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Fluctuating interfaces in microemulsion and sponge phases
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A simple Ginzburg-Landau theory with a single, scalar order parameter is used to study the
microscopic structure of microemulsions and sponge phases. The scattering intensity in both 61m
and bulk contrast, as well as averages of the internal area S, the Euler characteristic g~, and the
mean curvature squared (H ), are calculated by Monte Carlo methods. The results are compared
with results obtained &om a variational approach in combination with the theory of Gaussian random
Selds and level surfaces. The results for the location of the transition &om the microemulsion to
oil-water coexistence, for the scattering intensity in bulk contrast, and for the dimensionless ratio
X+V /8 (where V is the volume) sre found to be in good quantitative agreement. However, the
variational approach fails to give a peak in the scattering intensity in 61m contrast at Snite wave

vector, a peak which is observed both in the Monte Carlo simulations and in experiment. Also, the
variational approach fwb to produce a transition 6;om the microemulsion to the lamellar phase.

PACS number(s): 82.70.—y, 05.40.+j, 61.20.Gy

I. INTRODUCTION

The understanding of binary and ternary amphiphilic
systems has made considerable progress over the last few
years [1,2). One of the phases which has received par-
ticular attention is the microemulsion, a homogeneous,
isotropic mixture of oil, water, and amphiphile. It is
by now well established that the microemulsion consists
of homogeneous regions of oil and water, which form a
complicated, intertwined network, with a typical length
scale of a few hundred A.. This is possible because the
amphiphile forms a monolayer at the interface between
these oil and water regions and thereby reduces the inter-
facial tension, so that a phase with an extensive amount
of internal interface can become stable. The structure of
the sponge phase in aqueous surfactant solutions is very
similar [3,4]. In this case an amphiphilic bilayer separates
two multiply connected water networks.

In order to characterize the internal structure of a
microemulsion, several quantities have been proposed.
Most experiments and theoretical studies have concen-
trated on the water-water correlation function, or equiva-
lently the scattering intensity in bulk contrast [1,2]. How-
ever, a two-point correlation function gives little informa-
tion about the connectivity and percolation of the oil and
water networks in a microemulsion. The latter property
can be probed by conductivity and &Musion experiments.
From a theoretical point of view, the topology of a mi-
croemulsion can be characterized by its Euler character-
istic [5—8], a quantity which nn&ortunately is difficult to
measure experimentally [7].

We want to investigate here a simple Ginzburg-Landau
model for oil-water-s~phiphile mixtures [9,10]. This
model has been used previously to calculate the spec-
trum of capillary waves of an oil-water interface [10,11],
to explain the wetting behavior of the microemulsion at
the oil-water interface [10,12,13], to describe several or-
dered phases such as a l~~ellar, a hexagonal, and a cubic

phase [14], and to study the behavior of amphiphilic sys-
tems in confined geometry [11,15]. The same model has
also been used to predict sound attenuation and disper-
sion in microemulsions [16]. In Ref. [17], this model has
been studied by Monte Carlo simulations. It has been
shown that there is a region in the phase diagram where
the microemulsion is stabilized by thermal ffuctuations.
This is the part of the phase diagram we want to inves-
tigate here in more detail. In particular, simulations are
used to calculate the scattering intensity both in bulk and
film contrast, and the geometrical quantities area, Euler
characteristic, and the mean curvature squared. The re-
sults are then compared with the results obtained from a
simple variational calculation and &om a self-consistent
perturbation theory.

The variational approach has been applied recently
to calculate the scattering intensity of an ensemble of
random interfaces with bending rigidity [18]. To make
the random interface model accessible to the variational
method, a mean-spherical approximation has been used
as a first step. In comparison to that model, we are here
in a position that we can directly compare the results ob-
tained &om the variational approach with the results of
our Monte Carlo simulation, and thus check the quality
of this approximation.

II. GINZBURG-LANDAU MODEL

Our analysis is based on the free-energy functional [10]

E(c) = J d~r c(dc)~+g(o)(vc)~+ f(o) —po

for a single, scalar order parameter field 4(r), which is
proportional to the local cMerence of the oil and water
concentrations. Here, p is the chemical potential 4&er-
ence between oil and water. The amphiphile concentra-
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tion does not appear explicitly in our model, and should
be considered to be integrated out [19]. The average
amphiphile concentration enters the model (1) via the
parameters of the functions f and g, which are chosen to
take the form [17]

(2)

(3)

With this choice for f and g, a three-phase coexistence
between a oil-rich phase with (4) 4, a water-rich
phase with (4) 4, and a microemulsion with (4) 0
can be described. We consider here only systems with oil-
water symmetry, where 4 = —O = 4&. The constant
fp in Eq. (2) is proportional to the chemical potential of
the amphiphile, while go decreases with increasing am-
phiphile strength or amphiphile concentration [20]. The
value of go determines the behavior of correlation func-
tion G(r) = (O(r)4(0)), and of the scattering intensity in
bulk contrast [9,10]. For gp sufficiently small or negative,
the correlation function in the microemulsion decays with
damped oscillations, while the scattering intensity has a
peak at nonzero wave vector k. To ensure a monotonic
decay of G(r) in the oil-rich and water-rich phases, we
choose

g2 ——4/1 + fp —gp + 0.01 .

in Ref. [17]. In addition to the quantities [25] studied
in Ref. [17], we also calculate here the mean curvature
squared and the scattering intensity in 61m contrast.

The calculation of the Slm scattering is rather straight-
forward. As in models for level surfaces and Gaussian
random 6elds, we de6ne the 61m scattering intensity as
the Fourier transform of the correlation function

Gsi-(» &) = Np(b. (@(&))b (4'(0)))

where b', (x) = 1/e for —e/2 & x & +e/2, and zero
otherwise. The normalization factor Np is chosen such
that lim„~ Gzi (r; e) = 1. This correlation function is
proportional to the probability distribution to find two
points at distance r in a thin layer of thickness e of the
4 = 0 surface. In the simulations, we calculate the dis-
tance distribution of lattice sites for which (4(r)( & e/2
(with periodic boundary conditions).

To calculate the mean curvature, we consider two
neighboring triangles j and k. Let b~I, be their com-
mon edge, U~ and Ug their perimeters, and S~ and SA,

their areas. Each triangle has a normal vector n point-
ing towards the oil. For the calculation of the radius
of curvature, we have to ass»me that the two triangles
are approximately equilateral. The radius of the sphere,
which touches both triangles in their centers of mass, is
then taken to be the radius of curvature,

The natural length scale of the model (1), (2), and (3) is

[12]

g
1/4

e
For all explicit calculations, we use the parameter set
c = 1, ur = 1, 4s = 1, and p = 0; this implies in particular
Eo ——1. Thus, we study the microemulsion structure as a
function of the parameters fp and gp.

The same model can also be interpreted as a model for
binary amphiphilic systems [4,21—23], if the amphiphilic
molecules form bilayers without holes or seams. The bi-
layers separate space into an "inside" (4 ) 0) and an
"outside" (4 & 0). In this case, the microemulsion phase
corresponds to the symmetric sponge phase, and the oil-
rich and water-rich phases to the asymmetric droplet
phase.

The sign of R~~ is easily obtained &om the two normal
vectors, and the vector connecting the centers of mass of
the two triangles. The mean curvature cz of the whole
triangle j is obtained by a sum over the contributions
from the edges with the three neighboring triangles ki,
k2, and ks, weighted with the lengths of these edges,

We want to point out that it is essential to de6ne the
mean curvature on triangles rather than on edges, be-
cause only in this way can the mean curvature near sad-
dle points be described correctly.

The total mean curvature and the total mean curvature
squared are then sums over all triangles,

III. METHODS

A. Monte Carlo simulations

dSH= ) S~c~,
2

3

dS H = ) S~c
3

(9)

(10)

To study the field-theoretic model (1) by Monte Carlo
simulations, space has to be discretized by introducing
a simple cubic N x N x N lattice with lattice constant
ap (and periodic boundary conditions). However, the
order-parameter field 4(r;) at each lattice site i is still
a continuous, real variable. Details about the simulation
procedure, about the triangulation of the 4 (r) = 0 sur-
face, and about the calculation of the area can be found

where the integral is over the whole surface. The addi-
tional factor 2/y 3 is obtained by triangulating the sur-
face of a sphere and comparing the results (9) and (10)
with the exact results in the limit of large sphere radius.
A similar procedure has been used in Re&. [26] and [27].

In order to test the quality of these expressions, we
have calculated the (average) mean curvature and mean
curvature squared for spheres and cylinders, as a function
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10 F & F„—:Fp+ P' —Pp)p (13)

G(t)

10

FIG. 1. Auto-correlation function, G(t), as a function of
time t (in units of Monte Carlo steps per site), for the param-
eters gp ———2 and fp ——0.5 (N = 27, ap ——0.8tp).

is used to construct an upper bound for the &ee energy F
of the system described by the functional T. Here, both
the &ee energy Fp and the average (...)p are calculated
with the free-energy functional (12). In Eqs. (12) and
(13), a cutoff A in momentum space is implicit. In order
to compare with the results of the Monte Carlo simu-
lations, we set A = 2w/(ppap), where ap is the lattice
constant used in the simulations, and pp 1. The best
approximation to E in this approach is then obtained
by minimizing E„with respect to Gp and 4. For the
free-energy functional (1) with (2) and (3), we Bnd

F„=15~Gp(r= 0) +A2Gp(r = 0)
+AgGp(r = 0) + Ap

d'k ~
'

Gp(k) ck + (B+ g2Gp(r = 0)k )

of the radius R. For R ) 2ap, where ap is the lattice
constant, the agreement with the exact results is very
good, with deviations of only a few percent. We have also
studied corrugated surfaces (with saddle points), which
are given by the Monge parametrization

z(x, y) = zp sin(2z z/L) sin(2z y/L) .

Ia this case, the deviations are less than a few percent
for I ) 6ap with zp ——ap, and for L ) 9ap with zp ——Sap.

An important question in any Monte Carlo simula-
tion is whether the system has reached thermal equilib-
rium. To answer this question, we have calculated the
auto-correlation function [28] in thermal equibbrium, as
a function of Monte Carlo time t,

N

). (4'(r' t)@(r' o)) —(4'(o o))'

G(t) = *=' ' [(e(0,o)') —(e(0, o))']

——ln (Gp(k))
2

(14)

where

Az ——3~(154 + fp —24&),

Ag ——(u 154 +6(fp —24s)4 + (4'p —2fp)4s

Ap ——~(4 + fp)(O —4s),—2B = gP+g24'

(»)
(16)

(17)

(18)

+ [B+ g, (k')]k' + ck' — = 0, (19)
1

2 p

The optimal Gaussian correlation function is obtained by
requiring that the functional derivative of F„withrespect
to Gp(k) must vanish, which implies

[45urGp(r = 0) + 2A2Gp(r = 0) + Ay)

where Ns is the number of lattice sites. The exponential
decay of this function gives us the relaxation time v. The
result for G(t) for our model in the microemulsion, near
the point of four-phase coexistence of oil-rich, mater-rich,
microemulsion, and lamellar phases, is shown in Fig. 1.
It shows that the relaxation time is r 680 [in units
of Monte Carlo steps per lattice site (MCS)]. Since in
our simulations we usually average over 50 000 to 100000
MCS, all our results represent true equilibrium averages.

B. Variational approach

where (kz) is the second moment of Gp(k) in Fourier
space. Thus, the correlation function in the variational
approach has the Teubner-Strey form [9]

Gp(k) = 2(bp + bik + ck ), (20)

1
Gp(r) = A —e "~~ sinqrr

where f is the correlation length, with

with constants bp and b2. Its Fourier transform is given
by [9]

The variational method [29] introduces a Gaussian
model with the &ee-energy functional

%0(oj = f d'r f d'r'

1b,+
4 c

2z'/q is the average domain size of coherent oil and water
regions, with

x[4(r) —4] Gp ()r —r')) [4(r') —4] . (12)

Then the Fey~~an-Bogoliubov inequality
1

Q
1b,
4 c (23)
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and in terms of the self-energy Z(k). Here,

The correlation function (20) in combination with the
theory of Gaussian random fields [30—32] can then be
used to calculate the 6jm scattering intensity, and the
fibn area (per unit volnme) S/V, the mean curvature
squared (H2), and the Euler characteristic (per unit area)
g@/S. For a film of thickness e, the film scattering in-
tensity is found to be [32]

G~r, (k) ' = 2(ck +gpk + ur)

is the bare propagator. The self-energy Z(k) can now
be expressed in terms of the full propagator G(k), and
the full four-point and six-point vertex functions I'(4l(k)
and I'(s&(k). The Feynman diagrams are shown in Fig.
2(a). To proceed, we need an expression for the vertex
functions. This can only be done approximately. The
simplest approximation is to use the bare vertex functions
[see Eqs. (1), (2), and (3)]

() N 1 +oo +oo
Gs(, ~ (r;e) = ds dt

a2+ t2 —2g(r)stx exp

(25)

I'bl ),(ki, k2, k3 k4) —24 —(k, + k2 + ks + k4)

+~(fp —24'~)

xb(k, + k, + k, + k4),
where g(r) = Gp(r)/Gp(r = 0). In the limit e —i 0, this
expression simpli6es to

t
(o)
aim( ) =

gl g(r)2
(26)

or explicitly, with (21),

2 - —1/2

Gzli~ (r) = 1 —exp( —2r/()
qr 2 (27)

Thus, the film correlation function diverges as G&(i (r)
g(/r for r m 0. Note that it follows immediately from

Eq. (26) that Gs(, ~ (r) ) Gsl, ~ (r = oo).
To obtain the geometrical quantities, we employ the

exact results [31] for O(r) = cx surfaces of Gaussian ran-
dom fields with (4) = 0 [33],

2 ( o.~ l
S/V = g(ks) exp

i

——~,
~3m

y@/S = (k )(o,2 —1),12'

(H) = Q(k2)a,
2~6

6 5 (k2)2

(28)

(30)

where n = a/QGp(r = 0). Here, (k2) and (k4) are the
second and fourth moments of the correlation function
Gp(k) in Fourier space.

I'b( l„(ki,k2, ks, k4, ks, kp) = 720(u b(ki + k2

+k, + k4 + k& + ks) . (35)

The Dyson Eq. (32) is then solved self-consistently. This
is the approximation used in Ref. [34] to calculate the
scattering intensity for a Ginzburg-Landau model (1)
with g2 ——0 in Eq. (3) and f(4) = t@s+ vo4. In our
case, it gives very bad results in the region of the phase
diagram, where strongly structured microemulsions are
stable (neither the peak position nor the peak intensity
are consistent with the Monte Carlo data). The simple
approximation can be improved by calculating the ver-
tex functions self-consistent}y. We include all Fey~man
diagrams up to two-loop order, as shown in Figs. 2(b)
and 2(c), where again all internal lines correspond to the
full propagator G(k). In addition, we expand the vertex
functions in powers of k, and truncate this series after

A+ A+ ~+~+ m

~b~ X = X+2+XX+

() M V

C. Self-consistent perturbation theory

G(k) ' = Go (k) ' —Z(k) (32)

Another method to ca1culate correlation functions be-
yond the Ornstein-Zernike (OZ) approximation is a per-
turbation in the higher-than-quadratic terms in (1) with
(2) and (3). The two-point correlation function can be
expressed by the Dyson equation,

FIG. 2. (a) Dyson equation for the self-energy E. (b)
Two-loop expansion of the vertex function I'~ l. (c) Two-loop
expansion of the vertex function F . In these Feynman dia;
grams, the full lines indicate the full propagator G(k); vertices
without a circle are the bare vertex functions Fb and I'b(4) C6)

vertices with a full circle denote the renormalized vertex func-
tions.
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FIG. 3. (s) Area (per unit voln~e), S/V, (b) average mean curvature (H), (c) average mean curvature squared (HP), snd
(d) Euler characteristic (per unit area), ys, /S, of level surfaces of Gaussian random fields. Note the logarithmic scale of the
ordinate in (s). The dashed lines sre linear its of the Monte Carlo data (N = 27, ap = 0.8tp). The full lines are the exact
results of the continuum model with cutoff parameter po ——2.5.

the first few terms, such that the form of the free-energy
functional (1), (2), and (3) is recovered after each step.
The resulting equations are solved numerically.

Equations (28), (29), and (30) can be used to obtain a
relation between S/V, yE, snd (H), which is independent
of n and (k ), and thus does not depend on any cutofF.
One easily 6nds that

IV. GAUSSIAN RANDOM FIELDS

In order to test our numerical procedures, we have sim-
ulated a model for Gaussian random surfaces, with g2

——0
in Eq. (3), and

f(4) = urC (38)

In this case, the exact results for level surfaces in the
continuum model are given by Eqs. (28), (29), (30), and
(31). Our numerical results are shown in Fig. 3. In
aD four cases the linear or quadratic dependence on o.
is reproduced very well. We have also calculated the
prefactors f'rom Eqs. (28), (29), and (30). Note that (k )
has a strong cutofF dependence, and (k4) even more so.
For the cuto8' parameter po = 2.5, we obtain the full lines
in Fig. 3. In the case of (H), the agreement is excellent.
For S/V and ya/S, there is an appreciable deviation for
large values of o.. This is not very surprising, since the
structures get very small in this case, and thus cannot be
described very well by our triangulation procedure. For
(II2), the amplitude of a2 in Fig. 3(c) is about a factor
of 2 too large compared to Eq. (31).

0.20

)
I

0.15

O

0

0.0 0.5 1.0
2—C H & /2 7T'XE

1.5

FIG. 4. The scaled Euler characteristic, —ps V /S, ss s
function of the scaled mean curvature —(H) S/(2s'ys), of
level surfaces of Gaussian random fields. The diamonds are
the Monte Carlo data, the full line is the exact result (38). For
a better comparison of the shape of the two curves, we also
show the exact result multiplied by s factor of 1.053 (dsshed
line).
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xa&' z & (IF)'S l
Ss 16 ( 27rya )

(37)

with 8(0) = 1, where the scaling function 8 is given by

surprise, no such spinodal exists. A closer look at the
structure of Eq. (19) reveals that this is not a zuimerical
problem. Since Gp(F = 0) = (j(16m'c) [see Eqs. (21) and
(24)], the behavior of Gp(k) for large ( (where (k2) q )
ls given by

( 4~Ox exp+4* g +4*& Gp(k) = 1

2[ck'+ (g, + r, )k'+ rp('] ' (39)

A comparison of the Monte Carlo data for the Gaussian
model with the scaling form (37) is shown in Fig. 4. The
agreement in this case is very good, with deviations of
only a few percent.

V. PHASE DIAGRAM

The phase diagram of our Ginzburg-Landau model,
calculated in the mean-field approximation, by Monte
Carlo simulations [17], and with the variational method,
is shown in Fig. 5. The results of the variational ap-
proach depend on the choice of the cutofF A = 2z'/(ppap).
We have determined pp from a fit of the scattering inten-
sity to the Monte Carlo data at one point in the phase
diagram (see discussion below), which gives pp = 1.5. It
can be seen in Fig. 5 that with this value of pp, the vari-
ational result for the location of the line of phase tran-
sitions &om oil-water coexistence to the microemulsion
or lamellar phase reproduces the qualitative behavior of
the Monte Carlo data very well; the quantitative agree-
ment is not perfect, but much better than the mean-field
result.

The lamellar phase cannot be studied with the varia-
tional ansatz (12) with an isotropic correlation function
Gp. Thus, to detect a transition from the microemul-
sion to a spatially ordered phase, we are looking for a
spinodal, where the scattering intensity Gp(k) diverges
at some nonzero value of the wave vector k. Much to our

gp

p
- micro-
. emulsion

oil - water

FIG. 5. Phase diagram of the Ginsburg-Landau model (1).
Full lines give the mean-Seld results, dashed lines the Monte
Carlo results [17]. In the variational approach, the transition
&om oil-water coexistence to the microemulsion is indicated
by one dotted line (narrow spacing), the spinodal (where the
microemulslon looses lts metastabillty) by another dotted line
(wide spacing). Finally, the varlational estimate of the tran-
sition microemulsion lamellar is the dashed-dotted line.

with constants ro and r2. From a calculation similar to
that leading to Eq. (22), one finds that the spinodal is
located at gp + r2 ———/4crp(. Thus, ( m oo implies
go M —00.

However, there is a strong peak in the variational
scattering intensity at some nonzero wave vector, which
sharpens and increases in height as the system is taken
from the microemulsion phase into a region of the phase
diagram, where the lamellar phase is found in the Monte
Carlo simulations. Thus, in order to get an estimate for
the transition line, we use a Lindemann type criterion
[35] by requiring that the dimensionless product q( equal
some 6xed value tu at the transition. We use here tu = 5;
this choice is motivated by the fact that values of qg 5
have been observed neither experimentally [9,36,37], nor
in the simulations of the Ginzburg-Landau model [17].
The result of this approximation is also shown in Fig. 5.
Its qualitative behavior is again in reasonable agreement
with the Monte Carlo data. The location of the line of
q( = ip obviously depends on the value of ip.

VI. SCATTERING INTENSITIES

The scattering intensity in bulk contrast, Gy@(k) =
(4'(k)4( —k)), at difFerent points in the phase diagram is
shown in Fig. 6. As we have already mentioned in the
previous section, the data of Fig. 6(a) have been used
to determine the cutofF parameter pp of the variational
approach. Note, however, that pp is the only parameter
in the fit, which determines the shape and the amplitude
of the scattering intensity. The same parameter po is
then used to calculate the scattering intensities at other
points in the phase diagram, as shown in Fig. 6(b) and
6(c). The agreement with the Monte Carlo data is quite
remarkable.

The results of the self-consistent perturbation theory
are shown in Fig. 7, at the same points in the phase di-
agram as in Fig. 6. Given the rather large calculational
effort to obtain these curves, the result is rather disap-
pointing. The self-consistent perturbation theory gives
only a very weak peak at nonzero wave vector k. Al-

though the position of the peak is roupy correct, the
ratio of peak height to the scattering intensity at k = 0
varies very little compared to the Monte Carlo data.

The Monte Carlo data for the film correlation function
in real space are shown in Fig. 8. Vfe Sad that this
correlation shows oacillationa as a function of distance r.
This oscillatory behavior has been observed explicitly so
far only in lattice models for microemuhnons in one di-
mension [38—40]. Oscillations are also found in the Gaus-
sian correlation function (27). This correlatioxi function
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is also shown in Fig. 8. Two main differences can be
recognized immediately: (i) the oscillations of the Monte
Carlo data are much more pronounced and (ii) the Monte
Carlo data for intermediate r drop below the asymptotic
value of Gg~ for r m oo, while the Gaussian correla-
tion function does not (as discussed above). These two
cMerences have important consequences when the film
scattering intensity is calculated (by a numerical Fourier
transform of the data shown in Fig. 8). The results for
this scattering intensity are shown in Fig. 9(a). Note that
while the variational correlation function decays mono-
tonically, the Monte Carlo result displays a small peak
at some nonzero value of the wave vector I The latter
behavior is just what is seen in experiment [41—43].

The Fourier try~form of Eq. (27) depends on a single

0.4
(s}

0.2

G~(k)

0.$

k tIp

FIG. 7. Scattering intensity in bulk contrast as obtained
from the self-consistent screening approximation. The param-
eters are gp

———1.0, fp ——0.0 (full line), gp
———2.0, fp ——0.5

(dashed line), and gp ———2.5, fp = 0.675 (dotted line).

G~~(k)

0.2

G~t(k)

1.0

0.5

k Lo

parameter, the dimensionless product q(. We can thus
ask if the Gaussian scattering intensity in film contrast
shows a peak at nonzero wave vector I for any value of
q( (independent of the value of qf obtained by the vari-
ational method). The correlation function (27) has its
strongest oscillations for large q('. However, even in the
limit q( ~ oo, no peak or shoulder appears at finite k/q.
Thus, the Gaussian scattering intensity in film contrast
never has a peak at finite wave vector I

An analytical expression for the film scattering inten-
sity has been obtained recently &om a Ginzburg-Landau
model with two scalar order-parameter fields [4,22,23),
the concentration difference between oil and water, 4(r),
and the amphiphile concentration, p(r). In this case, one
finds for the amphiphile-amphiphile correlation function
[23]

2
xp & xpg (Q) = +

~ ~

I'(&Le, q$), (40)

where

2.0 (c}

G~(k)

1.0

A A A A

E

C9
I

0
E

C9

C) a
a

aa

a

3
k 40

FIG. 6. Scattering intensity in bulk contrast. The full lines
are the results of the variational approach, the diamonds are
the Monte Carlo data (1V = 45, ap —— 6l0). p(a) gp = —1 0,
fp = 0.0. The data at this point in the phase diagram are used
to determine the cutoff parameter pp = 1.5. (b) gp = —2.0,
fp = 0.5. (c) gp = —2.5, fp —0.675.

r /Ep
10

FIG. 8. Filro correlation function Gs~ (r) in real space, for
gp = —2.5 and fp = 0.675, with film thickness c = 0.14 Thpe

full line is the variational result (with Tp = 1.5), the Monte
Carlo data (1V = 27, ap = 8/0p) are given by diamonds.
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X ~(+ 9) ('Yi 72~')'A-(* w) + 2'7s(yi —72+ ) (1 —~')A-(~ w)
—w=-(* u)I

+~3[29'{(A+(*u) —A-(~ ~)) + (1 —~')'A-(* ~) —2V(1 —~')=-(* W) + ~'] (41)

with

1 x 4*
!Ay(x, y) = —2arctan — + arctan

~4x 2 (4+ 4y2 —x2)

(42)

1 f'4+ (x+ 2y)')
4x I 4+ (x —2y)2) (43)

Here, n = 0 for 0 & x ( 4+ 4y and n = 1 for
z & 4 + 4y . The disadvantage of this two-order-
parameter model is that it contains the parameters pq,
p2, ps, and (~ in addition to those which appear in our
model (1), (2), and (3). We thus fit the analytic form

(40) to our Monte Carlo data, in order to compare the
general form of the two results. Here, the value of q( is
determined &om a Gt of the Monte Carlo order-parameter
correlation function to the Teubner-Strey form (20). The
two curves are shown in Fig. 9(b). The agreement is
found to be very good for 0 & k/q & 3/2. This implies
in particular that for 1 « k( « q$ the Monte Carlo data
show a 1/k behavior [4,22,23]. For larger values of k,
the expression (40) yields a more rapid decay than the
Monte Carlo data. The same discrepancy occurs when
(40) is compared with the experimental data, see Ref.
[23]. Thus, our Monte Carlo results should describe the
experimental behavior even better than the perturbation
theory of the two-order-parameter model.

VII. STRUCTURE AND TOPOLOGY

1.0 -.

A typical configuration of the 4(r) = 0 surfaces in a
microemulsion near the four-phase point is shown in Fig.
10. Note that Buctuations of the interfaces on length
scales smaller than the typical domain size are clearly
visible. We want to calculate now the area (per unit vol-

0.1 -.

0.2 1.0
k / q

4.0

1.5

E

(3 )0

0.5

1.0 2.0 3.0
k / q

FIG. 9. Scattering intensity in film contrast. The pa-
rameters are the same as in Fig. 8. (a) A comparison of
Monte Carlo simulation (full line) and the variational ap-
proach (dashed line). (b) A comparison of the Monte Carlo
data (full line) with the results of the two-order-parameter
Landau model, Eq. (40), with pi ——36.1, pq = —0.21,

= 0.53, and (~/f = 0.072 (dashed line). The value of
qg = 9.71 is obtained by fitting the Monte Carlo results
for scattering intensity in bulk contrast to the Teubner-Strey
form (20).

FIG. 10. Typical configuration of the 4(r) = 0 surfaces in
a microemulsion. The parameters are go = —2.0, fs ——0 75, .
ao = 0.6fo, and N = 45. The figure shows only a part (of size
36 x 36 x 36) of the total lattice. The two sides of the interface
are colored difFerently, dark on the oil-rich side, light on the
abater-rich side.
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(Gaussian random fields) . (45)

Given the fact that the typical con6gurations of the
order-parameter Geld look quite different, the similarity
of these two values is quite surprising.

VIII. DISCUSSION

We have studied in this paper the thermal Quctuations
of interfaces in microemulsions and sponge phases with
the use of a simple Ginzburg-Landau model for ternary
amphiphilic systems. We have employed Monte Carlo
simulations, the variational method, and self-consistent
perturbation theory to calculate the scattering intensities
and correlation functions both in bulk and in 61m con-
trast, as well as the area S, the mean curvature squared
(H ), and the Euler characteristic g@ of the internal in-
terfaces.

The self-consistent perturbation theory is unable to
produce a strong peak in the scattering intensity with
bulk contrast at the nonzero wave vector; it is thus lim-
ited in its application to weakly structured microemul-
sions. A comparison of the Monte Carlo method and
the variational approach shows very good agreement for
the scattering intensity in bulk contrast, for the phase

transition between the microemulsion and the oil-rich
and water-rich phases, and for the dimensionless ratio
g@V /S . This is a very useful result, since it indi-
cates that in order to calculate phase diagrams of the
Ginzburg-Landau model for other sets of parameters,
time-consuming Monte Carlo simulations in search for
phase transitions can be avoided. However, the vari-
ational approach fails for the scattering intensity in
fj.lm contrast, and for the phase transition between mi-
croemulsion and lamellar phase. In particular, the varia-
tional approach is unable to produce a peak of the scat-
tering intensity in film contrast at 6nite wave vector k.
This is a serious deficiency of the Gaussian model. It
shows that leuel surfaces of Gaussian random fields do
not accurately describe the structure of bicontinuous mi

cmemulsions. The Monte Carlo results of our Ginzburg-
Landau model, on the other hand, are in very good agree-
ment with experimental results.
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