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Complexity in quantum systems
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We discuss the behavior of a quantum ~ spin coupled to a time dependent magnetic field, which
can be quasiperiodic or random. For a quasiperiodic 6eld, the time evolution of the system on a
coarse grained space has autocorrelation, which does not decay, and positive topological entropy.
The information complexity diverges as a stretched exponential, although the Shannon entropy is

zero, and there is no divergence of nearby orbits. A simple random process is introduced in order
to reproduce the main qualitative features of the observed weakly complex behavior.

PACS number(s): 05.45.+b

I. INTRODUCTION

8,8(~, t) + [u(~, t) V']8{a,t) = Db, 8(~, t) (1)

and it is not diKcult to see that an initial uncertainty
h8(x, 0) does not grow in time,

l~o(~, &)l'&~ & f italo(~oil|'&~,
Nevertheless the solutions of (1) can appear "chaotic."
This is easy to understand if D = 0, since in this case
the evolution of 8(m, t) is

8(~, t) = 8(8-'~, 0),

where 8 m is the formal solution of the equation

~(t) = u(~, t). (4)

If the solution of Eq. (4) is chaotic, then a time record

For a classical system the meaning of deterministic
chaos is clear: the largely used definition is in terms of
sensitive dependence on the initial conditions, i.e., a posi-
tive maximum l,yapunov exponent A [1]. It measures the
exponential growth rate of the distance between initially
close trajectones. For a quantum mechanical system this
definition is not useful, since A = 0, because the evolution
equation is linear.

However, systems with linear evolution laws can ex-
hibit nontrivial behaviors and some complex features. An
important example is the passive advection of a scalar
field 8(a, t) in a given velocity field u(m, t) The equa-.
tion for 8(a, t) is

of 8(a, t) in a point a, E( )(t) = 8(x, t), will appear
"chaotic" although (1) is linear [2,3]. For instance, the
Kolmogorov entropy of the signal F( )(t), computed by
means of the Grassberger-Procaccia method and the em-
bedding technique, should have a positive value.

In this paper we will consider a system which does
not have the classical limit, since we want to concentrate
on quantum eKects with no relation with classical chaos.
To study the dynamical behavior of the quantum system
we assume an "informatic" point of view: we study the
rate of growth of the information complexities as a func-
tion of the length n of sequences of digits generated by
the quantum dynamics in a coarse grained con6guration
space.

The model we consider in this paper, introduced in
Sec. II, is a quantum 1/2 spin in a time dependent mag-
netic field. In Sec. III we study the case of a quasiperi-
odic magnetic field. We observed that the information
complexity diverges as a stretched exponential of n while
the Shannon entropy is zero. This case is between the
standard chaos, where the divergence is exponential, and
the regular case, where it is polynomial. This behav-
ior is called "sporadic chaos. " In Sec. IV we introduce
a simple random process which reproduces the sporadic
chaotic behavior generated by the quantum system. In
Sec. V we consider the case of random, in time, magnetic
field. Finally in Sec. VI we report some conclusions.

II. THE MODEL

A simple quant»m system which exhibits complex be-
havior is a quantum 1/2 spin in a time dependent mag-
netic field. This model has been widely studied in the
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literature to analyze chaotic oscillations in two level sys-
tems [4—8]. Given a single quantum 1/2 spin, its time
evolution in a time dependent magnetic field 8(t) is de-
scribed by the Schrodinger equation with Hamiltonian

H = B(t) .o,

where tr = (o, o„,o, ) are the Pauli matrices.
For example, choose B(t) = (B(t),0, ~), so that

H = u)o, + B(t) o.
;

around the z axis

(0 -1 0)
D(t) =2ur, A =2(u, 1 0 0

(0 o 0)

or of a rotation around the x axis

(00 o)
D(t) = 2(u B= 2u) 0 0 —1

(01 0)

if@; =0, (12)

if ri; = 1. (13)

then the Schrodinger equation for the spinor
1S

i Btgi ——urQi+ B(t) g2,

i Bt g2 ———urg2+ B(t) @i.
(7)

The evolution equation (8) can be integrated exactly
between two successive pulses. Therefore, if one observes
the systems at the times 7, 2v, 37, . . ., the tixne evolution
(10) of the polarization vector is equivalent to the map

Through all the paper we take fi = 1. Equation (7) cor-
responds to the systems studied by Pomeau et al. [4] for
the special choice uq ——u and u2 ———u.

By means of a straightforward transformation, one
passes Rom (7) to the equations for the polarization vec-
tor P; = (g ~a;~ @), i = x, y, z. One thus gets a three
dimensional systexn

= D(t) P (8)

with the constraint g,. P2 = 1, which reduces the num-
ber of degrees of freedom to 2. In the case of (6) the
evolution matrix reads

( O —2u O

D(t) = 24' 0 —2B(t)
( 0 2B(t) 0

(9)

This matrix is the generator of an infinitesixnal rotation
with constant angular speed 2~ around the z axis and
with angular speed 2B(t) around the x axis. The linear
system (8) describes the rotation on the unit sphere, and
its solution is

P(t) y jo D(t') dt' P(0) (lo)

where 7 is the time ordering operator.
We are not interested in a particular physical case, but

rather in the general aspects of the problem. We thus
study a version of this model which allows us to reduce
the difFerential equation (8) into a map. To this end, we
take a magnetic field of the following form. For t in the
interval [(i —1)7, iw], the magnetic field is

B(t) = (g; u), 0, (1 —g;) ur, ),

where the variable g; takes in each interval the value
0 or 1 with a rule to be specified, so that the string
(th, . . . , g, . . .) may be a periodic, or a quasiperiodic, or
a random sequence of bits. The choice (ll) corresponds
to a series of squarelike xnagnetic pulses of time length

A similar madel was studied by Luck et aL [7] far a
Fibonacci sequence of bits.

Inserting (ll) into (8), the resulting matrix D(t) has
only two possible forms: the generator of a rotation

P((i+1)~) = R; P(i~) (14)

describing a sequence of rotations of an angle 2u around
the x axis or of an angle 2~, around the z axis. In the
following, without losing in generality, we take u
1/2 in order to simplify the notation. With this choice
the rotation matrix takes the form

X;=e" =

or

X;=e~ =

( cos7 —sine 0 )
sin w cos v 0

0 0 I)

(I O O

0 cos~ —sin7

( 0 sli17' COS 7 )

if';=0, (15)

if q; =1. (16)

We expect that this map has the same qualitative fea-
tures as the continuous-time model, although the numer-
ical analysis becomes much simpler.

We note that in the class of models of Eq. (8) there is
no growing of the errors, because of the conservation law

P,. P2 = 1. Therefore, besides the maximal Lyapunov
exponent and the Kolmogorov entropy, the generalized
Lyapunov exponents are also identically zero.

To proceed with the analysis of this model we make
a partition of the unit sphere and consider the symbolic
dynamics associated with the time evolution of the po-
larization vector. In practice, we define a sequence of
bits 6; by using the following coding: the bit b; is 1 when
P, (iv) ) 0 and 0 otherwise. We shall call these bits the
"output" bits to distinguish them from the "input" bits
g$ s

We perform various kinds of analysis of the output
signal of the model. In particular, we shall study the
following.

(1) The time autocorrelation function C(k}
(b; b;+g) —(b;) (b;~r, ) where the average is a time aver-
age.

(2) The topological entropy: we look at the number
N(n) of difFerent strings of bits (bi, b2, . . . , b„) af length
n. In a chaotic systexn this number is expected to diverge
as e ""& for large n.

(3) The Shannon entropy [9]
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'P(bi, b2). . . , b„)
1

Ki ———lim — )n~oo (s„s„...,b„)
x ln 'P(bi, b2, . . . , b„),

1.0

I E I I

I

I l I l

I

I I I I

I

I l I l

where 'P(bi, b2, . . . , b ) is the probability of the bit string
(bi, . . . , b„)

(4) The generalized information complexities
C(k)

Iq(n) =
(b„s„...,s„)

[P(bi, b2, . 1 bn)]'.

In a "standard" chaotic system the information com-
plexities diverge exponentially with the rates

1 . 1
lim —ln Iq (n)

q —1 n~oo 7l,

-0.5
0 100

k/256

s s & I s a s s I s i

50
I & s s s I

150 800

called generalized Renyi entropies [10]. Note that the
topological entropy is Ko and the Shannon entropy is
obtained for q ~ 1

1
Ki ———lim lim lnI~(n).

q-+1 n-+oo q —1
(20)

It is well known that in quantum systems with a time-
periodic potential the physical observables are quasiperi-
odic because of the Floquet theorem. In the context
of our model, a time-periodic potential leads to a pe-
riodic input string g;, which generates a quasiperiodic
output string b;. On the other hand, a quasiperiodic in-
put breaks the invariance under time translation. In this
case, the response of the system is not necessarily mul-
tiperiodic and one could expect a certain degree of ran-
domness in the time evolution of the polarization vector.

In this section we study the model defined in
Sec. II with a quasiperio die input given by
8(cos[2m i(r/T)]), where 8 is the Heaviside step func-
tion. In order to have a quasiperiodic forcing, we have
chosen the incommensurate ratio T/7 = 2~ leading to
rl; = 0, 1 if the sign of cos(i) = yl, respectively. The nu-
merical study has been done by iterating the map (14) for
N = 10 steps and recording the output bit 6; according
the coding previously discussed.

In Fig. 1 we report the correlation function

Although a quantum system cannot have exponential di-
vergence of nearby trajectories, and hence positive Lya-
punov exponents, because the time evolution equation is
linear, it could be chaotic in an informatic sense, since its
information complexity may grow faster than any power
of the time n. In the next section we shall investigate
this possibility in our model.

III. SPORADIC CHAOS GENERATED BY
QUASIPERIODIC PERTURBATIONS

FIG. l. Quasiperiodic input: correlation function C(k)
= (b+a b;) —(b, ) as a function of k. In the figure only one
point of each 256 is drawn.

1
hiop

——lim —lnIo(n) ) 0.
n-+oo ~ (22)

We have computed Io(n) for the numerical output se-

quence of bits b„of our model, as shown in Fig. 2.

I I I

I

I

10

ln I, e—
x"xx"x

The lack of sensitive dependence on initial conditions
and of correlation decay are not sufEcient to assure that
the dynamics is regular. We should introduce a more so-
phisticated definition of chaos by considering the possible
number of output strings. In a quasiperiodic sequence of
bits, the number Io(n) of difFerent strings of length n
grows as a power of n, e.g. , in the previously defined
quasiperiodic input sequence Io(n) = 2n. On the con-
trary there are Io(n) = 2" possible strings in a sequence
generated by a Bernoulli extraction. We can speak of
"topological chaos" in systems where

N k

C(k) = ) bb+i, ——) b,- (21)

0 I. . . , [. . . , I. . . , I

0 5 10 15 20

One observes that the correlation does not decay, but ex-
hibits rather modulated oscillations. The signal is, never-
theless, not fully correlated since it returns after periods
of 250 steps to a value —0.7, and not back to 1.

FIG. 2. Quasiperiodic input: lnIo(n) as a function of n.
Io(n) is computed from the decimated strings b» with K = 1

(cross), K = 4 (plus), and K = 2S6 (diamond). The full line

has the slope equal to the topological entropy of the Bernoulli
shift ht p

——ln2.
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The result is compatible with ht ~
——ln(2) j4, although

lnIo(n) seems to bend for large n .A direct inspection
of the output signal shows the presence of "rigid" rules
on short tixnes. With very high probability, there are
subsequences of four identical digits. On the contrary
subsequences of two or three identical digits seem to be
almost forbidden. A typical output string looks like

0.9

0.8

I I I

I

+
+

o

~

I

4 I I %

I
l I l ~

".l1111looool1111111111»»loooo[1111l"-. (23)

This structure of the signal suggests a trick to increase
the effective length of the analyzed strings. We have con-
sidered decimated sequences of bits obtained by taking
one bit in each four bits, i.e., by analyzing sequences

b, =b~; withK=4.
The entropies of a Bernoulli shift are invariant under

a decimation. In our case, we have found that the dec-
imated signal has a topological entropy close to ln 2, in-
dicating that the original system has strong short-range
correlations which organize the system in an almost de-
terministic way on the time scale of four time steps.

On the other hand, we have found that even if the
Shannon entropy K~ vanishes the information complexity
Iq(n) seems to diverge faster than any power of n Figure.
3 indicates that the data can be fitted by a stretched
exponential of the form

I, ( )- [, (')] (24)

with n(0) = 1, po
——kt ~, and n(q) ( 1 for q ) 0. Figure

4 shows the numerical results for the scaling exponents
n(q).

10

ln I(

0
0

I I I I I I I I I I I I

5 10
I

15

FIG. 3. Quasiperiodic input: lnIq(n) as a function of n
Iq (n) is computed from the decimated strings bx„with K = 4
(plus) and K = 256 (diamond). The dashed lines corre-
spond to the stretched exponential Iq(n) exp[7' n ] with
n(1) = 0.64 for K = 4 and n(1) = 0.87 for K = 256. The full
line has slope ln 2.

with n(1) = 0.64. A similar form holds for all the gener-
alized informatic complexities Iq with q & 0, which can
be fitted by

Is(n) exp[psn ( )]

07

0.8 s, I

0.5
s I, , s

1.5
I

2

FIG. 4. Scaling exponent n(q) as a function of q for the
stretched exponential of the generalized complexities Iq for
K = 4 (diamond) and K = 256 (plus). The dashed line is

n(q) of the random model with memory.

In a numerical calculation of the complexities Is(n) it
is practically impossible to go beyond n = 25. On the
other hand, the system exhibits a nontrivial behavior for
times much larger than 25 time steps, e.g. , the time cor-
relation has very long return periods. Therefore, in order
to obtain a stronger evidence of the complex nature of the
output, we performed a systematic decimation of the sig-
nal. For a chaotic signal the decimation should increase,
or leave unchanged, the value of Is(n). The quasiperiodic
nature of a sequence, i.e. , a polynomial increase of I~(n),
is also invariant under decimation.

A clear numerical evidence of the presence of topolog-
ical chaos is provided by a decixnation with K = 256,
the return time for the correlation function. This leads
again to h& ~ ——ln2 with high numerical accuracy. Sirn-
ilarly Is(n) show a stretched exponential behavior with
exponents n(q) which are closer to 1 than those after the
decimation with K = 4 (see Fig. 4).

A similar behavior was called sporadic chaos by Gas-
pard and Wang [11], who found stretched exponential
instabilities in intermittent maps of the type x„+q
z„+cz„' (rood 1) when z & 2 and in some other sys-
tems. We stress that sporadic chaos is intermediate be-
tween multiperiodic and chaotic dynamics, that is, be-
tween predictability and randomness. In Ref. [11],spo-
radicity was associated with very strong forms of dynaxni-
cal intermittency, which leads to temporal Buctuations of
Levy's type rather than Gaussian. In the above quantum
system the origin is not clear; however, it is tempting to
speculate that it is a generic feature of a quantum system
coupled with few external degrees of &eedom. The quan-
tum I/2 spin system forced by the quasiperiodic pulse of
the magnetic field can be thought of as an oversixnplifi-
cation of such a situation, which still retains all the basic
ingredients. However, a deeper comprehension of this
phenomenon requires a further step. Since we are just
interested in an informatic point of view, we introduce a
randoxn process which can reproduce the main features
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of the output generated by the quant»m system, and
where the generalized complexities can be coxnputed an-
alytically. Although the xnechanisxn which produces this
weakly complex behavior in the quant»m system and in
the random model could be difFerent, this is not relevant
in our approach, which considers the informatic complex-
ity of a sequence without any reference to its physical
origin.

ory" cannot be lower than that of the case without mem-

ory, and consequently does not decay. The topological
entropy is unchanged, ht ~ = ln 2, for e g 0 since it does
not depend on the probability distribution. This is not
the case for the information coxnplexity and generaliza-
tions defined by

(29)

IV. A RANDOM PROCESS VFITH SPORADIC
CHAOS

In fact, since we can write

+(2'1 & ) P(+1 + —1) P(+ ~+ —1 . +1)

The quantum system discussed in Sec. III gives an out-
put signal with positive topological entropy although the
autocorrelation function does not decay. At Grst glance,
this feature may seem rather contradictory. In this sec-
tion we introduce a random process which exhibits a sim-
ilar behavior.

Consider a periodic signal, i.e., such that z;+T ——z, ,
where T is the period, with zero average over a period.
Next we allow for an error at time i with probability ~,
and consider the new process

a simple calculation gives

Iq(n+1) = I,(n) (1 —en )'+ (cn )

As a consequence, for large n, the complexity of order q
diverges with a stretched exponential law

in'(n) = const —w qn n, &q&—q

zt pt) (26) Moreover, for q m 1, the information complexity scales
as

where p; are uncorrelated random variables which take
the value p; = 1 with probability 1 —t and p, = —1 with
probability e.

By construction, it is simple to verify that the gener-
alized Renyi entropies of (26) are those of the p; process,
which is nothing but a Bernoulli shift. In particular,
hto~

——ln2 and Kq ———[aine+ (1 —e) ln(1 —~)j.
The variables p; and z, are uncorrelated; hence the

tixne correlation of the z; can be factorized for all time
delays v & 1 and becomes

C(7-) —(xs+~ zs) —(zs zs+~) (ps)
—(1 2e) Cp(7-) ~

(27)

where Cp(r) = (z; z;+ ) is the correlation function of the
original periodic signal. To obtain the last equality we

have used the fact that the p; are independent random
variables with mean

(p;) = 1 —2e.

This xnodel is still too simple to reproduce the spo-
radic form of chaos observed in the quantum system. In
fact, here all the generalized complexities increase ex-
ponentially in time. To mimic sporadicity, we should
lower the degree of randomness of the process. This
can be achieved by considering a concentration of errors

p; = —1 which depends on the knowledge of the past.
We thus ass»t»e that the probability P(x„+q ~x„, . . . , xq)
that x„+~ ——z„+z, i.e., no error, after a sequence of n
symbols x„,. . . , xq is given by 1 —en with 0 & m & 1.
Note that P(x„+q(x„,. . . , xq) depends only on the num-

ber n of known symbols and not on their value. In prac-
tice, this accounts for replacing the constant probability
6 with 6n

The correlation function C(7 ) of the model with "mem-

1—lnIq(n) = n inn.
n

(34)

From Eqs. (32) and (33) it follows that the exponent
of the stretched exponential of the model with memory
is a(q) = tU for q ) 1 and o;(q) = w q for 0 ( q & l.
This result is compared with the scaling exponent of the
quantum system in Fig. 4, which shows a qualitatively
similar behavior. It is worth stressing that for large val-

ues of q the very rare chaotic events dominate the sum
in (29), and o.(q) becomes independent of q. This fol-
lows from the type of behavior exhibited by the model,
where "chaotic bursts" are generated by the introduction
of errors on a regular background. As a consequence a(q)
should coincide for large q with the only scaling exponent
m which determines the degree of memory.

V. BEHAVIOR GENERATED BY' A RANDOM
PERTURBATION

A very difFerent dynamical regime appears when the
quantum 1/2 spin is driven by a random magnetic field.
In this case, the driving perturbation can be regarded,
e.g. , as originated by an external environment on the
quantum two level system. In the context of our medel,
a random magnetic Geld leads to a random sequence of
input bits g;. It is natural to expect that in this case
the output is chaotic in the informatic sense, without
the sporadic intermittency of the previous sections. In
fact, new aQ the generalized informatiens diverge with
an exponential rate given by the Reuyi entropies Xz.

However, it is surprising that the quantum system re-
duces the degree of "topological" chaos of the input per-
turbation. This can be understood &om the following
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FIG. 5. Random input with e = 0.03: lnIO(n) (square)
and lnIq(n) (cross) as a function of n. The slopes of the lines
are hq, ~

——0.44 (full), hq = 0.22 (dashed), and Kq ——0.13
(dot-dashed).

FIG. 6. Random input with e = 0.5: ln Io(n) (square) and
1 Inq( )n(cross) as a function of n The .slopes of the lines
are ht~~ ——0.44 (full), hq = 0.40 (dashed), and Kq = ln2
(dot-dashed).

argument. Given any initial condition E (0), from each
input string of bits a deterministic rule leads to one out-
put string. Under the hypothesis, well confirmed numer-
ically, that P takes all the possible values on the unitary
sphere, the output topological entropy cannot depend on
the details of the input rules, but on the topological en-

tropy of the input. Moreover, unlike, e.g. , the Shannon
entropy, the topological entropy is not sensitive to the
probability of the strings, so that the topological entropy
of the output takes a fixed value which is obviously less
than or equal to that of the topological entropy of the
input.

For example, if we take as input the random process z;
[Eq. (26)] with z; = (—1)', then the topological entropy
of the input is maximal, i.e., h~ ~

——ln2. On the other
hand, for the process without memory, we found that for
any value of e the topological entropy of the output is
ht ~

——0.44 (see Figs. 5 and 6).
As a consequence the quantum system can amplify or

reduce the complexity of the random input. In fact, the
input has the entropies ht ~

——ln2 and Kq ———eln~—
(1 —e) ln(1 —e). On the other side, the output has a Kq
that is larger (smaller) than —elne —(1 —e) ln(1 —e) for
values of e close to zero (1/2) (see Figs. 5 and 6). This
implies that the coxnplexity is amplified for small e and
reduced for e 1/2.

VI. CONCLUSIONS

Chaos in classical systems is defined in terms of insta-
bility with respect to a perturbation of the initial condi-
tions. One would be tempted to extend this definition to
quantuxn mechanics but this is not possible since the evo-
lution equations are linear. This is puzzling since classical
mechanics is obtained as the lixnit of quantum mechanics
for 5 m 0, so that one could expect to have soxne indi-
cations of chaos at least in the semiclassical region. This
is true, but only for finite times. It is possible to show
that the quantum version of a classically chaotic system
shares the same chaotic behavior of the classical mechan-

ics up to a time t' (I/A) ln(1/h) [12,13,3]. When t ) t'
the system has a genuine quantum character, with fea-
tures very different &om the classical behavior, such as
a suppression of the diffusion properties. Nevertheless,
this does not imply the absence of complex behavior in
quantum systexns for large times, at least in an informatic
sense. In fact, we have provided numerical evidence that
the time evolution of the wave function of a simple quan-
tum 1/2 spin coupled with a time dependent magnetic
field is complex in an informatic sense. In particular we
have found that for quasiperiodic xnagnetic fields the in-
formation complexity of the time evolution diverges as
a stretched exponential, implying a vanishing Shannon
entropy, although the topological entropy is positive. A
similar phenomenon is known as sporadic chaos in the
theory of dynamical systems [11,14]. A second result,
less surprising, is that a random magnetic field produces
chaotic time evolution with positive Shannon entropy and
positive topological entropy. The topological entropy has
a nontrivial maximal value which has been computed nu-
merically.

One can give an interpretation to these behaviors as-
suming that the external quasiperiodic magnetic field
represents an interaction of the spin with few degrees
of &eedom of a macroscopic object whose motion is very
weakly affected by the spin. The random field repre-
sents an interaction with the infinite degrees of &eedom
of the environment. It is an open problexn to understand
whether a genuine chaotic behavior in quantum mechan-
ics can arise in a large system with infinite degrees of
freedom (in our case spin plus environment), while for
complexity, in the sense of sporadic chaos, it is sufBcient
that a small quantum system (the spin, in our case) in-
teracts with some classical object. On these lines is the
work of Jona-Lasinio et ol. [15].
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