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The requirement that the native structure of a protein be stable and kinetically accessible implies
that it should correspond to a pronounced energy minimum. Thus we expect the protein sequence
not to be random but selected such that this is satisfied. This is achieved in our model by defining
a "selective temperature" in sequence space and statistically optimizing the sequence for the target
conformation. Mean-field replica calculations are presented for this model and the phase diagram
indicating the temperatures and selective temperatures at which the transition to the native con-
formation occurs is obtained. The transition to the native state is shown to be a first-order one. A
temperature range exists in which the target structure of selected sequences is stable and kinetically
accessible. It is shown that optimization at very low selective temperature leads to sequences with
long-range correlations which appear to be less capable of folding.

PACS number(s): 61.44.+p, 87.15.Da, 64.60.Cn, 64.60.Kw

I. INTRODUCTION

The statistical-mechanical approach to protein folding
is based on the investigation of the properties of simple
models of heteropolymers. As is well known, proteins are
made up of 20 difFerent kinds of amino acids and thus the
interaction energy between the different monomers of the
heteropolyzner can be approximated to have a Gaussian
distribution (independent interaction model). The prop-
erties of such a model have been extensively studied [1—4]
and it was found that there exists a transition tempera-
ture T, (nonvanishing in the thermodynamic limit) such
that below T the chain freezes into a small number of
definite folds.

The independent interaction model corresponds to an
infinite number of monomers. This model has, however,
the caveat that the interaction energies are considered
independent there while in proteins they are character-
ized by the sequence of their znonozners. This moti-
vates the study of another simplified model of proteins in
which the heteropolymer is made up of only two kinds of
monomers ("letters" ). Such a molecule is called a copoly-
zner. The statistical mechanics of random copolymers has
been studied in the recent past [5—S].

In this "two letter" model the similar kinds of
monomers attract each other and unlike monozners repel
each other. This can be related to the physical picture
where we classify the different monomers of the protein as
either hydrophilic or hydrophobic. Though it may seem
that such a system would just separate into hydrophobic
and hydrophilic rich regions at low temperatures, this is
not the case because of the presence of the constraints
of chain connectivity. Due to the polymeric effect the
position of a monomer is not independent of that of its
neighbors and this leads to frustrations.

Solving this znodel in the mean field using the replica
symmetry breaking ansatz [8] one finds that the energy
levels show a continuous spectruzn for large values for

the free energy and a discrete spectrum for lower values.
Thus as the system is cooled it freezes" into the lower
part of the energy spectrum. This is analogous to the
basic physics of the independent interaction model where
the same transition has been predicted.

It was shown in [3,10,8] that the random energy model
(REM) [ll] is a good approximation for energy surface
of random heteropolymers. A nuznber of studies con-
cerning the dynamics of the REM [12—14] have suggested
that the dynaznics of freezing will be extremely slow so
that the ground state, even if nondegenerate (unique),
will not be reachable kinetically. This assertion was con-
firmed in a recent numeric study [15] where 200 random
sequences were subjected to folding simulations in the
model where all compact conformations were enumer-
ated, and the ground state was known. It was found
that only small f'ractions of random sequences were able
to find their ground state conformation. Careful analysis
revealed that the feature which distinguishes folding se-
quences is that they have a large gap in their energy spec-
trum, i.e., that the energy difFerence between the ground
state and other conforznations is greater in folding se-
quences than in nonfolding ones.

In order for a heteropolymer to be able to fold to a
kinetically accessible unique native state it thus seems
necessary to pull down the energy of this state far below
the discrete part of its energy spectrum.

Several phenomenological models have been znotivated
by this idea of nonrandomness in proteins [16,17,1]. In [1]
this idea was encapsulated in "the principle of minimal
frustrations. " The models in [16,1] assumed some special
interactions between those monomers of a protein which
are neighbors in its native structure. These interactions
were responsible for "pulling down" the energy of the
native structure in these models.

However, the basic interactions in proteins are the
same as in a random heteropolymer; therefore it was sug-
gested in [18] that the distinguishing feature of biologi-
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cally active molecules was some kind of sequence opti-
mization to allow folding to a unique structure, i.e., to
achieve the energy gap. Further, a Metropolis Monte
Carlo algorithm was introduced in sequence space to de-
sign sequences which possess such an energy gap [18,1S].
The sequence design problem is often called the "inverse
folding problem" in the following sense. In the folding
problem the sequence is known and is quenched but chain
conformation undergoes fluctuations until it reaches the
native state (global energy minimum). In the design
problem the structure (target conformation) is known
and quenched, but the eequence is allowed to change in
order that the target conformation have a low energy and
that it be separated by an energy gap from other confor-
matlons.

The annealing in sequence space was done in [18,19]
by Metropolis Monte Carlo procedure. A "selective tem-
perature" T„~was set in sequence space and the random
heteropolymer was mutated at this "temperature" with
the constraint that the amino acid composition remain
unaltered to prevent the sequence from going to a ho-
mopolymer. The energy of a particular structure for a
given sequence was defined in terms of the contact ener-
gies of the monomers. It was asserted in [18] that this
design procedure generates a canonical distribution in
sequence space with a temperature T„~so that the prob-
ability of occurrence of any sequence, in this algorithm,
is just the Boltzmann weight depending on the energy of
that sequence in the native state and the selective tem-
perature. The physics of the system in sequence space
is identical to a ferromagnetic Ising system on an inho-
mogeneous lattice (corresponding to the target confor-
mation) at the selective temperature with the constraint
that the magnetization be constant. This equivalence im-
plies that phase transitions are possible in sequence space
which correspond to the dominance of very nonrandom
sequences.

However, the constraint of constant composition does
not matter in the thermodynamic limit since a phase
transition in sequence space leads to thermodynami-
cally large "hydrophobic" rich and "hydrophilic" rich
regions —just like spin up and spin down domains in the
Ising model. The condition of constant composition gives
rise to an interface between hydrophobic and hydrophilic
regions the energy of which is nonextensive and is not
essential in thermodynamic limit.

Since the design procedure generates an ensemble of
sequences which are certainly nonrandom, it is natural
to expect that statistical mechanics of such sequences
will be unusual. Taking inta account the importance of
designed sequences as a model for proteins it makes it
interesting from both the physical and the biophysical
points of view to study such heteropolymers.

The subject of the present paper is an analytical study
of statistical-mechanical properties of heteropolymers
with designed sequences. The calculations are sketched
in Sec. II and the results are discussed in Sec. III.

II. THE MODEL AND CALCULATIONS

The interaction term in the Hamiltonian can be taken
in a standard form:

(2.1)

where the conformation of the polymer is described by
the coordinates of its monomers (r;) and U(r; —rz) is a
short-range potential. N is the number of monomers in
the chain. The binary interaction virial coeKcients are
given by [20]

b;, =2 bo + A(o, + o ~ ) + ger;o ~ j . (2.2)

The sequence of monomers is described by the vari-
ables (o;). o;. = 1 if monomer i is of type A (say, hy-
drophobic) and o, = —1 if it is of type B (hydrophilic).
When the interactions between similar monomers are
equal (b~~ = b~~) then A = 0. The composite Flory
parameter y = (bing + b~~)/2 —b~~ will be negative in
the case of interest where similar monomers attract each
other. 60 & 0 provides an average attraction between
monomers; this sequence-nonspecific term shifts equilib-
rium towards globular states. Thus for the calculation
of thermodynamic properties one needs to consider only
compact globular states.

The target (native) structure is defined via its coordi-
nates (r, ). Thus the energy of the sequence (o;}folded
to this structure is given by

1V

&o((&')) = —) .bV U(r,' —r,'). (2.3)

As mentioned earlier, the selection procedure, which is
the Monte Carlo optimization in sequence space, is noth-
ing but the selection of the sequence depending on its en-

ergy in the target conformation and the "temperature"
in sequence space. This converges to the canonical en-
semble of sequences in sequence space with their energies
given by that in the target conformation. Thus in this
model the probability of occurrence of a particular se-
quence (o;) is given by [18]

t' & (( *})l
(2 4)

)-,„&&o((&'))&
)

(2.5)

and T„~is the selective temperature in sequence space.
Ta calculate the Bee energy within the framework of' this
model one needs to average the free energy over all possi-
ble sequences with the probability distribution given by
Eq. (2.4), i.e. ,

{F) = kT ) ln Z(o.;)P(—o;}, (2.6)

where (. . .) denotes averaging over all possible se-
quences (o;) with a probability distribution for their oc-
currence P(o;) given by Eq. (2.4). The appearance of
P(o;) in the averaging procedure in Eq. (2.6) is the main



50 STATISTICAL MECHANICS OF PROTEINS WITH. . . 1305

feature which distinguishes selected sequences &om ran-
dom ones. In the latter case each sequence is taken with
a priori probability 2 while for selected sequences the
weight factor P biases the averaging to take into account
sequences which fit the native state with low energies.

Z in Eq. (2.6) is the configurational partition function
of a copolymer with a given sequence:

a ag(r,.+, —r, ) = exp—(r,'+i —r,')'
2G

(2.8)

In order to average the free energy over all possible
sequences, as suggested by Eq. (2.6), one resorts to the
replica method. This requires averaging the nth power
of the partition function which is given by

t' &((&'))&Z=) exp~ — '
~

g(r+, —r).
ksT

(2 7)
(Z"), = & f ggr g(r, es r, )e gc 'S

(~'}
The summation is over aQ conformations of a protein
which are expressed through the coordinates of the
monomers. The g functions describe the covalent struc-
ture of the chain. They impose restrictions on the mutual
positions of monomers which are nearest neighbors along
the chain. The standard Gaussian form was suggested
for these functions in [21]:

x exp —) ) —0;U(r; —r, )0, P(o;).
a t,j

(2.9)

U; = U(r; —r ) with r; the position of the ith monomer
in replica o, . We can rewrite Eq. (2.9) as

rj e '& *' exp b dR~dR2 o; r; —R~ U R~ —R2 ~jb r~ —R2
a 2 IV

(2.10)

with b = y/T to b—e positive in the case of interest, although this approach can be generalized to either sign of b. We
want to study the statistical properties of the system independent of the particular target structure selected. Thus
we need to average over all possible target structures and all possible sequences. Performing the average over the
variables (o;) and (rP) such that only compact target conformations are averaged over one obtains

x exp 6) f dRsdRs) o 6{r,. —Rs)U(Rs —Rs) ) os6(r. —Rs)
a

+b, dRqdR2 o; r, —Rq U Rq —R2 oj r~ —R2, 2.11
t SV

with b, = ){/T„~,T„~b—eing the selective temperature. The second exponent in the above expression can be written
as

exp ) 6 fdRsdRs) o;b(r; —Rs)U(Rs —Rs)) osg(r —Rs)
a 't

(2.12)

by defining b = b for cr = (1, ..., n) and b = b, for o{ = 0.
By performing a Hubbard-Stratonovich transformation of the variables

) o;b(r, —R) Va c (O, . . . , n)

the second exponential of Eq. (2.11) can be rewritten as

Dgc (R) exp —) 'f dRsdRsgs (Rs)sg (Rs)U (Rs —Rs) + ) J dR'P (R) ) o 6(r; —R) . (313)
a a

Now performing the trace over o; one obtains

n

(Z ) = = 17@ 17'@p exp —) dRi dR& 4 (Ri)9 (R2)U (Ri —R2)z ;4b.

+ ) hs cosh ) f dRsg (R)b(r,. —R)
t 3

(2.14)
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where ()&h indicates the integral over the (ro} and the (r; }variables including the g factors. Expanding lncosh to
fourth order in @ (R) the last exponential in the above equation can be rewritten as

n

exp —) dRgdR2@ (Rg)@ (R2)U '(Rg —R2)- 4b.a=0

+-,
'

& f dR&dR C'r(Rr)'Pr(Rr)() b(r—R, , )b(r, —Rr))
'-P=o
1 ) dRgdR2dRsdR44'~(R) )SI)'p(R2)4'~(Rs)@g(R4)

aPp8=0

x br; —Rg br~ —Rg br~ —Rsbr; —R4
1

setting

1
4~(R, ) = dRgU '(Rg —R2)@~(R))

2b

(2.i5)

(2.16)

one gets for the n replica partition function averaged over the sequence variables ((r} as

1(Z") „== 'DC' 'D4pexp —) b dR&dR2O~(R])IIS~(R2)U(RQ R2)
Z @=0

n

yS ) I bd f dR, dRrS (R,)U(R, —R, ) f dRrdRrE (Rr)U(R, —Rr)Q d(R, —Rr)
aP=O

——) b bdbrbr f dR, SR, . . .SR dR4Er(R )U(oRrRrr). @r(R4)U(R4 —R4)
'-p. b

x ) h (r; —
R& )h (r, —R2) h (r,. —Rz) b (r, —R4)

th

(2.i7)

where once again the integrals over (r, } and (r, } are
not explicitly written and o. = 0 denotes the target con-
formation and n = (1, . . . , n) denote the n replicas.

step replica symmetry breaking in Q p Vo, , P 6 (1, . . . , n)
and we can construct a Parisi-type hierarchical matrix for
the order parameter with the form

Q p(R& —R2) = ) h(r; —Rz)b(r, —R2). (2.18)

The parameter Q )s is a measure of the overlap between
conformations o. and P Va, P E (0, . . . , n). If the two
folds a and P are completely different then Q p = 0.
In the opposite extreme, if the two folds are identical
then Q p = pb(Rq —R2) where p is the density. In par-
ticular Qo represents the overlap of the replica a with
the target conformation. We can evaluate Eq. (2.17)
by switching to the Q p variables. The corresponding
entropy for this change of variable is

Ir 8(Q d) = (b(b) r(R, —Rr)

pb(Rq —R2) for n, P in the same group
Is)s —

0 for cs, P in different groups.

(2.20)

(2) the fold cE and the target conformation are identical
then Qo~(Rq —R2) = pb(Rq —R2) where p is the density.
In this case Q )s(Rq —R2) = pb'(R) —R2) for all n
and )9 and. all the replica folds are identical to the target
structure to within a microscopic scale.

(3) We can express the intermediate case of similarity
between the fold o. and the target state by writing the
order parameter in terms of a function go~ with unit
scale as

—) h(r; —R) )b(r~ —R2))
th

(2.19) p r'Ra —R2 &

Qo (Rl R2) =,po- I

RSO' 0 &S )
(2.21)

Let us consider the overlap between the conformation
a and the native state in particular.

(1) Qs ——0. This is when there is no overlap between
the replicas and the target conformation. In this case one
obtains following the arguments in [8] that there is a one

with jQo~(R) —R2)dRqdR2 ——N. This means that
replica o. repeats the target fold within some scale of Buc-
tuations R~. The other order parameter in the problem
is the overlap between different replicas. This is repre-
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sented by Q~p(Ri —R2), VoP E (1, . . . , n) which has the
characteristic length scale Ri. This length scale, which
is the xneasure of the overlap between difFerent replicas,
represents the width of the tube that the replicas are con-
fined to. Assuming a one step replica symmetry breaking
in this order parameter, Rq is either zero or infinity. The

&ee energy corresponds to the &ee energy of confinement
of replicas of the saxne group in a tube of radius Rq and
further confinement of these tubes in a tube of radius R&.

The corresponding entropy loss scales as —1/R, [2,3].O2

The, energy in terms of Q p(R) is found by integration
of the Gaussian integral (2.17).

n

B4 k exp —V b p
—2b bp pk 4 k@p —k

a,P=O k th

(2.22)

where V is the volume of the system, k is the wave vector, and Q p(k) and C)(k) are the Fourier transforms of the
order parameters. Performing the integral over the fields 4 (k), o. = 0, ..., n one obtains

f dkln[det P p(k)],

with P p(k) = b b p
—2b bpQ p(k). P p(k) is a symmetric matrix. We can rescale k to Risk. Thus

(2.23)

d(Rik) ln[det P p(Rik)].
R," (2.24)

Thus the free energy per monomer as a function of Ris is expected to have the form [8]

P(Rio) Ai Az

Nn Ro2 +
R~o3

(2.25)

with A~, A2 & 0.
Minimizing the &ee energy with respect to R~ we find that R~ must either be infinite or must be a, the microscopic

length scale in the problem. Thus

ph(Ri —R2) for replica a identical to the target structure, i.e., Rio = 0
on 0 for a difFerent from the target structure is R~ = oo. (2.26)

Thus we see that either case (1) or case (2) applies and that Q() does not vary continuously but can take on only
two possible values. This corresponds to the sharp change of the state of the systexn &om the disordered globule
or &ozen state to the target conforxnation depending on the actual temperature and the selective temperature. The
temperatures at which these transitions take place can be found by just comparing the &ee energies of the various
states in question. We do this for the case when the interaction potential between the monomers is a b function
representing contact interactions.

A. The free energy of the target state

The &ee energy of the target state at a given selective temperature can be calculated in the mean Geld using the
saddle point approximation to perform the integrals over the 4 fields. This is identical to the calculation of the
&ee energy of a ferromagnetic system on an inhomogeneous lattice at a given temperature. As is well known, the
system undergoes second-order phase transition at a particular texnperature below which there is a nonzero value for
the magnetization. Following Eq. (2.9) we get for the n replica partition function

~5+ bp ~ Up(Z") = (f1gr g(r +r —r )e - r " exp ) (g+erg)e;U(r, —r )e—r,
av

(2.27)

since in this case r; is identical to r, for all o. and i. One can once again perforxn the Hubbard-Stratonovich
transformation as done in going from Eq. (2.11) to Eq. (2.15) except that in this case the fields 4 are identical for
all a. Thus the expression corresponding to Eq. (2.14) for the partition function is obtained by simply replacing all
the 4 =Co,



1 1(Z") „== 'D4'0 exp — dRidR2@'0(Ri)%'s(Rs)U (Ri —R2)
Z 4(nb+ b.)

dR@p R 0;b r; —R
th

(2.28)

where once again the integrals over (r; ) and (r; ) are not explicitly written. For U(Ri —R2) = h(Ri —R2) the
above equation becomes

(Z") „== D4, exp — dRC,'(R) + — dR@,(R)
Z

th

(2.29)

From this expression the energy of the target state can
be easily found in the mean-field approximation by per-
forming the Gaussian integrals over the field 4'p using
the method of steepest descent and taking the limit n ~
0 as is required by the replica method [22]. Note that Z
in the above case is equal to ln(1 —2b, p) when 2b, p ( 1,
i.e., T, & —2gp. It is found that for T, & —2yp for
the field 4p the mean value of the field is zero while
for T, ( —2gp the field 4p has a nonzero mean value.
In this case the fourth-order term has also to be taken
into account. This is due to the phase transition in the
sequence space of the monomers on the inhomogeneous
target conformation. It is identical to the phase transi-
tions seen in magnets at the critical point below which
there is nonzero magnetization and the saddle point in-
tegration has to be performed about the new minimum
that appears. In either case the energy density of the
target conformation is calculated to be

-(2bp)i(1 —2b.p) T. & -2Xp

I
—i's(b)/(pb.') .1

—1/(2b. p) T. & -2xp.

S = Nnln(v/a'). (2.31)

Thus the free energy density of the target state is given
by

To calculate the &ee energy density relative to the disor-
dered globule we must calculate the entropy loss in con-
straining the replicas to be identical to the target confor-
mation to within a microscopic scale. The replicas repeat
the target conformation to within a scale of R~sv ~ . We
know that because of polymeric eKect, after placing one
monomer we must place the next one in a volume a .
There are as/v ways of doing this so the corresponding
entropy is ln(as/v) per monomer. Thus the total loss
entropy loss for the n replicas is

—(2bp)/(1 —2b, p) + ln(v/a ), T, & —2yp
—is(b)/(Pb2) 1 —1/(2b, P) + ln(v/as), T, ( —2yP.

(2.32)

B. The free energy of the disordered globule and the frosen globular state

As was noted earlier, when there is no overlap with the native state the problem becomes identical to the problem
of the one of the random heteropolymer studied in [8].

Setting Qo ——0 in Eq. (2.15) and including only up to the second-order terms in 4 (B) one finds the n replica
partition function to be

1 1(Z") „== D4 'DC'o exp —) dRidR24' (Ri)4'~(R2)U (Ri —R2)z ;4b
n

+
2 ) dRidR2% ~(Ri)4 p(Rs)Q~p(Ri, Rs) + — dRi%'o(Ri) . (2.33)

aP=1 th

f in[1 —2bpx p] s

Xp
)

Xp
(2.34)

The integral over the fields 40(B) cancels with the terms
in Z and one finds that there is no coupling between
the 4 (R) and 4'0(R) fields when the Huctuations in the
order parameter Qo are neglected. Following the calcu-
lations in [8], assuming a one step replica symmetry in

Q p with xo as the variational parameter, one obtains
for the Bee energy

I

where s = ln(as/v) & 0 denotes the fiexibility of the
chain. Max~sizing with respect to xp and solving for xp
to lowest order in s one obtains

for T(T =" "'
2(-x)n /a
1 for T &T'. (2.35)

The fiuctuations of the Qp order parameter will af-
fect the keezing temperature. In order to investigate the
effect of Huctuations we must introduce a finite range
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into the potential and set U(k) = 1 —c2k where c2 is
a surface tension coeKcient which suppresses large wave
vectors k. We then set b (k) = b (1—c2k ). We consider
the partition function in the form of Eq. (2.17).

We group the replicas according to the replica symme-
try breaking (RSB) pattern [8]. For replicas in the same

group we replace the quantity P,. b(r; —Rq)b(r, —R2)
I

by pb(Rq —Rs). On the mean-field level we will have

(Q,. b(r; —Rg)b(r,- —R2))kh = 0 for the replicas and the
target conformation. In order to investigate Buctuations
of the Q () order parameter and interactions between
replicas in +Hereat groups and the target conformation
we need to expand the bilinear term 4 (k)@0(—k) for
replica a and the target conformation as follows:

274 R 1740 R exp 2bb, dR&dR', 4 Rz U R& Rx r; —Rq
(A) i aGA

x dR2dR~@p R2 U Rg —R2 r —R2
th

with (A) indicating a sum over all the possible groups of replicas. By Fourier transformation

(2.38)

n
'V4 k exp —V bk4~ k4 —k —V b k@p k@0 —k

a=1 kgp k+0

+2) ) ) b(k) )
e'""' 4~ (kq) b, (k2) e' "'C 0(k2)

i k1,kg +0 th

(2.37)

We expand the bilinear term in the replica fields and the target field. The second. -order term vanishes after the
thermal average. At fourth order, only terms with a pair of replicas &om the same group and a pair in the target
state will survive. Hence from Eq. {2.17) we obtain

W

'V4 k exp —V P p k4 k@0 —k
A a&A kgp

x 1+ bkg b, k2bk3b, k4
(A) apqA i,j kg ...k4+0

xe'~"' '+"' '~k (ko)O (ko)e'~"' '+o"'OOo(ko)Oo(ko))
th

(2.38)

where P o(k) = —2bb, (k)p, P (k) = b(k) —2b (k)p, and PM(k) = b, (k) —2b2(k)p. The first integral in Eq. (2.34)
is the Gaussian integral denoted as C(zo). The integral of the fourth-order term is calculated to be

&(* ) 4 ) ) ) ) b'(k, )b'(k2)e'"'{" '~ e'"' "-'Jl[P-']" (k, )
kg, kg (A) appA i,j b, —2b~p

th

(2.39)

We will represent the elements of the inverse Parisi matrix, P ~(k) as p(k) for the off-diagonal elements and p(k) for
the diagonal elements where

~(k) , d
-

„

1 + ~(k)(1 —*.)
b(k)[1 —~(k)*.l b(k)[1 —7(k)*.1'

with p(k) = 2b(k) p. Then Eq. (2.40) becomes

4C(eo) —) 5 (ko)b, (ko) (eo —1)eop(ko) + eoOi(ko) ) e'"'&" ' &e'"*&" '
&)Xp b, —2b2p

kg, kg +0 ting th

(2.40}

(2.41)

By substitution of (2.35) in (2.36)

( ) ). b(kg)b, (k2)
[ —~(k~)&o][1 —& (k2) l

ik.(.;--,- ) ik. (";—,'-)

i,j th

(2.42)

I

~h~~~ p, (k) = 2b, (k)p. The coefficient of the Gaussian
term changes sign for T & T = —2yp. Far away &om
T, which is the region we will be interested in, we can
consider p(k) independent of k. Thus

4bbgC(zo)TE ) ( )b(
() 0)

(1 —~*.)(1 —~.)
&~2 th

(2.43)
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The thermal (configurational) average in (2.43) is the
number of common contacts different folds n and the
target configuration have. The overlap is mainly due to
the contacts of neighboring monomers which is neglected
in the mean-field theory for Q p and becomes important
when the Hexibihty of the chain increases. We denote
this overlap as ¹ where t' is the small parameter of
our perturbation expansion. With this correction the
expression for the &ee energy becomes

f(zp) ln(1 —pzp) s ePpp,

n zp zp (1 —yzp)(1 —p )

(2.44)

Expanding to lowest nonvanishing order for xo and im-
posing 8f(zp)/Bzp = 0 we obtain

(2.45)

and therefore the &eezing temperature is

that since entropy of both target state and &ozen state
are vanishing the transition is independent of tempera-
ture. Correspondingly, there is no energy jump upon this
transition, and thermodynamically it is the second-order
phase transition.

Similarly, to find the curve on the phase diagram along
which the transition occurs &om the disordered globule
to the target state, one equates the free energies in Eqs.
(2.25) and (2.29) to obtain the coexistence curve between
the target state and disordered globule for T, & T;. Thus
for T, ( —2yp

3 b ( 1 i 3 I 1
1 — + ln(v/a3) = —

~

——2p
16 pb2

I 2b, p) 16p2 ib

(2.50)

This can be solved for very low temperatures and one
obtains

(2.51)

2' = (—2&p/vs)[1 —e'& /(1 —7.)]' '
= &"[1 —"~./(1 —~.)]'".

(2.46)

(2.47)

At temperatures —2yp & T, ( T; —e, i.e., T, close to
T, , one similarly obtains to first order

xp = 1 for T & T'. Thus above T' the polymer is in the
continuous part of the spectrum. Below this temperature
the chain goes to the frozen globular phase. The fluctu-
ations (Q2p) due to overlaps between replicas and the
target structure result in a decrease of the freezing tem-
perature. The more aexible the polymer chain the more
important the overlaps due to neighboring monomer con-
tacts. Therefore with increasing flexibility the freezing
temperature will decrease. The &ee energy of the dis-
ordered globule is given by Eq. (2.43) when zp ——1.
This occurs when T & T, when the heteropolymer is in
the continuous part of the energy spectrum. In this case
though it is compact it does not have a unique struc-
ture and hence is termed as a disordered globule. Below
the temperature T &ee energy density of the disordered
globule can be obtained to be

I (& —T:)2(-~) & 2(-~)).
—2yp ( 3e~sb

+
V~ E 4

(2.52)

When T„~is close to —2gp one expects the Quctua-
tions in the magnetization to be ixnportant and expects
a discontinuity in the slope of the curve along which tran-
sition &om the disordered globule to the target confor-
mation occurs at —2yp. In contrast to the transition
between the target state and the frozen state the transi-
tion between the disordered globule and the target state
involves an entropy loss of ln (a /v) per monomer [see
Eq. (2.31)] connected with ordering of the chain in the
target conformation. Correspondingly, this transition is
thermodynamically a first onkr phas-e transition.

3f=-
16p2

i
b )

(2.48)

4yp 6 3 p~l
3V~ ( 4 )

(2.49)

We label this temperature as T, . It is important to note

To find the curve on the T vs T„~phase diagram along
which the transition occurs &om the &ozen state to the
target state one equates the &ee energies given by Eqs.
(2.31), (2.43), and (2.45). For small s, which is the case
we are dealing with, we Gnd that the transition occurs
when T„~) —2yp. Thus we compare the free energies of
the target state above the ferromagnetic transition tem-
perature with that of the frozen state. This gives the
curve in the T vs T, along which the transition &oxn the
&ozen state to the target conformation occurs. Consis-
tently to first order in e this curve has the equation

III. RESULTS AND DISCUSSION

The results of our calculations are summarized in the
phase diagram Fig. 1 For T„~& T, one finds that on re-
ducing the real temperature the disordered globule goes
into the &ozen state. At these selective temperatures the
free energy of the target state is above the lower energy
levels of the heteropolymer as a result of which the system
at low temperatures goes into the frozen state [Fig 2(a)].
As the selective temperature is decreased the energy of
the native state decreases and at T, = T, it is exactly
equal to the lowest frozen state [Fig 2(b)]. The fact that
the selective temperature at which transition &oxn the
frozen state to the target state occurs is independent of
the real temperature is because there is no entropy loss in
this transition. Below T, as one decreases the real texn-

perature a transition occurs directly &oxn the disordered
globule state to the target state. At these texnperatures
the energy of the native state is much below the &ozen
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FROZEN
GLOBULE

DISORDER)
GLOBULE

states [Fig 2(c)]. Near T, ~ = —2yp the size of domains of
monomer type A and that of monomer type B increases.
Thus one gets large regions of A and B in the inhomo-
geneous "target" lattice, that is, the sequence average
is doxninated by sequences which when folded along the
target conformation show A rich and B rich regions on
this target lattice. At a given selective temperature T,
the correlations in composition as a function of the dis-
tance on the target lattice, that is, the chances of finding
a monomer of the same type at a distance r are given by

C(r) = exp[ r/(—], (3.1)

TOmPOFStUf

FIG. 1. The phase diagram shows the curves in the T„~,T
space aloag which transitions &om one phase to another take
place. For sequences generated at T„~& T, &

the polymer
goes into the frozen state on cooling in real space while for
sequences generated at T, ~ (T,,&

the disordered globule goes
into the target conformation on cooling. The fat line corre-
sponds to Brst-order transition. The shaded area denotes the
region near the "ferromagnetic transition point" in sequence
space where Buctuations are strong, and mean-6eld theory de-
scribed here is inapplicable. However, for sequences generated
at lower selective temperature the transition temperature to
the target conformation decreases due to increased correla-
tions in sequences.

Kgatget)

E(orget)

Egret)

FIG. 2. (a) T„&) T;,&, thus the energy of the target con-
formation is greater than that oa the frozen states, hence on
cooling the system goes into the frozen state. (b) T, &

= T;,~,
this is transition selective temperature from the frozen state
to the target state. (c) T, ~ ( T;,&

now, on cooling the system
the system freezes into the target conformation (d) T, l= &.e
The statistical properties are dominated by chains with ther-
modynamically large homopolymeric segments and thus have
a highly degenerate ground state and the system does not
freeze into the target conformation.

with ( = n[T, —(—2yp)) where v ) 0 is a critical expo-
nent which need not be equal to that of the regular three-
dimensional Ising model because of the inhomogeneity of
the target lattice.

This results in the probability of a selected sequence
having a contiguous region of length L of hydrophilic
or hydrophobic monomers, i.e., homopolymerlike regions
increase because of the increase in the correlation lengths
of the sequence variables. The correlation length along
the polymer will be 2f. As T, ~ —2gp this correlation
length diverges. As a result the transition texnperature
to the target conformation decreases.

For very low selective temperatures, the sequences that
have a low energy in the target state have pronounced
hydrophilic and hydrophobic contiguous regions. If the
composition of the sequence was kept fixed one would
obtain thermodynamically large doxnains of hydrophobic
and hydrophilic regions and in the limit of zero selective
temperature one would see total phase separation.

As a result the average property is dominated by se-
quences having large homopolymeric segments. Thus the
temperature of transition to the native state further de-
creases. In the limit of zero selective temperature the
average properties of the system are completely domi-
nated by the homopolymeric sequence. Since the ground
state of the homopolymer is infinitely degenerate, i.e., all
conformations have the same energy, one finds that there
is no transition to the target state even at zero temper-
ature.

An analytical study of another model with selected na-
tive structure was published recently in [23,24]. Our anal-
ysis is consistent with this study as it reveals the same
major phases —disordered, &ozen, and the target state.
However, quantitative comparison of our results with
that of Sasai and Wolynes is diKcult because the model
used in [23,24] is different from ours. Indeed in the model
of Sasai and Wolynes the target structure is singled out
by "ultraspecific" forces which biased the chain towards
the native structure. In our xnodel Sequence selection is
the factor which distinguishes proteins &om random het-
eropolymers, while basic interactions are assumed to be
the same in proteins and any randoxn copolymer made of
monomers of the same type.

The results of the present analysis have several im-
plications for protein folding. To make proper compari-
son with experiment we note that a sixnplified model is
used where monomers are presented as beads and the
side-chains with their degrees of &eedom are ignored.
Side-chain packing is very important in the native state
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of proteins while it is lost in the so-called molten glob-
ule state [25,26]. On the other hand, there is sufficient
evidence that the backbone conformation in the molten
globule state is similar to that in the native state [27,28].
Therefore what we call the "native state" in our model
is actually a molten globule with a preserved backbone
fold.

Our calculations show that transition to the native
state &om disordered state where a chain does not have a
definite conformation is thermodynamically a first-order
phase transition. Moreover, such a character of the fold-

ing transition is a direct consequence of sequence selec-
tion. This is clearly seen in the phase diagram, Fig. 1,
which shows that transitions which take place in random
sequences, i.e., at T ) T, , are thermodynamically sec-
ond order. This assertion is consistent with experimen-
tal data which show that formation of the molten glob-
ule state indeed occur as a first-order transition [29,30].
This should be contrasted with the behavior of random
sequence [31] which has a broad transition from coil to
the state which is similar to our globular disordered, or
&ozen state.

Even more important is the result which shows that

for sequences generated in a certain range of selective
temperatures the transition &om the disordered state to
the target conformation takes place at suKciently high
temperature, which is higher than T", the temperature
at which the &ozen state in random copolymer is sta-
ble. This has an important kinetic implication. It was
shown in [14] that T" plays a role of the glass transition
temperature for random systems in a sense that relax-
ation to equilibrium becomes extremely slow at T & T '
which prohibits folding at these temperatures. This fact
inspired the introduction of "the principle of minimal
frustrations" in [1,14]. The fact that for the designed
sequences the native state is stable at T & T" makes
this state also kinetically accessible which solves, for the
chains with designed sequences, the folding problem.
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