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Dependence of turbulent mixing on the initial roughness in the evaporation front
with continuous density yroSle at the interface
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An analytical solution describing turbulent mixing at the ablation front of fusion targets as well as
mixing under the initial continuous density profile of the interface within the limits of the semiempirical
model has been obtained. The mixing is the result of the instability arising when the pressure gradient
direction relative to the density gradient is such that (Bp/Bx)(Bp/Bx) & 0. In the first case, the ablation
front decreases the turbulent mixing role. The critical value of the initial roughness h„under which the
full mixing of the shell takes place is found. In the classical case the shell will be fully mixed under

A;„& 14 independent of the initial roughness h. The ablation will remove this restriction. For any as-
pect ratio A;„f there is the roughness h„and if ho (h„ then the shell will be mixed only partially. In the
second case, the formula connecting the time of delay in the interface mixing with the width of the initial
continuous density profile and the initial perturbations size is derived. A formula is obtained for the ar-
bitrary Atwood number 0, ~. The processing of the earlier conducted experiments of Yu. A. Kucherenko
[R. J. Ardashova et al. , Vopr. At. Nauki Tekh. Set. Teor. Prikl. Fiz. 1, 20 (1989)] has indirectly verified
the validity of the E-model constant. In both cases the essential dependence of the arising turbulent
mixing on the initial roughness sizes (ho =Lo) has been revealed. If in the classical case there is the non-
trivial solution for zero roughness under the Rayleigh-Taylor mixing, then in the cases considered here
just the trivial solution meets zero roughness. A similar dependence on the initial roughness has been
observed previously [V. E. Neuvazhsev, Russ. J. Math. Sim. 3, 10 (1991)]under mixing induced by the
action of impulsive acceleration (the Richtmyer-Meshkov mixing).

PACS number(s): 52.50.Jm, 47.20.—k, 47.27.Eq

I. INTRODUCTION

By using a simple diffusion model similar to the model
proposed by Belen'ky and Fradkin [2] in the work of
Takabe and Yamamoto [1] it was shown that allowance
for the stabilizing efFect of the ablation front leads to a
significant decrease of turbulent mixing. This is connect-
ed with the fact that the perturbation growth increment,
obtained previously [3], is such that there is a critical
wavelength and the amplitude of perturbations at the
front of ablation is not growing when the wavelength is
less than the critical one.

However, the authors [1] have not, evidently, noticed
that in this case, as opposed to the classical one, the
essential dependence of the mixing width on the initial
roughness (an initial perturbation level) occurs. The
analogous problem arises in the following cases: (1) when
the initial density profile is continuous, and acceleration
is constant; (2) when the initial density profile is discon-
tinuous, and acceleration is impulsive [S] (Richtmyer-
Meshkov instability). In this case, for the initial rough-
ness equal to zero the trivial solution is obtained. There-
fore, the final result should be formulated as the require-
ment for the initial roughness of the target under which
the target shell is not disrupted.

In the present work the analytical dependence of the
permissible initial perturbations on the aspect ratio A;„f
has been obtained within the limits of the model [2]. Sec-
tion II is devoted to the derivation of this formula.

In Sec. III the connection is established between the
discussed problem and the results of Ref. [4] concerning

the experimental determination of the stabilizing effect
produced by the initial continuous density profile of the
interface. Within the limits of the K model [6] an analyti-
cal formula which determines the relation of the delay in
mixing versus the initial roughness is built,

1/2 ' 1/2

(1)
e(q, )2S,a„
(1+2k, )L,Lo

II. TURBULENT MIXING
AT THE ABLATION FRONT

In Ref. [1] the following approximate statement of the
problem is considered. Let there be a target of radius Ro
with shell thickness hR. The external side of the shell is
exposed to radiation, which leads to compression and dis-
placement of the shell to a distance equa1 to half its ra-

where Lo (=2lto) and L, are the initial roughness and
width of the initial continuous density profile of the
boundary, respectively, and S, is the displacement of the
system at the instant of time when the turbulent mixing
width L is equal to L, . Here, the formula is given for the
E model. rl„a, ,4(ri, ), ko are constants determined
below. The formula for the EE model [7] has a form
analogous to the constants of the KE model.

Formula (1) was used for processing the experiments
[4]. The results of processing corroborated the theoreti-
cal curve slope calculated on the basis of previously
determined a&, v, and C„,C,&, C,2 in the E and EE mod-
els, respectively.
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dius Rp. These factors determine the instant of time t„
in which the shell state is observed:

gtg —Rp, (2)

h (r) =0.07a„gt2, (3)

then the condition for the full mixing of the shell up to
the instant t =tz will be the following:

where g is the acceleration acting on the shell, and the ac-
tion of the shock waves should be taken into account by
changing the thickness hR into a new thickness hR;„&.
The latter is assumed to be constant in the considered
time interval (O, t„). The Atwood number a„character-
izing the density relation at the ablation front is believed
to be equal to 1: a& =1.

The turbulent mixing infiuence on the external side of
the shell as a result of the Rayleigh-Taylor instability is
studied. If one applies the known law of mixing [8,9],

h 3/2 b1/2 for h )h — b

as '
1

) ~b1/2g2X
b

—1/2

4
ash , for h (
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2Pf
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Pf

Here a and b are constants that are determined below. It
should be noted that in [2], formula (7) is given with mis-

prints.
The diffusion coefBcient D is only the function of the

time; therefore, as in [10],it is convenient to go to a new

variable:

direction of the axis, y being orthogonal to the axis x:
pa=(p)» as well as

h(t„)=DR;„r . (4) DBt =Br . (8)

Equations (3) and (4) lead to limitation by an aspect ratio
Ainr:

Then the solution of Eq. (6) can be presented through the

integral of probability 4:
Rp

007
pa X

pa= 1+4 4(g)= f e 'dz.

h=, X=, t=
Rp Rp

In [2], for the estimation of the mixing infiuence at the
front of ablation, the diffusion model similar to [1] is sug-
gested for use. Then the equation for turbulized density

pp is taken in the form

~pa a -~pa
D

Bt Bx Bx
(6)

where po=po(x, t) is the average density value in the
I

' 1/2

When performing the last inequality, an incomplete mix-
ing of the shell is possible; otherwise, it gets mixed up
completely and repeatedly.

However, the displacement of the ablation front with
mass velocity Vo leads to the stabilization of short-wave
perturbations. Increment y is presented in the form [3]

y =a&kg —Pk Vo,

where k is the wave number and a=0.9, 3&P&4. For
determining the velocity Vp one uses the relation

Vote =fbR;~,
which means that at the instant tz the fth part of the
shell has evaporated. It is further convenient to go to
nondimensional variables:

Here, as well as in [1],the maximum density at the abla-
tion front is symbolized by p, .

The solution (9) is true for an infinite medium; howev-

er, it can be used for the shell as well. The front of the
mixing is effectively determined by substituting the densi-

ty profile in the mixing region by the linear function

pox
P

h=2ri, v~, g, = (10)

From Eqs. (7), (8), and (10), the equation for width h is as
follows:

a — — 4b2

sh, h&
4 ' a's' '

:20 g1 b 4bKt +vbQh
2 2

Integration of (11) leads to the following solution:

but only so that the mixed matter mass determined ac-
cording to the density profile (9) has been conserved.
This leads to the following expression for h [5]:

Qhoexp
ap

b

c~s ~ of h
454t ash=' 1/2

h

b
a —1, ifh 4b

as2—InQa, (t r,)+-b
as
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(12)
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+h =Qho+Qaot . (13)

where

Qa, =a'rl2la&b =v'0. 07,
&b 16b

a+ay a4s4h,'

In the classical case when ablation is absent ( Vo=0) the
solution has the form

zero, then in case (12) only the zero solution corresponds
to a zero roughness. Therefore, in the case of the stabiliz-
ing effect of the ablation front the dependence appears on
one more parameter —the value of the initial roughness
hp. The Snal result may be formulated as the require-
ment of the initial roughness, which does not result in the
full mixing of the shell. The boundary value for rough-
ness as the function of A;„r (or s) is obtained from (12),
assuming that t =1,

We pay attention to the dependence of the solution of
Eq. (12) on the initial roughness ho, but, if in the classical
case (13) the nontrivial solution exists when roughness is

I

h= AR

Rp

1

Ainf

Finally, we have

1

spf
'

1/2
Qp

for A;nfA Inf1 A;„fexp

Ainf
her ' A infexP

A 'nf
r

2
Ainf

A inf

—1/2

2
Ainf

A;nf
' 1/2

[1—Qa, a,„,]—1

for A;„f& A;„f,

4Pfb
inf a

If we take constants suggested in [2], a0=0.07, a=0.9,
p=3.5, f=—'„b =3, then we obtain A»f=80. The
dependence of the initial roughness on the aspect ratio

A;nf is depicted in Fig. 1. When A;„f& A;*„f, the curve

has a smoother character than for A f & A;~. For the
classical increment (a dot-dash curve) the full mixing
takes place just at A;~= 14. In the case of increment (5)
a small initial roughness at which the shell is not totally
displaced is possible according to formula (14) for an ar-
bitrary large value of the aspect ratio. Thus, for rather
large values of A;nf the following asymptotic formula is
true:

h„=
(g» )3/4

inf

&2/I;„/r exp A;„f

' 1/2

It is quite another matter that such requirements cannot
be really ful611ed» In the same Fig. 1, dependencies for
P=3 (a lower curve) and P=4 (an upper curve) are
presented by dashed curves.

III. DELAY IN TURBULENT MIXING
WITH CGbirrNUGUS DENSE.i.Y PROFILE

OF THE Mrj;RFACE

Q
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20 50 iOO Zoo 400

&inf = R()jaR;„y
FIG. 1. Dependence of the relative critical initial roughness

h„/Ro, which results in full mixing of the shell, on the aspect
ratio A;„f.

The problem described in this section is closely con-
nected with the problem considered above. I,et there be
two incompressible Suids of densities p& (a light one) and
p2. Constant acceleration g is directed so that the
Rayleigh-Taylor instability takes place. It is known that
under the initial continuous density proQe of the inter-
face, the delay in the turbulent mixing evolution takes
place. This problem has been studied experimentally in
Ref. [4] where for pz/p, =4 the dependence of the delay
on the value of random initial perturbations speciSed in
the middle of the layer with continuous density pro61e
has been established.
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BP 8 D BP
at ax ax ' (15)

Now we consider the same problem within the limits of
the K model by applying the approximate approach set
forth in [5,10]. For mixture density p and kinetic energy
v /2wehave

We pay attention to the dependence of the solution on
the initial roughness Lo. As in the previous section, the
zero solution meets the zero roughness.

We obtain the formula for the value of delay in tur-
bulent mixing due to the initial roughness. It is derived
from (19) if the delay instant is determined by the equali-
ty

Bpu + vpDv

28t
D =a&Lv,

g if L(L, ,pX t=o
y'=

(16) L=L, .

Then we have

1/2
C

Lo (1+2ko)L,

' 1/2

jc (20}

g ifL&L, .
p X

An alternative way used for obtaining Eq. (16), as com-
pared with averaging performed previously in [5], con-
sists in the averaging (a line from above) of the right side.
The initial profile of density can be arbitrary. However,
it can be approximately substituted by the profile

( X)
Pi+P2 Pz Pt @ 2X

P =
2 2 L

By generalizing formula (20}for the case of slowly chang-
ing acceleration we obtain the final result in the form of
(1)

As has already been noted, the dependence of the delay
in mixing on the initial roughness was studied experimen-
tally [4]. Formula (1) allows us to process experiments by
passing on to the plane of the variables (x,y):

Then Eqs. (15) and (16) are integrated:

4(ri& )ga „L
if L&L,

4rPiL, (1+2ko )

V2
z+ 4(ri, )ga„L

VC
1—

2rti(1+4ko )

if L&L, .

' 1+4ko
C

(173 Sc
l Lc

Here,

e(ri, )ga„
4vji(1+2ko )

v 4(v 2gi}ko=0.25+
2 2+ aq .

16')a) 12~2

The equation for width L is derived on the basis of the
following relations:

dL5~=D5t, L =4',~r, =8gfa, v .
dj

(18)

The combined consideration of (17) and (18) leads to the
following solution:

@(ni)ga~
(1+2ko)L,

L= Lex 2 a
' 1/2

1/2j, L(L,
(19)

&L =~L,+a,g,
(1+4ko )

(t t, ), L&L, . —
0 C

Here, for L &L, the approximate presentation of the
solution is given insofar as the accurate solution has a
cumbersome expression, and for further purposes it will
not be required.

FIG. 2. Dependence of the value (S,/L, )' on ln(L, /Lo),
where L, is the width of a continuous density profile, Lo is the
initial roughness, and S, is the displacement of the ampoule, if
L =L,.
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L,
x =ln

Lo
'

' 1/2
C

L,

In Fig. 2 the results of [4] are plotted and the inclination
is determined by taking into account the dependence on
the Atwood number a„:

y= ' x+1.55 .1.02
(21)

An experimental curve, as opposed to the theoretical
one, does not go through zero. We believe that it is con-
nected with the ambiguous nature of the initial roughness
determination in the experiment.

Now we shall determine the inclination according to
formula (1) and constants a„v chosen previously in

[5,10], in order to describe the generally adopted law (3)
under constant acceleration and "the law —', " under re-
moved acceleration. For this we shall assume

ko(ag =0)=0.25+ =1.25,V

16')a)

4' )a)+4(rl ) }
0.28 .

+1+4k (0)

(22)

Substitution of (22) into (1) leads to the formula

1.02y= ~x
The same result has been obtained under processing of
experiments [4] [see (21)]. Thus the indirect substantia-
tion of the correctness of the choice of a& and v constants
made above has been obtained.

If after rather a long time the mixing region width ob-
tained with a continuous density profile is compared with
that without an initial continuous density profile but with
the same initial roughness, then it is evident that, in the
case of the initial continuous density profile, the mixing
region width will always be less. However, if in the case

having a discontinuous density profile the initial rough-
ness is infinitesimal, then this will not be true. The mix-
ing region width with the initial continuous density
profile may appear to be larger if the relative initial
roughness Lo/L, is sufficiently great.

We find the critical value at which the width will be
the same in these two cases. For this purpose we make
use of the solution for the case of discontinuous initial
density and zero initial roughness:

' 1/2
84&(ri))aug

( I+4ko )

Setting L =L, we substitute t, from Eq. (20) into this for-
mula:

L,
=exp

Lo

2(1+4ko ) =6.37 .
1+2ko

IV. CONCLUSION

The process of turbulent mixing induced by the
Rayleigh-Taylor instability is mainly determined by the
increment y. If the increment is limited for short waves,
then this leads to slowing down in the turbulent mixing
evolution. Such slowing down arises at the front of abla-
tion when irradiating the shell targets and in the case of
the continuous density profile of the interface. The semi-
empirical theories of the difFusion type allows us to make
a quantitative estimation in the form of an analytical for-
mula connecting the mixing region width with the initial
roughness value. The increment which determines the
turbulent difFusion coeScient D is found. %'hen the in-
crement is limited for short-wave perturbations the
difFusion coei5cient dependence on the length scale
(L =h) increases from D —h ~ (the classical case} to
D-h (the considered cases). This, in its turn, changes
the dependence on the initial data. The solution is such
that the infinitesimal width of mixing corresponds to the
infinitesimal initial roughness.
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