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The dynamical renormalization-group methods are applied to the gyrokinetic equation describ-
ing drift-wave turbulence in plasmas. As in both magnetohydrodynamic and neutral turbulence,
small-scale fluctuations appear to act as effective dissipative processes on large-scale phenomena.
A linear renormalized gyrokinetic equation is derived. No artificial forcing is introduced into the
equations and all the renormalized corrections are expressed in terms of the fluctuating electric po-
tential. The link with the quasilinear limit and the direct interaction approximation is investigated.
Simple analytical expressions for the anomalous transport coefficients are derived by using the linear
renormalized gyrokinetic equation. Examples show that both quasilinear and Bohm scalings can be
recovered depending on the spectral amplitude of the electric potential fluctuations.

PACS number(s): 52.35.Qz, 52.35.Ra

I. INTRODUCTION

Among the theoretical difficulties in the study of the
macroscopic plasma behavior in a turbulent state the un-
derstanding of transport laws for matter, charge, and
energy plays a very important role. Indeed, any new
knowledge concerning these transport processes would be
a step of outstanding importance in the determination of
the experimental conditions needed to perfom controlled
thermonuclear fusion in a magnetically confined plasma.
This explains the large amount of works devoted to the
theory or, more precisely, to the theories of transport in
plasmas.

Probably the first self-consistent approach to transport
phenomena in plasma is the classical transport theory
[1,2]. Starting directly from a kinetic equation, it leads to
values for the transport coefficients which only depend on
the characteristics of the particles composing the plasma
and on both ionic and electronic temperatures. It rests
on a linear approximation in which the deviation of the
local distribution function from the reference state, taken
as the Maxwellian velocity distribution, is expanded in
series of appropriate moments of the velocity (two com-
mon choices are the Laguerre-Sonine polynomials and the
irreducible tensorial Hermite polynomials). It has been
shown [3] that the results of the classical transport theory
are rather insensitive to the choice of the kinetic equation
(Boltzmann, Landau, Balescu-Lenard). Moreover, the
transport coefficients may be evaluated with a very good
accuracy by taking into account only a small number of
moments in the expansion (typically 21 in the case of
the Hermite polynomials). In the study of confined plas-
mas, the results of the classical transport theory have
been considerably improved by taking into account the
toroidal geometry of the magnetic field. The influence
of such a geometry on the transport coefficients appears
surprisingly important. It has been systematically stud-
ied in the neoclassical transport theory [4,5].

However, both classical and neoclassical transport the-
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ories do not describe the complete physics of transport
phenomena in magnetically confined plasmas. The trans-
port in these theories is considered as being entirely de-
scribed by the binary collisions between plasma particles.
Moreover, the distribution functions are assumed to be
very close to the Maxwellian distribution. Such assump-
tions are well adapted to the study of the relaxing colli-
sional modes in the plasmas. Unfortunately, the plasma
dynamics is so complex that it can lead to a large num-
ber of instabilities usually characterized by wave motions.
Such waves, their appearance, and their possible relax-
ation, cannot be described by binary collisions and are
more likely related to collective phenomena. Moreover,
the instabilities bring the system far from the equilib-
rium state in such a way that the basic assumptions of
classical and neoclassical transport theories are violated.
In this case, the transport originates essentially from the
collective phenomena described as the anomalous trans-
port [6] and the plasma is said to be in a turbulent state.
In the same way that a definitive theory of turbulence in
neutral fluids has not yet been achieved, there exists no
systematic theory for the anomalous transport in plas-
mas.

One of the main properties of turbulence in both plas-
mas and neutral fluids is the wide range of spatial scales
characterizing the phenomena. Consequently, the theo-
retical difficulty in describing turbulent phenomena con-
sists in dealing with a large number of variables. From
a practical point of view, not all of these variables are
relevant. In many turbulence experiments, some impor-
tant results are expressed in terms of averaged quantities
that do not exhibit very rapid spatial variations. An av-
eraged description of turbulence is thus required, keeping
in mind that small-scale phenomena may have a strong
influence on that description. Unfortunately, although
this problem can be stated quite clearly, it will appear
very difficult. This explains the large number of theories
and approximations proposed for describing turbulence.
Many of these theories have been first developed to study
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neutral fluids before being used as a guide for the inves-
tigation of plasma turbulence. For instance, the direct
interaction approximation [7,8] (DIA) and the Marko-
vian approximations [9] derived to investigate the sta-
tistical properties of solutions of the Navier-Stokes equa-
tion, have been applied to the study of plasma turbulence
for a long time [10-12].

More recently, the dynamical renormalization-group
(RNG) method, developed by Ma and Mazenko [13] for
the study of ferromagnetic phase transitions, has been
extensively used for describing the large-scale and long-
time properties of the turbulent regime of neutral flu-
ids [14]. By using RNG methods, Fournier and Frisch
[15] and Yakhot and Orszag [16] have obtained inter-
esting universal results on the statistical properties of
forced hydrodynamic turbulence. Quantities such as the
energy spectrum and the effective transport coefficients
have been evaluated with a certain success. In this paper,
our goal is to apply the same method to the drift-wave
microturbulence in plasmas.

The instabilities observed in plasma physics are much
more diverse than in hydrodynamics. According to the
importance of collisional processes, one distinguishes in
magnetized plasmas the macroturbulence and the micro-
turbulence. The macroturbulence is generated by the
magnetohydrodynamic (MHD) instabilities that appear
in the collision-dominated plasmas. The set of equa-
tions describing these phenomena consists of the hydro-
dynamical balance equations coupled with the Maxwell
equations. The applications of the RNG to plasma tur-
bulence have usually been restricted to these equations
[17-19] and therefore to the description of macroturbu-
lence. Nevertheless, if the electric field generated by the
plasma has a significant influence on its dynamics, an-
other kind of turbulence will be observed: the microtur-
bulence generated by the drift-wave instability. The pres-
ence of drift waves in a plasma is closely related to the
existence of a diamagnetic drift current. Such a current
arises as a consequence of both the magnetic field and
the spatial dependence of plasma properties like the den-
sity and the temperature. Its direction is mutually per-
pendicular to the magnetic field and the gradient. The
drift waves are collective oscillations propagating along
the diamagnetic current. If these waves become impor-
tant, the plasma will reach the so-called drift turbulent
state. Such phenomena are usually described by the gy-
rokinetic equation (GKE).

To our knowledge, the only application of the RNG
to microturbulence has been developed by Hamza and
Sudan [20] in the study of the simple Hasegawa-Mima
model [21]. Such instabilities are usually described by
the velocity distribution function. We are then con-
fronted with the very complex problem of the well known
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hier-
archy [2]. Fortunately, in the case of the weakly colli-
sional plasmas (that is considered here), this hierarchy
can be reduced to the Vlasov equation. The velocity de-
pendence of the distribution function leads, however, to
some complications when compared to the MHD equa-
tions. This could explain why the RNG study of micro-
turbulence has not been widely developed.
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Let us stress an important peculiarity of the present
application of the RNG. Here, the turbulence is assumed
to be driven by the fluctuations of the electric poten-
tial. There is no need in the theory of any artificial
random noise term. This is a very convenient aspect
of the present approach. Indeed, this means that, unlike
the previous applications of the RNG to both neutral
fluids and plasmas, it is possible to study the universal
properties of turbulence without introducing unphysical
quantities like artificial random sources into the equa-
tions. However, in this RNG application to the GKE, we
are treating a non-self-consistent problem in which the
statistics of the electric field is assumed to be known.

The final goal of this work is to derive the transport
laws in this drift-wave turbulent regime. We start from
the renormalized gyrokinetic equation (RGKE). We de-
rive explicit relations between the gradients of tempera-
tures and density, and the macroscopic fluxes of matter
and energy. From these relations, the tensor of transport
coefficients can be obtained.

In Sec. II, we discuss some approximations which are
needed to derive the GKE. This evolution equation for
the velocity distribution will be the starting point of
our analysis of the drift-wave turbulence in plasmas. In
Sec. III, we present the main ideas of the dynamical
renormalization group. This theory is applied to the
GKE and the renormalization of the linear terms is en-
tered into in some detail. We show in Sec. IV that the
general results derived from the renormalization tech-
nique are compatible with some other theories. Particu-
larly, both the quasilinear and the DIA limits are inves-
tigated. General expressions for both the fluxes and the
transport coefficients are given in Sec. V. These expres-
sions can be written in a particularly simple form that is
not explicitly dependent on the spectrum of the electric
potential fluctuations. Two simple examples are treated
in more detail in Sec. VI. We show that both quasilin-
ear and Bohm scaling for the anomalous diffusion can
be recovered. Finally, some general consequences of the
results are discussed in the last section.

II. THE GYROKINETIC EQUATION

The main motivation of the present work is the investi-
gation of the anomalous transport in strongly magnetized
plasmas. In a first approximation, such transport phe-
nomena are assumed to originate essentially from wave
interactions in which collisions between particles can be
neglected. In the present paper, we consider a plasma
consisting of electrons (mass m,, charge e = —e) and
a single species of singly charged ions (mass m;, charge
e; = +e) in the presence of a magnetic field B and an
electric field E. In the ordinary kinetic theory, the mi-
croscopic state of the plasma is completely specified by
the knowledge of the one-particle momentum distribution
function of each species f(r,p;t) (o takes two possible
values, e for the electrons and i for ions). The momen-
tum distribution function gives the density probability
to find at a given point (r,t) of the space-time a particle
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with a momentum p. The Vlasov equation for f*(r, p;t)
has the following general form:

OB _ (goe,pit), (e sty (1)

where H*(r,p;t) is the Hamiltonian of a particle of
species a moving in the self-consistent electromagnetic
field created by all the other particles, as well as by the
external sources. The bracket [ , ], denotes the Poisson
bracket. We are interested here in the more particular
but also very important electrostatic drift-wave instabil-
ities. In this case, the GKE is more suitable than the
general Vlasov equation. The GKE can be derived from
the latter by making a systematic expansion based on the
drift approximation in nonrelativistic plasmas [22,23]. It
is not the purpose of this paper to describe in detail the
derivation of the GKE so we focus on the main ideas of
the drift approximation. Let us introduce some nota-
tions. The Larmor radius of a particle of species & whose
velocity component perpendicular to B, briefly called v |,
is given by

Pa = %iaa (2)
where Q, = e,B/mqc is the Larmor frequency of species
a in a magnetic field of intensity B and where c is the
speed of light. We also introduce another typical length
of the plasma: Lg = B/ || VB||. It represents the char-
acteristic gradient length associated with the magnetic
field geometry. With these definitions, the drift approxi-
mation can be expressed in the following forms:

B~ O(e7Y). (3)

We now consider that the plasma is perturbed away
from a local equilibrium state by an electric potential
fluctuation d¢, whose statistical properties will be speci-
fied below. It is convenient to separate the perturbation
of the distribution function into an “adiabatic” part and
a “nonadiabatic” part dh*:

fo(r,vit) = F — ;T"Fg‘&ﬁ(r;t) +8h%(r,vit), (4)

where the local equilibrium distribution is given by the
Maxwellian

Fg(z,0) = (r_lﬁ)s n(z) exp [—V}] (5)

Here V, = 1/2T,/ms denotes the thermal velocity of
species . We note that with these definitions the density
n and the temperatures T® appear as moments of the
equilibrium distribution function:

n(z)= /dv F§(z,v), (6)

Mq

T“(m):;% /dv 2 P (a,v)- 7)
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In writing the GKE it is usual to use the velocity rather
than the momentum in the distribution function. As
the distribution (5) corresponds to the local equilibrium,
the macroscopic properties are assumed to slowly vary
in space. Following the usual “shearless slab geometry
model,” we assume that the magnetic field is parallel to
1, = b and that n, and T, slowly depend on a coordinate
= mimicking the radial coordinate in a tokamak. Due to
the quasineutrality of the plasma, the ionic and electronic
densities are almost equal: n;(z) = ne(z) = n(z). In
Fourier space the GKE can be written as follows:

g(k,v)16R°(k, v) + A%(k,v) 64(k)
S / dd k- (q x b)L2 (v, )65(&)5h" (k — &, v),
(8)

where

*= Bem ©

and LJ(vy) denotes the zero-order Bessel function

Jo(q1v1 /Qq)- The overbar (X) denotes the gyro average
of the quantity X. The gyro-averaged quantities only de-
pend on the parallel component v and the length of the
perpendicular component v, , but not on the gyrophase
(cylindrical coordinates). The simple notation k will be
used to refer to both the wave vector k and the frequency
w. Let us note that Eq. (8) describes drift waves for which
wavelength and frequency are not totally arbitrary. In-
deed, it is usually assumed that the drift waves have a
low frequency compared to Q4 [w/Qn = O(€)], and a
large wavelength in the parallel direction [kjpa = O(é)].
On the other hand, the wavelength in the perpendicular
direction can be small [k po = O(é°)]. The propagator
in (6) is given by

g(k,v) = (—iw + ikyvy) ", (10)
and the so-called vertex term A®(k, v) is given by
A%k, v) = ifw - k,VE®)] 7 F§(2,v) Li(os), (11)
where
2
T _ v 3
Via(v) = Via [1 + (V_j - 5) na] . (12)

The diamagnetic drift velocity is given by

cTo(x)0zn(x)
eaBn(z) ’

and 7, = dlogT,/dlogn. Let us note that the vertex
term depends on the space variable z although Eq. (8)
is written in Fourier space. This originates in the mul-
tiscale approximation used to derive this equation. The
space variable in T,(z) and n(z) is assumed to refer to
the slow spatial dependence in the direction 1, which
is perpendicular to the magnetic surface. On the other
hand, the space variable in the nonadiabatic distribution

Via = (13)



function refers to very rapid spatial variations. The in-
dependence of these variables is assumed by making the
local approximation [24]. The GKE is a dynamical rela-
tion between the nonadiabatic distribution function and
the fluctuating electric potential. In a fully self-consistent
approach, it should be completed by the Poisson equa-
tion which, in the gyrokinetic ordering, degenerates into
the quasineutrality equation dn. = én;. In the present
approach, we are not using this self-consistent treatment
but rather the stochastic acceleration of test particles in
a given fluctuating field. In this renormalization-group
study of the GKE, we shall therefore consider that the
statistical properties of the fluctuating electric potential
are completely known. Particularly, we assume that §¢
is a Gaussian noise so that its statistics is determined by
the knowledge of its average and its variance. As we con-
sider only the fluctuations of the electric potential, the
average of §¢ clearly vanishes, so we only need to specify
the two-point correlations

(6(k)34(@)) = S(ky, k1;w)s(k + &). (14)

The Dirac distribution &(k +§) in (14) reflects the fact
that we are limiting our scope to homogeneous and sta-
tionary turbulence. In other words, we are assuming that
the correlations of the electric potential (d¢(r,t)dd(x',t'))
only depend on the differences in space (r — r’) and in
time (¢—t’). Let us stress that the assumption of station-
ary and homogeneous turbulence does not preclude time
and space variations of the macroscopic properties of the
plasma. We only assume that properties like homogene-
ity and stationarity, possibly broken at large scales, are
statistically recovered at small scales. We are showing
in the following section how the RNG can be applied to
the gyrokinetic equation forced by such an electric po-
tential (14).

III. THE DYNAMICAL RENORMALIZATION
GROUP

As mentioned before, the GKE provides an implicit
relation between the nonadiabatic distribution function
and the fluctuating electric field. As in many other tur-
bulent phenomena, it is impossible to solve this equation
in order to derive the precise temporal and spatial de-
pendence of the nonadiabatic distribution function. An-
other very interesting and apparently easier problem is to
transform the GKE into an explicit relation between 6h
and 6¢. Due to the nonlinearity in (8) such an explicit re-
lation cannot be exactly obtained. The first widely used
approximation consists of simply neglecting the nonlin-
ear term in the GKE. Unfortunately the results deriving
from the linear theory [25] are very questionable [26] be-
cause of the dominant role of nonlinear interactions in
drift-wave turbulence. Much more sophisticated theories
have been developed to go farther on in the derivation
of nonlinear perturbations. Dupree introduced a general
perturbation scheme based on the “test-wave” concept
[27] and applied it to the drift-wave turbulence [28]. We-
instock proposed a statistical theory clarifying Dupree’s
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approach [29] which was further extended by Misguich
and Balescu [30]. Let us also mention the work of Orszag
and Kraichnan [10], and DuBois and Espedal [11] based
on the DIA. These perturbative approaches were devel-
oped in order to take into account the nonlinear character
of the Vlasov equation (or of the GKE). They have been
refined in numerous subsequent works among which we
only quote two review papers [31,32]. All of them result
in modified Vlasov equations renormalized by new “lin-
ear” terms. In some sense, the renormalization-group
technique presented here belongs to this type of approx-
imation. Nevertheless, in our theory the renormalization
of both the propagator and the vertex will appear as a
consequence of the small scales elimination. Let us show
how this renormalization arises in the study of a gener-
alized GKE, which is written in the following schematic
form:

9716k + Adg = AN[6¢, 5h]. (15)

The parameter A (9) has been explicitly introduced for
further convenience. From now on, we drop the overbar
symbol for the gyro average. The possible influence of
an additional forcing noise appearing as a consequence
of the renormalization scheme could also be investigated.
However, as usual in RNG theory of turbulence, we will
neglect this self-generated forcing when compared to the
fluctuation of the electric potential. This is a nontrivial
approximation that could be investigated further in sub-
sequent works. Let us only mention that, in the simple
examples presented in Sec. VI, the influence of a possible
renormalized forcing seems to be negligible. We define
the quantity A as the upper limit of wave vectors for
which Eq. (15) is valid. This parameter is often called
the cutoff wave vector. For the GKE, the cutoff is approx-
imately equal to the Debye wave vector (kp). In what
follows, we assume that the original cutoff is A = oo.
Moreover, we assume that both the propagator and the
vertex are renormalized by additional terms, which are
proportional to k3 = k2 + k2:

g"‘(lE, v) = (—iw + k) + va(A; v)k'j’_)_1 , (16)

A%(k, v)= {ilw — kyVE ()] - 0a(A; v)E2}
x 22 Fg(z,v) Li(vs). (17)

Here, “vertex” refers to the linear term proportional to §¢
in the GKE and should not be confused with other uses
of the same terminology. For example, in the RNG lit-
erature “vertex” sometimes refers to the nonlinear term.
We limit the renormalizing terms to those proportional
to k2 by anticipating the properties of the ¢ expansion
related to the RNG technique. A more detailed discus-
sion is presented below. The actual GKE is recovered
when A = oo:

Va(oo;v) =0,
a'a((oo;rr)) =0. (18)

The RNG technique is based on the concept of small
scales elimination and on perturbative methods. Prac-
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tically, it will be used to transform the actual GKE
with (18) into a new, structurally similar, equation re-
stricted to the domain of wave vectors |k| < A but with
nonvanishing quantities p(A) = (va(A;V),04(A;V)).
Both the vertex and the propagator are then said to be
renormalized by the quantities p(A). Particular cases,
when these quantities become large, are very impor-
tant because they may justify a linear approximation
of the renormalized equation. We show hereafter how
the quantities p(A) can be derived directly from both
the structure of the GKE and the statistical proper-
ties of the electric potential (14). In Fourier space, the
elimination of small scales from the original GKE is ex-
pressed by the elimination of the wave vectors in the
range A < k). As the GKE describes wave vectors with
small k| [kjpa = O(€)], this shell corresponds to the
largest wave vectors belonging to the definition domain
of the equation and consequently to the smallest length
scales. Due to the nonlinear character of the GKE, such
an elimination cannot be performed exactly. A first ap-
proximation consists in decomposing the shell elimina-
tion into successive eliminations of the small wave vector
domain A — A < k; < A. To perform the calculations,
the nonadiabatic distribution function is divided into low
wave vector and high wave vector components:

6h<(k), ki <A—6A

h(k) = {5h>(ﬁ), A-6A <k <A (19)

The same decomposition is used for the electric potential.
The equations for §h< and §h™ are directly derived from
Eq. (15):

g 18h< + ASp< = AN[5¢< + 8¢~ ,6R< + 7], (20)

g 16R> + AS$> = AN[66< + 6¢”,6h< + 6K>]. (21)

In terms of these new variables, the small spatial scales
elimination is equivalent to the derivation of a closed
equation for §h<(k). The nonlinearity of Eqs. (20) and
(21) does not allow a rigorous decoupling between §A< (k)

and 6h> (lA() It is then necessary to make some approx-
imations. The first one is the A expansion. It simply

]

consists of considering that the nonlinear term is small
in comparison with the linear one. Of course, if this
assumption were verified for all wave vectors, the A ex-
pansion could be used to obtain an approximate solution
of the complete equation (15). The problem is then said
to be weakly nonlinear. We already mentioned that such
an approximation cannot be used for the GKE due to
the importance of nonlinear interactions. Nevertheless,
this approximation could be quite accurate in the large
wave vector limit. Hence we assume that the A expan-
sion is convergent for the wave vectors belonging to the
shell A — A < k; < A. If this assumption is true, an
approximate solution for §h> will then be obtained to
any order in A. Unfortunately, we are not able at this
stage to prove this convergence. Up to order 1 in A, 6k~
is given by

§h” = —gAd¢~
+gAN[56< + 56>, 6h< — g A 687 + O(A2).
(22)

We can now inject Eq. (22) into Eq. (20) to derive a closed
equation for §h<. The RNG emerges here because the
elimination of the shell of wave vectors A —A < k; <A
does not change the structure of the original Eq. (15) but
only modifies the quantities u(A — §A) # pu(A). Conse-
quently, the structure invariance of the equation allows
an iterative elimination of successive wave vector shells.
This leads to a set of differential equations relating the
quantities p(A) to the cutoff:

Op(A)

= = M(u, ). (23)

The equalities (18) play the role of initial conditions
for these differential equations. If the changes in u really
increase the linear terms, the A expansion will become
more and more convergent. This could justify the use
of this expansion for smaller and smaller wave vectors.
Hence, Eq. (23) could be defined in a larger domain of A
than the convergence domain of the A expansion for the
original GKE. Let us now show explicitly how Eq. (23)
can be derived from the GKE. If the approximate solu-
tion (22) is injected into the equation for A< (20), we
will obtain an equation where h> has disappeared:

g~ L6h< + AS¢< = AN[5¢< + 8¢ ,6h< — g A 6¢”] + AN2N[6¢< + 8¢, N[6¢< + 6¢>,6h< — g A 6¢”]] + O(N3).

At this stage the structure invariance of the GKE is cer-
tainly not obvious for various reasons. Let us first notice
that the function 6¢> appears in Eq. (24). This implies
that this equation is not yet independent of the small-
scale properties of the system. To solve this problem we
split all the new terms into an averaged part and a fluc-
tuation, the average being taken over all the possible re-
alizations of §¢~. The fluctuating parts of the new terms
are neglected or incorporated in the fluctuating electric

(24)

field. The average of the new terms leads to renormal-
ization of both v, and o.

The structure invariance can also be broken for another
reason. Indeed, terms renormalizing the vertex and the
propagator have generally a much more complicated form
than the corrections proportional to k. The exact cal-
culations would exhibit terms proportional to k% k¢, ....
A nice feature of RNG techniques is the existence of a
well-defined expansion in which all higher order terms in
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k, may be neglected. This approximation is known as
the € expansion [33] [here € should not be confused with
the drift-expansion parameter € introduced in (3)]. It will
be developed in Sec. IV B.

Finally, let us note that, strictly speaking, the struc-
ture invariance is broken by the appearance of a new cu-
bic nonlinear term N[6¢<,gN[6¢<,8h<]]. In the renor-
malization of the Navier-Stokes equation, it has been
shown [34] that such cubic nonlinearities do not influ-
ence the renormalized linear terms. This result holds in
the present case too. This means that the cubic non-
linearity could be kept to order A? in the renormalized
equation but that it does not change the propagator or
the vertex. However, the final goal of the renormalization
is to provide an equation with a renormalized linear term
large enough to justify the linear approximation in which
this cubic nonlinearity will be finally neglected. For this
reason, we neglect this term from the beginning, know-
ing that this approximation does not influence the linear
renormalized GKE.

Let us now present some detailed calculations leading
to the differential equation which characterizes the small
scales elimination. First, we consider the term renormal-
izing the coefficient v, which appears in the propagator
(in the derivation of the equations for v, and o, we shall
systematically omit to write the velocity dependence of
these quantities)

T, = (N[6¢>, gN[6¢” ,5h<]]). (25)

By taking into account that §¢~ is a Gaussian noise, and
by injecting the correlations (14) into (25), we obtain

T = — / d4 [k - (q x b)] (L2)%6%(~4, v)
A4
x S(§)dh><(k,v). (26)

The volume of integration V is defined by the inequality
A —0A < g1 < A in the four-dimensional space {§ =
(2,q9)}. In what follows, we also need to introduce the
domain of variation V of both the parallel wave vector
(gy) and the frequency (2). This volume of integration
is defined in the two-dimensional space {g|,Q} by the
approximations made to derive the GKE, i.e., drift waves
are assumed to have small frequency as compared to the
Larmor frequency and small parallel wave vectors. To
lowest order in k, the integration over the perpendicular
wave vector can be performed with the following result:

Ti = —k2 5h*<(k, v)2m(L%)?vaASSA
y / dg) d25(q), A, )
v (2 - qyv))? + v2A4

At this stage, the influence of T} in the GKE becomes
clear. Indeed, we note in Eq. (27) that this term is pro-
portional to k3 6h*<(k,v) which has exactly the same
structure as the v, term in the propagator. The term T}
being in the right hand side of Eq. (24), the increase of
Vo will be proportional to 7} with the opposite sign. The
resulting integrodifferential equation, which relates v, to

+ O(8A?). (27)
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the cutoff, is then given by

v, 2 2 5/ dq" a2 S(q",A, Q)
bt N . (28
aa ~ ™ (LA vad v(Q — qvy)? + v2A% (28)

A new minus sign originates from the fact that the pa-
rameter v, increases when the cutoff decreases from A to
A — 6A. Let us now turn to the renormalization of o,
originating from the term

T» = (N[6¢”,gN[¢=, —~gAd$7]]). (29)

By following the same procedure used in the evaluation
of T1, we inject the correlations (14) into (29). After
having performed the integration over the perpendicular
wave vector, the resulting integrodifferential equation for
0 is given by

99 _ _nx2(L2)2A5 / dq; 42 S(qy, A, Q)
oA 7
OaViA* — 0a(Q — qyv))* + 2va (2 — qjv))Q
(2 — gyvy)? + vZA4]? '

(30)

Two particular cases will be treated explicitly in the
following section. The equations (28) and (30) define the
renormalized linear operators that appear in the GKE.
Both the propagator and the vertex are then written in
terms of the spectrum S(q), A, 2) of the fluctuating elec-
tric potential (14). Let us stress that the perturbation
scheme associated with the RNG does not reduce to an
analytic expansion of v and ¢ in the coupling parameter
A. Even though the right hand sides of Egs. (28) and
(30) are analytic functions of A, the solutions of these
equations are not necessarily analytic. The integrodiffer-
ential equation (28) must be coupled with the “initial”
condition v4(oco;v) = 0. This condition expresses the
fact that the parameters v, and o, vamsh in the original
equation. By integrating Eq. (28) over A from A = oo to
a new cutoff A = k7, one gets

oo
Va(k1;v) = mA2 /k dgy (L5)?
L

va(gL;v) 4% S(q,q1,9)

x/dq”dQ P —
(2 —q) v)? +va(gs;v)%qt

(31)

where we have replaced the integration variable A by ¢ .
If we go back to a three-dimensional (3D) spatial inte-
gration domain (27q.dq,dg; — d3q), we rewrite this
equation in the form

valkiv) =3 [ aqan 9

q1>kT
Va(ql;v)qis(qllyql) Q)
(@ —qv))? + val(gr;v)? gt

(32)

The formulas (31) and (32) will often be used in the fol-
lowing sections. A similar calculation leads to the renor-
malization of the vertex o4:
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(kY5 V) = A2 /

qi >k

where we have omitted the (¢, ,v) dependence of v, and
04 in the integral.

IV. COMPARISON WITH OTHER THEORIES

Throughout this paper, we have used A as an expan-
sion parameter. Formally, we have already explained that
such an expansion consists in assuming that the nonlin-
ear term is small when compared to the linear one (in the
large wave vector limit). In fact A is equal to c¢/B(27)*
and the effective expansion parameter is given by

Xz _ Ova A

e (3)

The expressions (28) and (30) have been derived to the
lowest order in A (or A). At this stage, the smallness of
A has not been investigated and the expansion procedure
has to be justified a posteriori. It is interesting to note
that two very different limits are compatible with small
A. The first one corresponds to small spectral intensity
S while the other is associated with a large value of the
renormalized parameter v.

A. The quasilinear limit

When the intensity of the fluctuation spectrum S is not
too large, the wave-wave interactions can be neglected.
In this case, the turbulence is driven by wave-particle in-
teractions. This is the quasilinear (QL) limit [35]. It is
not the purpose of this section to rederive the expression
of QL results. We only mention that the QL effect usu-
ally introduces a diffusion coefficient proportional to the
spectrum. In the present formulation, the QL limit for
the GKE should correspond to a parameter v, propor-
tional to S. Due to the presence of v, in both sides of
Eq. (32), such a result is not obvious. Let us investigate
the limit of this equation for small S. We first perform
the change of variable 2 = gv; + zv(g.)g} to obtain

Va(k1) = A2 /daq dz (L3)%q?

o S 91,9y v +2vadl)
2 +1 ’

(35)
This equation can be schematically rewritten as follows:
v~ S(qu+v). (36)

If S is small, v can be successively approximated by
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UQV§A4 - G’Q(Q - q"v")2 + 2Va(n — q”v")Q

(2 — qvy)? + v2A%)? : (33)
1
v~ 8(qu) + 0(5?),
v~ S'(qv + S(qv)) + 0(5'3), (37)

By using the first-order approximation for v and the def-
inition of A (9), we obtain the following explicit solution
of Eq. (32):

Vo= (W) [ #atzg o

xq3 S(q),qL,qyv)) + O(S?). (38)

The expression (38) is compatible with with the QL
limit as the renormalized parameter v is proportional to
the spectrum S. As we have considered the non-self-
consistent problem, the result (38) differs from the fully
self-consistent quasilinear expression for the renormalized
propagator. Particularly, the eigenfrequencies of the dis-
persion function do not appear here. They are replaced
by the frequency: ¢jv;. To avoid any confusion in the
terminology, the result (38) will be said in what follows
to recover the QL scaling (rather than the QL results).
This is a general result independent of the detailed form
of the spectrum. The only condition for recovering the
QL scaling is the smallness of the spectral amplitude S.
As already mentioned, this also corresponds to a small
effective expansion parameter A. In Eq. (38) we have ap-
proximated the integration over = by m even though we
know that z cannot take infinite value in the drift or-
dering. The volume of integration V' that appears in the
expressions (28) and (30) is the two-dimensional domain
of variation of both the parallel wave vector and the fre-
quency. We recall that drift waves are assumed to have
small frequency compared to the Larmor frequency and
small parallel wave vectors as measured by the Larmor
radius. Nevertheless, we will usually consider in what fol-
lows that both g and Q vary between —oo and +oo. This
could seem a rather crude approximation but we note
that all the integrals to be calculated have integrands
dominated by the values of g and {2 near the resonance
of the propagator (Q ~ gv)). Consequently, the use of a
much larger domain of integration only introduces small
errors in the final results.

B. The € expansion

We have shown that the QL scaling is compatible with
the general equation for v derived from the small scale
elimination procedure. The iterative small scales elimi-
nation presented in Sec. III, like the QL theory, is based
on the X expansion. However, contrary to the QL theory,
this procedure does not assume that S — 0 to justify this
expansion. There exists another condition to obtain an
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effectively small X. This condition corresponds to large
renormalized parameter v and is usually related to the so
called € expansion. Roughly speaking, the latter consists
of the search for an ideal system for which the A expan-
sion leads to exact results. Such a system corresponds
to a fixed point in the RNG terminology. The departure
between real and ideal systems is then treated as a small
parameter €. Let us show by a simple example how this
parameter can be defined. We consider a spectrum of
potential fluctuations given by

S(x) = kT S(ky/kL)- (39)

This corresponds to a power-law white noise spectrum
(independent of the frequency). We introduce the nota-
tion

+oo
] S(z)dz = s;. (40)

The frequency integration can then be easily performed
and the solution of Eq. (31) is given by

(k>
11— -

v(k%) = 2X%n2s (41)
For a physically meaningful potential spectrum, the pa-
rameter s; cannot be divergent. Therefore the only way
to ensure a large value for v is to assume an e expansion
with € = —5 — m. The parameter v is then porpor-
tional to (k7 )™¢/e. Let us insist on the following remark:
The expression (32) contains both limit cases, QL with
small renormalization and RNG with large renormaliza-
tion. Both these limits are compatible with the A ex-
pansion. However, the QL limit and the RNG limit can
generally not be performed simultaneously.

C. The DIA limit

The renormalization of both propagator and vertex
terms has been obtained by various other theories. We
show in this section that, under very simple approxima-
tions, the parameter v defined by the expression (32)
is the same as the renormalization of the propagator de-
rived from the direct interaction approximation. We first
neglect the finite Larmor radius effects in order to sim-
plify the notation, and we assume that (k%) is weakly
dependent on k7 for small k% . In this case, we obtain an
integral equation for v:

_ 2 3 4 S (qll 1 gL, Q)
Vg = VA /d q dQ ¢} @—qu)? + 28 (42)
In this equation v is assumed to be independent of &k .
The equation (42) is the same as the one derived by
Dupree for the ion diffusion coefficient [28]. We also note
that Dupree’s equation may be derived by using the DIA
formalism [36,37]. It is remarkable to note that, in some
sense, the RNG theory with the Gaussian assumption on
d¢ is equivalent to the DIA approach in which deviations
from the Gaussianity are taken into account. However,

1451

the averaging procedure is performed in a single step in
the DIA while it is achieved iteratively in the RNG.

V. ANOMALOUS FLUXES AND TRANSPORT
COEFFICIENTS

In this section we determine the relations between
the macroscopic fluxes and the thermodynamical forces.
The latter originate from the spatial dependence of both
the particle densities and the temperatures. Due to
the quasineutrality assumption, only three independent
forces are available. They are usually denoted

_ _ Olog[n(z)]

Xi=——%s

x,= Qo) (3
_ Olog[Ti(=)]

K= - oz ’

and they represent the radial gradient of the density, the
electronic temperature, and the ionic temperature, re-
spectively. The anomalous fluxes are created by the fluc-
tuations of macroscopic quantities such as the electron
density and the electron and ion pressures dn, 6 P., § P;.
These fluctuations are derived from d¢ and §h<:

Sng= / dv §f*(k,v)

= —nag2 80(0) + / dv LEshe(k,v),  (44)

2 -~
5Pa= / dv 2 55%(k,v)

Mg V2

5 Sh(k,v).  (45)

= —nqeqadd(k) + /de‘,:'

We have already mentioned in Sec. II that, in a fully self-
consistent approach, the GKE should be coupled with the
Poisson equation. The latter reduces in the gyrokinetic
ordering to the quasineutrality condition én; =~ én.. In
the present approach, such a condition cannot be de-
rived from the basic equations. However, in order to
simplify the transport equations, we are assuming that
the quasineutrality condition is valid at the macroscopic
level. The links between the fluctuations and the anoma-
lous radial fluxes of matter and energy are then given by
(6,26,38]

Ta(z)= ——;—(Jna(r,t)vyéiqb(r,t)), (46)
Qa(z) 5 ¢
7= =5 g OPa(r,)Vys9(r,1). (a7)

Being macroscopic quantities, the fluxes are assumed to
depend only on the coordinate . This will be verified a
posteriors in the transport laws. Moreover, I', and Q, as
defined in (46) and (47) are radial () components of vec-
tors. Due to the quasineutrality, only three macroscopic
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fluxes are independent. They will be denoted

Ji= re,
JZ: QC/Tev (48)
J3= Qi/T;.

They respectively represent the radial flux of electrons,
electronic energy, and ionic energy. If the notion of
anomalous transport coefficients is meaningful, the ra-
dial fluxes will be related to the forces by the (linear)
transport equations

Jo =Y croX,, 7,8=1,2,3 (49)

8

where the c,, are the anomalous transport coefficients. In
the quasilinear theory [39,40], the relations between the
fluxes (48) and the thermodynamical forces (43) are de-
rived by neglecting the nonlinear term (in the potential)
in the GKE. Both én, and §P, are then proportional
to 0¢. As a consequence, the fluxes are proportional to
the spectrum S(k). Of course, this approximation in
which all information from the nonlinear interactions is
neglected is only valid for small amplitudes of d¢ and
0h=. Here, our goal is to use the linear RGKE instead
of the linear GKE in the determination of the transport
equations. In this case, a part of the nonlinear interac-
tions is taken into account through the renormalization
of both the propagator and the vertex (28)-(30). The
linear term is then hopefully large enough to justify the
linear approximation for finite amplitude of §¢p and §h°.
Let us notice that both v and o depend on the spectrum
S (ﬁ) As a consequence, by neglecting the nonlinear term
in the RGKE, we obtain an equation which could remain
highly nonlinear and even nonanalytical in d¢. This will
strongly influence the anomalous transport coefficients in
some cases.
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We note that the expressions (46) and (47) are given
in the real space. It is more convenient to use the Fourier
space representation of the fluctuations to investigate
these fluxes. The spectrum of the electric potential fluc-
tuations (14) can then be used to simplify the formu-
las. For this reason, we now express the fluxes as the
inverse Fourier transform of the Fourier transform of the
left hand side of the relations (46) and (47):

d'\ i(t—q'r) c 1
B (27)4

x / dk i(k - @)y (bra(k)Sd(@—K),  (50)
Qa(z) § et (2t T 1
T,  (2n) / dg e I S 2BT (2m)4
x / dki(k — q), (0P (k)ép(gq — k)). (51)

By using the linear RGKE, we easily derive an expression
for 6h that we inject into Eqs. (44) and (45) and then
into Egs. (50) and (51). Simple algebraic manipulations
allow us to reduce the above expressions to:

2
r,=-22 / dk k, S (k)
x / dvjvsdvy L (v1)Im{gg AR, (52)
2
Qa _ _§_B_"_/dkk S(k)
T,
x/ dv"vJ_va_L‘,:(v_L)%vzlm[gﬁ %) (53)

Let us now make use of the expressions (28)-(30) for the renormalized linear terms:

F Lk('l)_]_) (

- k“'U”)O'ak_ZL + (w

2
k Vda)uak (54)

Im[gg AR] =

(w — k)2 +

+v2kt

Due to the symmetry of the integration domain, the odd powers of k and w in the integrands lead to vanishing
contributions to the fluxes. From now on, we consider that the spectrum only depends on {k,k., |w|}. In real space
this means that

(6¢(r,t)d(r',t')) = S’(r” — Tfl’ lre =7 |, |t =t')). (55)

This assumption is very reasonable and leads to important simplifications in the expressions for the fluxes. Indeed,
in that case it is quite easy to perform the integration over the angle in the perpendicular plane with respect to 1,
for both the wave vector and the velocity variables, to obtain

+o0

+oo
Fa = 2n/\27r1/2/ du“ du_Lu_Le_"z [X]_ + (u2 — %)Xa]

X +°°dk +°°dk LVakd [LE(vL))? / S(k) (56)
” 0 oL w—k”u”V )2+l/2k4’

—0o0o
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2,.1/2 +oo +oo
Qo _10mX7 [y [ dususn? e [Xy + (o — 3)X,]
Ta 3 —oo 0
+o00 +oo S(f{)
517 2 [dw , 57
X [m dk) | dkyvak] [Lg(vi)] / (w—kjuyVa)? + v2ki 57)

where we have used the definitions (12) and (13). We
have also introduced the dimensionless velocity u = v/V,
and dropped the velocity and wave number dependence
of vo and L*. For convenience, we use the notation
Xe = X3 and X; = X3. The comparison between these
expressions and Eq. (49) leads to the determination of the
anomalous transport coefficients. The X; dependence in
the fluxes arises from the drift velocity defined in (13)
that appears in the vertex term. Let us notice that the
parameter 0,, which renormalizes the vertex, does not
influence the fluxes when the spectrum has the proper-
ties described by Eq. (55). Such a property, which is
quite general, appears here more clearly than in some
other approximations where o, is usually set equal to v,
(as in the coherent approximation).

It must be noted that, strictly speaking, the expres-
sions (56) and (57) for the fluxes depend on the cutoff
wave vector A introduced in the renormalization proce-
dure. Indeed, the renormalized parameter v, is explic-
itly A dependent. As usual in the evaluation of both the
transport coefficients and the energy spectra [16], the cut-
off dependence in the renormalized equation is considered
to be a wave vector dependence

Va(A, V) = ve(kL,V). (58)

This can be justified as follows. We recall that the renor-
malized GKE after the elimination of wave vectors larger
than A can be written as

971 (k,A) 6h(k) + A(k, A) 5¢(k) = AN[6¢,6R]. (59)

In the procedure used to derive the fluxes (56) and (57),
the linearized version of this equation has been nsed. We
have already mentioned that the use of the linear RGKE
is justified by the hope that the renormalizing parame-
ters (v and o) are large enough to make the linear terms
larger than the nonlinear ones. This is the main idea of
the renormalization procedure. However, the nonlinear-
ity has not disappeared from Eq. (59). Let us consider
a given Fourier mode of the nonadiabatic velocity distri-

bution §h%(k,v). It is submitted to a large number of -

interactions (represented by the nonlinear term). In the
RGKE, all interactions with modes in the range q; > A
have been perturbatively eliminated by the renormaliza-
tion scheme and are taken into account through the pa-
rameters v,(A,v) and o4(A,v). The interactions with
modes ¢; < A have not been eliminated and are repre-
sented by the remaining nonlinear term. Consequently,
the best linear RGKE that can be used to describe the
evolution of the mode §h*(k, v) should correspond to the
equation in which all interactions with modes ¢; > k
have been perturbatively removed. This linear RGKE
can then be rewritten as

g7 (k,v(ky)) Sh(k) + A(k,o(k1))ég(k) =0. (60)

This justifies the use of the relation (58). In that case, the
expressions (56) and (57) for the fluxes can be simplified
by taking into acount the relation (31) with k£ = 0. This
leads to

Fa = % /du"du_Lule_“z

xD*(u)[X; + (v? — 3)Xa], (61)
?,—: = % /du||duJ_u_Lu2 e_“2
xD*(u)[ X1 + (v? — 2)X.], (62)
where
D%(u) = vao(k] = 0,uVy,). (63)

These very simple formulas for the transport equations
actually hide the difficulty in the determination of the
diffusion coefficient D*(u). Hence, we have to couple the
relations (61) and (62) with the renormalization equation
for the parameter v,.

VI. EXAMPLES

As explained in the Introduction, the final goal of this
work is to give a theoretical evaluation of the anomalous
transport coefficients. In the previous section, we have
shown that the entire difficulty of this evaluation can
be reduced to the calculation of the parameter D*(u)
or equivalently to the evaluation of v,. Of course,Athis
evaluation cannot be obtained if the spectrum S(k) is
not known. Hence we consider two examples in which
we specify the form of the spectrum. In some sense the
following examples could appear as rather academic but
they supply us with a suitable tool for investigating the
link between several assumptions made on the electric
potential and the final form of the renormalized GKE.
In both examples, we are neglecting the finite Larmor
radius effects in order to simplify the calculations.

A. White noise potential fluctuations

We first consider the particular situation of uncorre-
lated potential fluctuations for different times

(5¢e8d) ~ 8(t —t'). (64)

Such fluctuating processes are usually referred to as white
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noises. This assumption is usually made in the study
of the renormalization of the Navier-Stokes equation
[14-16]. Let us however mention two papers where “col-
ored noises” have been studied in the application of RNG
theory to neutral fluid evolution. In the first one Carati
[41] studied the influence of the color of the noise on the
convergence properties of the e expansion. In another ap-
proach based on the path integral formalism [8,42] Yuan
and Ronis [43] tried to describe different aspects of tur-
bulence, including both intermittency and Kolmogorov
regimes, using more general noises. In Fourier space the
correlation (14) can now be written

(8 (k)5p(@)) = S(ky, kL)5(k + ). (65)

When the correlation (65) is injected into Egs. (28) and
(30), the frequency integration can be performed exactly
and one obtains the following relations:

va(k%;v) = oa(ky;v) = 7r,\2/ d%*q ¢4 S(q). (66)

a>k7

It is remarkable that this result is identical to the QL
scaling for v given in Eq. (38). From the relation (66), it
is now very simple to derive the value of the parameter

D defined in (63):

D= [ & £1(q), (67)

where £ (g) is the fluctuation spectrum of the transverse
electric field. The relation (67) is valid as long as the
potential fluctuations behave in time like a white noise.
However, to be meaningful this relation requires that the
wave vector integration converges. This will be the case
in any realistic physical situation but would not be true
for some academic spectra like a pure power law. Here-
after, we are assuming that the integration in Eq. (67)
is well defined. It appears that D is now completely in-
dependent of both the velocity and the species index. In
this case, the velocity integrations in the relations (61)
and (62) can be explicitly performed:

.= nDXy, (68)
Q. 5nD

—_— — a)-

T 5 (X1 + Xa) (69)

The transport coefficients are then given by the tensor

1 0 0
Cra = (5/2 5/2 0 ) Dn. (70)
5/2 0 5/2

The matter fluxes being independent of the species in-
dex, it is an easy matter to verify that the ambipolarity
condition is recovered for the fluxes

D Taea =0. (71)

We finally remark that the transport coefficients are here
proportional to the electric field spectrum and inversely
proportional to the square of the magnetic field intensity
(QL scaling).
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B. Frequency dependent spectrum

Let us now consider another example with a more re-
alistic spectrum

S(ky)
[1+ (w/we)?][1+ (k) /kﬁ)z] ’

S(k1) = (72)

where w® and kﬁ represent a characteristic frequency and
a characteristic parallel wave vector, respectively. In this
case, Eq. (31) reduces to

oo a3 S'
va(kh) = A28 / %jeraiSlay) (73)

q.1 .
ke gfv) +we +va(gL)gl

Of course, this integral equation for v is too complicated
to be solved exactly. We have already shown in Sec. IV A
that the parameter v, is proportional to the spectral am-
plitude if the latter is small. Let us here consider the op-
posite limit. In this case the quantity v, becomes large
and, more precisely,

Va(q1)gl > w® + gjyy. (74)

Of course, this approximation cannot be valid for small
q.. However, this domain in the integration can be ne-
glected because of the factor g3 . Moreover, the presence
of this factor has the following consequence:

v(k*) = v(0) for small kY. (75)

Indeed, the difference between v(k*) and v(0) is given
by the integral appearing in (73) with the range of in-
tegration (0 < k; < k%), precisely the domain we have
considered as negligible. Thus the function v4(g.) in the
integral in (73) can be approximated by v (0) = vo. This
parameter is then determined by

Vi ,\21r3wcqﬁ/ dg19.5(q1)- (76)
0

Let us denote by 3 the integral of the wave vector spec-
trum S(g.). The parameter v, is then simply given by

~ . [m3w.qts —e 77
Vo 7r “-’cq"3 B(27r)4' ( )

The matrix of transport coefficient has exactly the same
strucure as in the previous example. However, the trans-
port coefficients amplitude is very different. It is now
proportional to the square root of the spectrum S and in-
versely proportional to the magnetic field intensity. This
is exactly the Bohm scaling for the diffusion coefficient.
It can be seen in Eq. (31) that this is the normal scaling
for the quantity v, if the inequality (74) is verified in a
large part of the spectrum.

VII. DISCUSSION

In some sense our work may be considered as an exten-
sion of the application of the RNG to fluid turbulence.
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Indeed, the velocity plays here the role of a parameter
in the gyrokinetic equation (and is not a dynamical vari-
able as in the Vlasov equation). As suggested by the first
paragraphs of our introduction, we are more interested
in using the RNG as a tool to derive some information
concerning transport laws in turbulent plasmas than in
improving the underlying theoretical basis of the RNG.
We have combined the RNG methods with the determi-
nation of the transport laws in the presence of macro-
scopic gradients of temperature and density. Although
none of these parts should be considered as entirely new,
their combination leads to sonie nontrivial consequences.
In particular, the expressions of the transport laws, ob-
tained by coupling the classical expression for the fluxes
(46) and (47) and the renormalization equation for the
parameter v, are very simple and represent, in our opin-
ion, interesting results.

The only point in our work which could be consid-
ered as new in the RNG context is the use of a simulta-
neously additive and multiplicative random source with
a well-defined physical meaning. Indeed, the particu-
lar case of purely additive random sources of energy has
been widely studied in the application of the RNG to
the Navier-Stokes equation and to MHD equations. On
the other hand, the RNG study of passive scalar diffu-
sion is more closely related to multiplicative noise. The
renormalized diffusivity is then generated by the veloc-
ity fluctuations that appear as a multiplicative factor in
the convective term. The present work shows that more
complex forcings do not introduce additional difficulties
in the renormalization scheme. We also notice that the
turbulence is kept in a stationary state by assuming that
the statistics of 8¢ is itself stationary. To our knowl-
edge, in all the previous applications of the RNG to the
study of a turbulent state, an external and artificial forc-
ing noise is systematically added into the equation. The
equations are then modified by the addition of a new
stochastic term. This is the case for the Navier-Stokes
equation [14-16] and for the MHD equations [17-19] as
well as in the renormalization of the Hasegawa-Mima
model [20]. The reason for that is simple: In all these
examples, the dynamical renormalization group leads to
extremely complicated and actually untractable calcula-
tions if the source of energy is explicitly specified. Indeed,
such sources as pressure gradients or external fields ex-
plicitly introduce anisotropy or inhomogeneity. Unfor-
tunately, the physical meaning of the artificial noises is
never clear: this represents one of the major drawbacks
of these theories. The turbulence generated by the actual
experimental conditions has to be assumed statistically
equivalent to the one generated by an artificial random
forcing. However, this assumption is questionable even if
it has been partially supported by numerical simulations
[44]. Let us stress that the present situation is quite
different. First, the GKE is by definition a stochastic
equation relating the fluctuation of the velocity distribu-
tion function to the fluctuations of the electric potential.
Secondly, the source of energy has now a simple physical
meaning: it is caused by the fluctuations of the non-self-
consistent electric potential. In this sense, the present
application of the RNG appears much more satisfactory.
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The next step in the application of the RNG to the GKE
would now be the self-consistent treatment of the electric
field.

Let us now give some arguments in favor of the ap-
proximations used to obtain the results (31) and (33)
(the € expansion or the nonlocal expansion consisting in
keeping only the contribution proportional to k2 in the
renormalized linear terms).

Following Eq. (41), spectra satisfying € = 0 in the GKE
should decrease for large wave vectors as k—5. Experi-
mental results [45] as well as gyrokinetic simulations [46]
(see also Ref. [47]) present the same main results: Tur-
bulence exhibits a clear exponential decay for the small-
est wavelengths and broad spectra for wavelengths larger
than a few gyroradii. In the latter region, the precise
determination of scaling laws from these data is quite
hazardous considering their accuracy. The presence of
this broad spectrum clearly stresses the necessity of using
nonlinear approaches of drift-wave turbulence although
this property is not a sufficient condition for the appli-
cability of RNG methods, nor does it allow one to make
a definite choice between RNG and other theories. It
should be noted that the equality € = 0 is not by it-
self a prerequisite of the RNG method even though the
convergence properties of the ¢ expansion are not fully
known. It is clear that any expansion should be justified
by a small value for the expansion parameter. However,
this is rarely the case for the € expansion. In most of the
phase transition problems treated by the RNG, e takes
values like 1, 2, and even 3. The use of the ¢ expansion
in fluid turbulence at high Reynolds numbers has been
shown to be compatible with the Kolmogorov spectrum
only if € = 4. Despite this difficulty and its somewhat
unclear approximations, the RNG methods in fluid tur-
bulence have been applied with some success.

We also note that in fluid turbulence the nonlocal ap-
proximation does not seem to play a crucial role. In-
deed, two distinct approaches have been used to tackle
turbulence starting from RNG ideas. The so-called
Yakhot-Orszag [16] theory is based on the Forster-
Nelson-Stephen [14] (FNS) paper which explicitly used
the € expansion and a nonlocal (in Fourier space) expan-
sion. We have followed this approach in the present pa-
per. Rose [48] has also proposed an iterative small scales
elimination, based on similar arguments but without the
€ and the nonlocal expansions. His presentation has the
advantage to be easier to justify from a physical point of
view but leads to a more complicated mathematical for-
mulation. In this case, the expressions (31) and (33) for
the renormalized parameters would not be easy to derive
and probably more complex.

It is interesting to note that the results derived from
both Rose’s and the FNS approach are qualitatively and
quantitatively similar. The derivation of the present re-
sults following Rose’s approach could be an interesting
but probably arduous prolongation of this work. It must
be stressed that the nonlocal expansion and the Marko-
vian approximation are also invoked to simplify other
nonlinear theories like the DIA. We would close this dis-
cussion on the nonlocal expansion by mentioning two pa-
pers emphasizing the persisting discussion on the role
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of local and nonlocal interactions in turbulence. First,
Teodorovich [49] has recently presented some arguments,
based on a field-theory formalism, which support the idea
that RNG methods in conjunction with € expansion mean
taking into account the local interactions in turbulence.
Secondly, although the popular Kolmogorov-like deriva-
tion of turbulent spectra is based on purely local inter-
actions, some opposite theories exist. For instance, Balk
et al. [50] have recently developed theoretical arguments
in favor of nonlocal drift-wave turbulence.

We now discuss some general results concerning the
evaluation of the anomalous transport coefficient by us-
ing the RGKE. First, we have shown in Sec. IV that the
anomalous transport coefficients reduce to their quasi-
linear scaling when the expansion parameter A is small.
This scaling is also recovered if the electric potential fluc-
tuation is a white noise process [51].

Secondly, we deduce from the tensor of transport co-
efficients that the Onsager symmetry is broken for the
anomalous flux-force relations. A similar result has been
recently obtained in a totally different way by Balescu
[52]. This result has also been obtained in the study of
turbulence in weakly anisotropic neutral media [53].

Let us finally stress the great similarity between the
present results and the other renormalization schemes
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of the gyrokinetic equation. For example, as in the
DIA [10,11,30-32,36], the propagator, the vertex, and
the source are renormalized by terms proportional to k2 .
Another peculiarity of the white-noise potentials treated
as the first example is the equality between v and o.
Such a result can be seen as a frequency broadening
(w & @ = w + k2 V) in the renormalized GKE:

—i(@—kyvy)5he (k, v)
il — kyvdi(v)]fﬁzwg(z,v)w(ﬁ) =0(). (78)

Contrary to the work of Weinstock [54], no real fre-
quency shift arises in our renormalized GKE. This is a
simple consequence of the assumption of vanishing mean
electric field. Let us also mention the crucial role played
by the diamagnetic drift velocity in the second example.
Indeed, the renormalized random source is in this case
directly proportional to this velocity.
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