetric by P and
some which are not. One can, however, proceed in essen-
tially the same way as for the ensemble Eq. (B3),working
in a basis "relevant" to the classical configuration dis-

played in Fig. 9. The point here is that, although the
region R2 is invariant by P, the simplest way to take
into account this symmetry is to suppose that the set of
vectors "semiclassically" belonging to R2 are shared in
two subsets {~2,P)) and {~2',P')) (P, P' = l, 2, . . .) such
that ~2', P) = P~2, P). Noting 8' the Hilbert subspace
generated by (~1,a), ~2, P)) and 8" the one generated by
(~1', a'), ~2', P')), the Hamiltonian matrix takes as above
the form

/Ho H & /Z. ~

E~ ) EH~HrJ E~ (B4)

where using the same way of reasoning, HD and HA can
be modeled by the ensembles

t'+" l
HD «:)

( E" (v) 0
(v) (GOE)i A/2

( 0 AP, (GOE), ) (&; j
(B5)

( ")
H„, Z, =, 0 0 A» Z,

( &; ) ( 0 A~» (GOE)", ) ( &; )
(B6)

Disregarding for a moment what fixes the value of the
variance of the matrix elements in the difFerent blocks,
we simply stress that since the (~2, P)) and (~2', P')) semi-
classically belong to the same classical region R2, the
variances are the same for (GOE)g and (GOE)+2, and
for the same reason A» ——A».D A

Going to the symmetric basis, one obtains as usual

Hy ——HD 6 HA, (B7)

which, using the fact that the sum and difFerence of
two independent Gaussian distributions are independent
Gaussian distributions, leads to

( E" (v)
H~ =, {v) (GOE)z

0 A~~

A+»

(GOE)2 )
(BS)

Because, as compared to the ensemble Eq. (Bl), only the
correlation between the symmetry class has been changed
here, the variaace of the matrix elements in the difFer-
ent blocks is the same. [This can be checked directly
by counting the number of nonzero xnatrix elements in
Eqs. (B5) and (B6).] In particular A~~ is related to the
fiux 4q2 through Eq. (30) (no factor 2 here). We therefore
obtain the ensemble Eq. (32) (except that, since taking
A» the same or not in the two symmetry classes does
not change the resulting distributions, we omitted the +
in this latter equation).

To conclude, let us stress that the above construction
can be generalized in a straightforward way for any clas-
sical transport configuration containing both symmetric
and nonsyxnmetnc chaotic subregions, provided there is
no direct comm»~ication between a region and its sym-
metric partner in the latter case. Under this condition,



one obtains that the variance of the matrix elements in
the difFerent blocks is the one given by the prescriptions
derived in [10] and the diagonal GOE blocks should be
taken as the same in the two symmetry classes if the

corresponding region is not invariant by P, and as un-
correlated in the other case. The ensemble Eq. (33) is
obtained in this way with the additional classical struc-
ture.
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