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The mean shape of free dendrites of pivalic acid growing from solution is determined. For a
three-dimensional axisymmetric needle crystal, the mean width m of the dendrites would scale with
distance z from the tip according to ivv ——+2pz, where p is the tip radius. For pivalic acid growing
from a solution of pivalic acid and ethanol, we find that m does not grow as a simple power law in z,
and is always larger than mo. This result reBects the concentration of material into the sidebranching
planes due to crystalline anisotropy. A comparison with NH4Cl in aqueous solution, which has a
larger surface tension anisotropy, shows that the magnitude of the crystalline anisotropy does not
afFect the mean shape. The connections with current three-dimensional theories of dendritic growth
are also discussed.

PACS number(s): 68.70.+w, 81.30.Fb, 61.50.Cj

I. INTRODUCTION

Dendritic growth often occurs when a nonfaceted ma-
terial crystallizes from an undercooled liquid or super-
saturated solution, and the growth is limited by diffu-
sion. Though the patterns that result &om this pro-
cess have been studied for quite some time, there are
still many outstanding questions about the mechanisms
that determine the overall shape and growth rate as well
as the details of the sidebranch development. The two-
dimensional steady-state problem appears to be well un-
derstood, but the extension to nonaxisymmetric three-
dimensional shapes is more dificult. In particular, the
asymptotic shape of the steady-state needle crystal and
the possible dependence of that shape on the surface ten-
sion anisotropy are still open questions.

In this paper, we present measurements of the aver-
age shape of three-dimensional &ee dendrites of pivalic
acid grown &om supersaturated solution of pivalic acid
and ethanol. We find that the average shape is consider-
ably difFerent &om the steady-state paraboloid assumed
in axisymmetric theoretical treatments. Further, a com-
parison with previous work on NH4C1 [1] shows that the
average shape is independent of the material used. These
findings are consistent with a recent three-dimensional
nonaxisymmetric calculation by Brener [2].

The study of the average shape was motivated in part
by recent work on a variety of systems, where it has
been found that appropriately averaged quantities can
be an important probe of the underlying fundamental
physics. For very unstable viscous fingering [3], and for
two-dimensional dendritic crystal growth and anisotropic
viscous fingering [4], the mean shape of the complex pat-
terns was found to be the same as the theoretical steady
state for the same conditions. In a similar vein, Gluck-
man et aL found that the time-averaged patterns of
chaotic surface waves displayed significant order [5], while
Ning et al. found that the Quctuations of rotating ther-
mal convection patterns about the averaged state gave
important information about the system, such as the in-
stantaneous heat transport [6]. Thus it seems reasonable
to suppose that the average shape may contain informa-
tion about the underlying physical processes.

II. BACKGROUND

In the standard continu»m model for &ee dendritic
growth &om solution, the growth is assumed to be limited
by the difFusion of impurities &om the growing interface
[7,8]. For a given material, the steady-state tip speed
v and radius of curvature p are determined uniquely by
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the supersaturation A. In many cases [9—14], the quan-
tity 0* = 2doD/(vp ) is found to be a constant, at least
for a range of A. Here D is the di8'usion constant, and
8p ls a capillary length (averaged over orientations), pro-
portional to the surface tension [7].

In the absence of surface tension, one theoretical
steady state is a parabola in two dimensions, and a
paraboloid of revolution in three, but the radius of
curvature and tip speed are not uniquely determined.
When anisotropic surface tension is included in the two-
dimensional or axisymmetric three-dimensional model, a
steady-state solution can be obtained by a linearization
about the zero surface tension parabola [15].

One of the main predictions of this approach, known
as microscopic solvability, is that o* depends on the
anisotropy in the surface tension. For a two-dimensional
crystal with fourfold symmetry, the angular depen-
dence of the capillary length is usually modeled by
dp(8) = do(1+ e4cos48), where e4 is the surface ten-
sion anisotropy. Typically, e4 is small, on the order of
0.01.

Extensions of the model to nonaxisymmetric three-
dimensional growth have proven difficult. An initial ap-
proach by Kessler and Levine [16] indicated that the tip
region is still approximately a paraboloid of revolution,
but the asymptotic shape is not. The importance of the
asymptotic shape was not clear. Subsequent measure-
ments of NH4Br dendrite tips were in agreement with
the predicted shape corrections near the tip [13].

Subsequently, Ben Amar and Brener studied the non-
axisymmetric three-dimensional model [17] and found
that the asymptotic shape indeed diverges from a
paraboloid, but that the divergence appears to be irrel-
evant to the selection of the tip radius and speed. This
agrees with the earlier work of Kessler and Levine [16].
Further, Ben Amar and Brener found that, for small
anisotropy, the shape correction near the tip is indepen-
dent of the value of the anisotropy.

Recently, Brener [2] extended this work and presented
a solution for both the tip shape and the intermediate
and asymptotic tail shapes for nonaxisymmetric growth.
Near the tip, the dendrite is described by the axisymmet-
ric microscopic solvability theory, and is approximately
the same as the Ivantsov parabola. The width m of the
crystal near the tip grows as z /, were z is the distance
back kom the tip. Further kom the tip, the eH'ects of
crystalline anisotropy cause material to concentrate in
the four sidebranching planes. There is an intermediate
range of z where n oc z ~, and an eventual crossover to
a regime where m oc z . Vlhen all lengths are scaled by
p, this shape is independent of both supersaturation and
crystalline anisotropy, at least for small values of e4.

Comparison of dendritic growth theory with experi-
ments has proven difficult [18), both because convection
is often present [9,13], and because there is considerable
uncertainty in the value of e4. For pivalic acid, for exam-
ple, reported values for e4 are e4 ——0.006 [19],0.025 [20],
and 0.05 [ll]. There are also differing reports for a' for
the growth of NH4Br from solution [10,13] that might be
due to differences in convection in the solution.

In this work, we report measurements of the average

shape of free three-dimensional dendrites. If we assume
that the average shape is related to the underlying the-
oretical steady state, then these measurements can also
be used to test the theoretical steady-state predictions.
In particular, by comparing NH4Cl and pivalic acid, we
can test whether the shape is independent of the value of
the crystalline anisotropy.

III. EXPERIMENTS

The experiments were performed with pivalic acid with
approximately leap ethanol added as an impurity. This
amount of impurity was sufficient to ensure that the
growth was limited by the transport of impurity from
the interface. The saturation temperature was approxi-
mately 26 'C.

The solution was placed in a 45 x 12.5 x 1 mm
glass cell and sealed with a TeBon stopper. The cell
was mounted in a massive temperature-controlled copper
block surrounded by an insulated temperature-controlled
aluminum block. The entire apparatus was enclosed and
controlled to +1'C, and could be cooled to keep the sys-
tem below room temperature. The copper block was con-
trolled by an ac bridge, and the operating temperature
could be set by computer. The resulting temperature
stability of the sample was better than +1 mK.

The solution was heated to dissolve all the crystals,
stirred to eliminate concentration gradients, and then
cooled to initiate growth. Typically, many crystals would
nucleate. An automated process was set up to slowly ad-
just the temperature until all but the largest crystal had
dissolved. Only isolated dendrites that grew with both
the tip velocity and the sidebranches in the plane of view

were considered. After an initial transient, the growth
velocity would remain approximately constant until the
dendrite tip neared one of the walls of the cell. Data were

only recorded for the portion of the experiment during
which the growth speed and tip radius remained approx-
imately constant. A typical pivalic acid dendrite with
v = 2.4 pm/s and p = 6.2 pm is shown in Fig. 1.

FIG. 1. A pivalic acid dendrite growing in a solution of
pivalic acid and ethanol. The tip speed is v = 2.4 pm/s and
the tip radius is p = 6.2 p,m. The inner solid line is the
parabola Gtted to the tip. The outer solid line is the average
shape for aH dendrites grown under the same conditions.



50 MEAN SHAPE OF THREE-DIMENSIONAL DENDRITES: A. . . 1351

220
200-
180—
160—

E140—
«120
~1 00

N
80
60
40
20

0 I I I I I I I

100 200 300 400 500 600 700 800
z (p,m)

FIG. 2. Width vI(z) of the crystal in Fig. 1, from the center
line to the branches on the top side.

Images were recorded with a charge coupled device
(CCD) camera onto video tape and later digitized with a
resolution of 512 x 480 pixels and an overall scale of 1.3
pm/pixel. After subtraction of a background image, the
interface position was determined in the same manner as
in Ref. [10]. The intensity in the image was measured on
a line perpendicular to the interface. Over the range of
a few pixels, the intensity changed rapidly &om bright
to dark. In the transition region, we fitted a straight
line to the intensity profile. We defined the interface as
the location where the fitted intensity was the average of
the high value outside the crystal and the low value just
inside the crystal. This fitting procedure interpolates in-
tensity values and allows a reproducible measure of the
interface to better than one pixel resolution. It is also
insensitive to absolute intensity levels and to variations
in intensity across a single image.

For each image, a parabola of the form z —z&'p

(z —z«~)z/(2p) was fitted to the tip, where (x&,~, z«~)
is the location of the tip, z is the distance back &om the
tip along the stem of the dendrite, and p is the tip radius.
The velocity was determined by measuring the displace-
ment of the tip over known time intervals. The parabola
given by too ——/2pz is shown by the inner solid line on
Fig. 1.

The width tv(z) of the crystal in the plane of the side-
branches (from the center to one side) was then measured
as a function of the distance z back from the tip. Over-
hangs were ignored. The result for the top branches in
Fig. 1 is shown in Fig. 2.

The mean width tv(z) was then determined by aver-

aging the results &om a large number of images under
similar conditions. In order to obtain measurements for
large z, the dendrite tip was allowed to grow off the edge
of the screen and the tip position was extrapolated. The
result is shown as the outer solid line in Fig. 1.

When all measurements are scaled by p, we find that
tv(z) is approximately independent of both growth speed
and material used. The results are shown in Fig. 3 for pi-
valic acid dendrites with v = 1.3 pm/s and 3.9 pm/s, and
for NH4C1 dendrites with v = 0.93 pm/s (from Ref. [1]).
For comparison, the parabola fitted to the tip is shown

by the lower solid line.
Near the smooth tip, we expect to(z) = too oc z~/z, but
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FIG. 3. Dependence of the mean dendrite width vI(z)/p on

z/p, where z is the distance &om the tip. Curves are shown
for pivalic acid (PVA) with v = 1.3 pm/sI p = 8.1 pm (solid),
NH4Cl with v = 0.93 pm/s, p = 1.5 pm (dotted), and PVA
with v = 3.9 pm/s, p = 4.8 pm (dashed). The lower solid line
is the parabola fitted to the tip, given by vIO

——vI'2pz.

IV. CONCLUSIONS

The main results of this work are shown in Fig. 3.
First, the mean asymptotic shape of three-dimensional
nonaxisymmetric dendrites diverges strongly &om a

this is near the resolution limits of the measurements and
does not show up clearly in Fig. 1. For larger values of
z, m increases much more rapidly than mo. Although we
do not find strict power-law behavior, we do find that for
z 30p the slope of the logzo(tv/p) vs logos(z/p) graph
typically increases smoothly from about 0.6 to about 0.8.
In some runs, there is evidence of an eventual crossover to
a slope near 1. This behavior seems at least roughly con-
sistent with the asymptotic needle-crystal shape found
by Brener [2].

The variations in amplitude among the curves shown
are typical of all those obtained, both in the present work
and in the previous work on NH4C1. To within the sensi-
tivity of the measurements, this average shape appears to
be independent of both supersaturation and crystalline
anisotropy.

The range of available supersaturations for the present
work is somewhat limited. At low supersaturation, the
crystals are quite large, and it is difficult to obtain mea-
surements for many sidebranches large distances &om the
tip. In addition, the finite size of the cell becomes a fac-
tor as the diffusion length D/v becomes comparable to
the cell dimensions. Convection may also be a significant
problem at low supersaturation [19,9]. At high supersat-
uration, the crystals are quite small and growth is very
rapid. This makes quantitative imaging difficult.

Although the mean width in the plane of the side-
branches diverges &om the Ivantsov parabola, it is im-
portant to note that the axially averaged growth shape is
still consistent with the Ivantsov parabola, as was found
in Ref. [1]. This simply refiects the fact that the growth
is limited by diHusion. Thus, while the tip grows with
constant speed, the axially averaged width grows as t ~,
orasz /'.



1352 ANDRE%' DOUGHERTY AND ASELA GUNA%ARDANA

paraboloid of revolution. Instead, the material is con-
centrated by crystalline anisotropy into the sidebranch-
ing planes. Second, that mean shape is independent of
both the growth conditions and the crystalline anisotropy
e4 of the materials used. Although no power-law scaling
was observed, these results are roughly consistent with
the asymptotic needle-crystal shape found by Brener [2].

This work has addressed the mean shape only over a
limited range of distances, where the sidebranches still
actively compete. Eventually, the spacing between ac-
tive sidebranches becomes sufFiciently large that they
must grow as essentially free dendrite tips. It remains
to be seen whether the present picture holds even for

such large distances, or whether the overall growth enve-
lope might indeed depend on supersaturation, as appears
to be the case for some mean-Geld models of diffusion-
limited growth [21]. It is also not clear whether similar
results would hold for systems such as He where the
sidebranch activity is apparently very weak [22].
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