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The fluctuating hydrodynamic description for an isotropic fluid is extended to include the displace-

ment field u, reflecting the freezing of the local structures in an amorphous solid. The fluctuating non-

linear equations for the set of hydrodynamic variables including u has been obtained. The role of u is

manifested through its longitudinal part, i.e., V.u, in terms of which we define the variable c(x,t). It
refers to the diffusion of the free volume or vacancies, signifying configurational rearrangements in the

amorphous solid. The analysis here shows that one recovers the earlier result obtained by Das and

Mazenko [Phys. Rev. A 34, 2265 (1986)] for mode coupling models of a glass transition, where the time

scales associated with the relaxation of the density fluctuations and that of the vacancy diffusion can be

comparable.

PACS number(s): 64.70.Pf, 05.60.+w, 64.60.Cn

I. INrRODUc:riON

Use of mode coupling theory has been very useful in
understanding its slow relaxation behavior at supercooled
densities. The basic mechanism [1-3] producing long
time scales at supercooled densities is related to the cou-
pling of the density fluctuations causing a nonlinear feed-
back to the viscosity of the supercooled liquid. For re-
views the reader is referred to [4]. For an idealized model
it was shown that this feedback mechanism results in a
freezing of the liquid to a nonergodic glassy state above a
critical density p, or below a critical temperature T, . In
this state the long time limit of the density correlation
function remains nonzero for all values of the wave vec-
tor q and the viscosity diverges. This transition is essen-
tially a dynamic one and the static properties of the
liquid are not affected by it. In subsequent works [5] a
more careful treatment of the dynamical equations for
the compressible fluid was done by Das and Mazenko.
The analysis involved the development of a Martin-
Siggia-Rose-type field theory [6] for the dynamics of the
fluctuating variables, constrained by the nonlinear rela-
tion g=pv, where g is the momentum density, p is the
mass density, and v is the velocity for the fluid. It
showed that the sharp transition of the liquid to the
nonergodic phase is cut ofF and the dynamic correlation
of density fluctuations over very long times actually de-
cays through a difFusive process. Thus ergodicity is
maintained at all densities. More recent works [7] have
confirmed that the dynamical behavior for the fluid
remains the same when the theory is formulated in terms
of the two fields g and p without the nonlinear constraint.
It was demonstrated that the cutoff mechanism
discovered by Das and Mazenko is actually a conse-
quence of the 1/p nonlinearity appearing in the hydro-
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dynamic equations for the compressible fluid.
The dynamic instability in the mode coupling model is

characterized by the long time behavior of the density au-
tocorrelation function. The analysis of Ref. [5] showed
that the Laplace transform of the density correlation
function behaves like 1/(z+iyq ), for all values of densi-

ty, instead of a 1/z pole, which would have implied a
freezing of the dynamic correlation function. Thus the
diffusive process by which the density correlation decays
happens over a time scale r=(yq )

' Such a .diffusive
decay in the hydrodynamic limit has also been obtained
in the recent work by Schmitz, Dufty, and De [8]. The
mode coupling contribution to the viscosity now remains
finite for all densities. Subsequent works [9] including
realistic structural effects and one-loop approximations
for the cutoff function have provided good agreement
with results obtained from computer simulations [10] of
simple fluids. However, the simple approximate forms
for the cutoff function were not enough to explain the ex-
tremely slow relaxation seen in some of the supercooled
liquids. There were also suggestions [11]of making this
time scale arbitrarily long by an ad hoc introduction of a
lower cutofF time in calculating the mode coupling in-
tegrals.

Similar results demonstrating smoothing off the sharp
transition at T, were also reported by Gotze and Sjogren
[12]. But in contrast to the diffusive decay, the relaxation
time of the ergodicity restoring processes, interpreted as
hopping processes by these authors, does not diverge for
q ~0. Since, e.g., light scattering experiments above and
below T, exhibit an a peak (Mountain peak [13])with a
width which remains finite for q ~0 (see also the discus-
sion by Fuchs and Latz [14]),one must conclude that the
hopping processes are dominant at least in the immediate
neighborhood of T, . Most recent work [15] even demon-
strates that consideration of the hopping processes de-
scribed by a single parameter 5 can remove significant de-
viations between experimental data and the idealized
mode coupling theory. Nevertheless, there might be a
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diffusive part, but with a relaxation strength which is too
small to be resolved. Of course, this strength might in-

crease with decreasing temperature.
Since both cutoff mechanisms discussed above were ob-

tained from a mode coupling approach starting from the
1iquid side it is tempting to use such an approach from

the glass side. To do this is the purpose of the present
contribution; thereby ideas will be adopted that have

been used to make a hydrodynamic description for sys-

tems with solidlike properties.
Earlier, attempts have been made to understand the

diffusive transport in an amorphous solid using the free
volume [16] approach. This mainly involved associating
some free volume or void with the individual units in the
cluster structure of the liquids. The movement of the free
volumes was considered crucial for the transport in the
liquid. The idea of liquidlike and solidlike clusters was
introduced from a phenomenological picture of the su-
percooled liquid and percolation theory used to predict
that at some critical density the transport process gets
completely frozen, giving rise to very long relaxation
times. The consideration of the dynamics of the vacan-
cies in a crystal from a unified hydrodynamic approach
was first proposed by Martin, Parodi, and Pershan [17].
This was further developed by Cohen and co-workers to
describe the linear transport in a crystal [18] and also an
amorphous solid [19]. Usually the transport properties of
the isotropic fiuid are considered through the dynamical
equations for the conserved modes which arise as a direct
consequence of the microscopic conservation laws in the
system. The hydrodynamic description for crystals as
well as liquid crystals involved extending the set of hy-
drodynamic variables in the system to include the
Nambu-Goldstone modes due to symmetry breaking.
The additional hydrodynamic variable that was intro-
duced was the displacement vector for the different lat-
tice sites. Thus in a cubic crystal the number of con-
served variables was increased to eight as compared to
five in an isotropic fluid. The theory included the ex-
istence of transverse sound modes as well as the vacancy
diffusion in the crystal. In the case of liquid crystals,
study of the nonlinear fiuctuating equations has proved to
have nontrivial consequences for its transport properties
[20]. Very recently it was also used to study [21] the glass
transition in similar systems from a mode coupling ap-
proach. In the hydrodynamic approach the new bare
transport coeScients referring to the dissipative parts in
the dynamics of the Goldstone modes enter the theory as
a parameter. Expressions for the viscosity coeScients
and elastic constants for a crystal were obtained [23]
starting from the revised Enskog equation [22]. Howev-
er, this work ignored the process of vacancy diffusion in
the crystal. A full microscopic consideration of this
problem is still lacking [24].

In an amorphous solid the same idea used in formulat-
ing the hydrodynamic description of the crystal is extend-
ed. Although in this case there is no broken symmetry
producing a long-range order similar to a crystal, it is as-
sumed that there one can define a displacement field u(x)
about the local metastable positions of the atoms which
remain unaltered for a long time in the glassy state. This

idea is supported by the fact that in an experiment one
sees the transverse sound modes in the glass. Thus the
translational symmetry is broken over length scales relat-
ed to local structures, although it is assumed to be valid
over long distances. The attempt of the present approach
is to focus on how, through the introduction of the u

fields, one can take into account rearrangements other
than that of actual mass motion. In an amorphous sys-
tem the idea of vacancy is not very appropriate and the
term "vacancy diffusion" is used here for referring to
diffusion of free volumes in it. Recently a similar ap-
proach of fluctuating hydrodynamics was used by Kim
[25] to demonstrate that the introduction of the displace-
ment fields led to stretched exponential behavior in glassy
relaxation. In the present work our focus is on the va-

cancy difFusion process in the glassy system.
In order to keep the analysis simple we ignore the ener-

gy fiuctuations in the present formulation. The dynami-
cal equations for the fluctuating variables are obtained
with the standard techniques used by Ma and Mazenko

[26] in the study of dynamics of critical phenomena. In
the first part of the analysis we keep the treatment gen-
eral using a rather standard form of the effective Hamil-
tonian that determines the equilibrium behavior in the
system. To focus on the diffusive motion of the free
volume we introduce a variable c(r, t ) for the amorphous
solid similar to Cohen, Fleming, and Gibbs [19] which

follows a difFusive dynamics. %e develop a Martin-
Siggia-Rose-type field theory for the dynamical set of
equations obtained for the slow variables following the
formalism developed in Ref. [5]. The importance of the
coupling of the density fiuctuations with the vacancy
mode is demonstrated from a nonperturbative analysis.

The paper is organized as follows. In the next section
we develop the fluctuatin nonlinear hydrodynamic equa-
tions for the extended set of slow variables and obtain the
diffusive equation for the variable c(x, t } discussed above.
In Sec. III we sketch briefly the field theoretic analysis
necessary for computing the time correlation functions
and in Sec. IV we analyze the renormalization of the
theory. In Sec. V we consider the implications of the
model for glass transition. %'e end the paper in Sec. VI
with a short discussion.

II. NONLINEAR FLUCTUATING
HYDRODYNAMICS OF AMORPHOUS SOLID

The dynamical equations for the slow variables are ob-
tained using the standard techniques developed by Ma
and Mazenko [26]. This is given by the generalized form
of the Langevin equation for the ffuetuating variable

P;(t}, where the label i stands for the different hydro-

dynamic variables in the system,

(2.1)

The reversible part of the equation of motion given by
V,.[g] is called the streaming velocity and is represented

by
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1';[it]=QIC; SJ I 5
(2.2)

V = —V-g

where {f;,cPJ ( is the Poisson bracket [27] between the
slow variables. F[g] is the efFective Hamiltonian that
determines their equilibrium correlations for the fluid and
in a Fokker-Planck description corresponding to Eq. (2.1)
the stationary probability distribution is given by e
The noise g; is assumed to be Gaussian with the following
fluctuation dissipation relation to the bare damping ma-
trix Y;'

( g, (t)g, (t') ) =2ktt TY,,5(t t')—, (2.3)

where ka T=P ' is the Boltzmann factor.
In evaluating the Poisson bracket mentioned above we

need the microscopic variables it;(x) corresponding to
fields 1(;(x}. We assume the systein to be a collection of
N classical particles each of mass m. r {t) and p (t) are,
respectively, the position and the momentum of the ath
particle at time t. For the density p and the momentum
density g we use the standard prescription [30]

N

p{x,t)=m g 5(x—r,{t}),

R8'
J

. 5FU . 5FU—pV„' —[5;.—V„'u.(x}]
5p 'J " 1 5uj(x)

(2.8)

Y =I.; = —
7}o(—', V;V, +5;~V )—(OV;VJ, (2.9)

wheie go is the bare bulk viscosity and rio is the bare
shear viscosity. We define the longitudinal viscosity as
1.0=go+4go/3 The d. issipative term in the equation for
the u field is assumed to have the simple time-dependent
Ginzburg-Landau form

V„'=—— .[V„u;] .
p p

Next, we consider the dissipative parts of the dynami-
cal equations. For the momentum density equation, the
irreversible part has the standard form with the dissipa-
tive coefficient in Eq. (2.1) given by

N

g;(x, t)= g p~(t)5(x —r (t)) .
(2.4) (2.10)

N

p(x, t)u;(x, t)=m g u' (t}5(x—r (t)),
a=1

(2.5)

such that r (t)=r +u (t). Using the canonical Poisson
bracket relation t r', p~& ] =5J5~ we obtain the following
relations for the hydrodynamic variables:

[p(x },g; (x') ] = —V„' [5(x—x')p(x) ],
Ig, {x),g, (x )]= -Vi[5{x-x )g, {x)]

+V„'.[5(x—x')g (x}],
Ig;(x), u~(x'}] = —5(x—x'}[5;—V„' u (x')],
Iu;{x),u~(x'}] =0,
ju;(x),p(x') j =0 .

(2.6)

The effective Hamiltonian has two parts, namely, the
kinetic and the potential one: I' =I'++FU. The kinetic
energy part, in terms of the coarse grained fields, has the
standard form (for a deduction from a microscopic point
of view we refer to Langer and Turski [28])

Fz= —,
' f d xg (x}/p(x} . (2.7)

Using Eqs. (2.6) and (2.7}, we obtain the following forms
for the streaming velocity terms:

a=1

The extra slow mode that is to be added to the set of con-
served densities takes into account the broken symmetry
of the solid state with elastic properties. We define here a
fluctuating variable u(x, t), by considering the displace-
ments of the individual particles u (t) (a=1-N) from
their respective mean position denoted by r,

and we require all other Y;J =0. In the fluctuating hydro-
dynamic description the bare transport coefficients go 7)0,
and I o act as external parameters. For the bare viscosi-
ties Green-Kubo-type relations can be evaluated in a
kinetic theory approach using suitable models. The time
scale for the quantity I o that relates to the vacancy
diffusion is, however, much longer.

In order to compute the nonlinear fluctuating hydro-
dynamic equations we need the explicit form of the
effective Hamiltonian F. In addition to the usual terms
that appear in the free energy functional for an isotropic
liquid, we include the energy cost due to distortion in the
elastic solid, as well as the coupling of the density fluctua-
tions to the displacement field u. We use here an iso-
tropic approximation for the solid. Thus the potential
energy part FU[p, u] is constructed preserving the rota-
tional and translationa1 invariance of the system,

FU= ,' Jdx A —+2B S+A,S +2@(s,"s, )
Po Po

(2.11)

Here S is the trace of the strain tensor field s;- in the
solid and the latter is defined in terms of the gradient of
the field u(x) in the following form:

(2.12)

A, and p are related to the bulk and shear elastic moduli
of the amorphous solid. The longitudinal modulus is
given by 8=A, +p. The couplings A and B in the
effective Hamiltonian relate to the static structure factor
for the system. Using Eq. (2.11) the following set of fluc-
tuating nonlinear equations are obtained:
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ap
at

+7'.g=0,

ag; +g Vjo;.=08;,
at

+v Vu;=v, —I; +f, ,at "5u,-

together with the nonlinear constraint

(2.13)

—po(V. u). The dynamical equation for e(x, t) can be ob-
tained using Eqs. (2.13) for the slow modes. We consider
first the linearized dynamics of the fluctuating set of hy-
drodynamic variables [p( x t },g(x, t ),v(x, t ),e (x, t ) j. The
linearized equations for p and g can immediately be ob-
tained from Eqs. (2.13). The equation for c(x, t) is ob-
tained as

ac(x, t ) —r,V c(x,t)+r,'V 5p(x, t)
at

g=pv . (2.14) +V g(x, t ) poV v—(x, t ) =f, (2.20}

The stress-energy tensor o.;. has the reversible and the
dissipative (irreversible) parts, respectively, denoted by
cr;"and e;. such that

where for notational convenience we make the substitu-
tions

(2.21)

where

(2.15}

~ 5p + A 5p

P Po 2 Po

+BS——AS — (s s } 5
1 2

lm ml t'J

AS+B —p[s;~ —2s; sj ]
5p as as
po aVi "m aVJ"m

with 8'=8 Band—the noise f=poV f. The variable
c(x, t ) is related to the longitudinal part of u through the
quantity V.u. In the present analysis we do not deal with
the transverse part of u, which is related to the transverse
sound modes in the amorphous solid. The motivation for
focusing on u& is that we want to investigate the dynam-
ics of the structural rearrangements other than that asso-
ciated with actual mass motion, namely, the difFusive
motion of the vacancies given by the variable c(x, t) in
the amorphous solid.

III. FIELD THEORETIC FORMULATION
(2.16)

and

e,j=—F0[V,v, +V, v,
——', 5; (V v)] —

gv5;, (V v) . (2.17)

In the present formulation we have 0.; =0. ;, which
guarantees conservation of angular momentum. The ran-
dom parts in these equations are Gaussian noises and are
related to the bare transport coeScients as

(8;(x,t )8 (x', t') ) =2poks TL; 5(x—x')5(t —t'),

(f;(x, t)8, (x', t')) =0,
(f;( xt)f, ( x't')) =2k TI';,5(x x')5(t t')—. —

(2.18)

c(x, t ) =5p(x, t )+pa(V.u), (2.19}

where po is the equilibrium density [29]. In the case
where each lattice site is rigidly fixed to the molecules
and the difFusion of vacancies is omitted from the formu-
lation, the density fluctuation is simply given by

The set of fluctuating equations obtained above gives the
dynamics of the slow modes for the solid with elastic
properties. Calculation of correlation functions from
these sets of equations provides [25] the existence of the
transverse modes and the vacancy difFusion mode. In the
present context we want to focus on the situation where
freezing has occurred at the scale of local structure in the
solid, but overall translational invariance is maintained
over longer distances.

In order to include the motion of free volumes or va-
cancies in the amorphous solid, we introduce, following
Cohen, Fleming, and Gibbs [19]the variable

In order to calculate the dynamic correlation functions
for the set of fields [p,g, v, c J we develop a field theoretic
description of the Martin-Siggia-Rose type. The formal-
ism is standard in literature and we follow here closely
the one developed in Ref. [5]. For each of the fields g
we introduce a corresponding caretted field f and let
4 = [ g~, f~] be the field vector where a runs over the set
of hydrodynamic modes. The correlation functions are
obtained from the generating functional ZU as

G(12)= 1 Z = (5'P(1 }5%(2)),5 5
5U2 U 1

(3.1)

where 5%(1)=%(1)—(%(1)). The quantity ZU[f] is
defined in terms of the action A U by

Z, [q]=f D(q). "'". (3.2)

The action AU can in general be obtained as a polynomi-
al of the fields f . The construction of the action AU for
a given set of stochastic dynamical equations is discussed
in detail in Ref. [5]. The linearized equations of motion
give rise to a quadratic or Gaussian action AU[%']. Here
we assume isotropic symmetry and separate the diferent
correlation functions into their longitudinal and trans-
verse parts as

G;+(q, t0)=g, Q~G& &
(q. ,co)+(5;J.—Q;Q. )G& & (q, tv),

(3.3)

where g is the unit vector in the direction of q. As ar-
gued in Sec. II, our focus here is on the longitudinal part
of the correlation functions between the hydrodynamic
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~U[Q]—:g —,'q'(1)Go '(1,2)%'(2)—+%(1)U(1) .
1,2

(3.4)

modes since this contains the relevant variable c(x}. The
Gaussian action together with the so-called current term
proportional to U(1) can be formally written as

F, =(~'+r~2')L, +a r~',
Fz=I'o[Loq (co Lo+O'I'oq }+po(co2 q—co) ],
F =I oq [L q I" p(—a) qc—)] .

(3.7)

The inverse matrix Go can be split into longitudinal and
transverse parts as described in Eq. (3.3) and our focus
here is on the former. We follow the procedure for con-
structing Go described in Ref. [5], using the following
form for the longitudinal part of the equations of motion,
in the (q, co) space:

The poles in the correlation functions [30] are signatures
of the hydrodynamic modes in the system. Thus zeros of
the denominator Do give the dispersion relations for the
longitudinal sound modes in the solid. However, now
there is also an extra diffusive mode given by the disper-
sion relation

cop —
qg& =0, co= —iq I o,2 (3.8)

cog& qco—sp —qc+iLov& =8&,
po

(co+i l oq )c iI'oq—Bp qg&+—qpov&= f, ,

Po~r=0 ~

(3.5)

where the subscript I denotes the longitudinal part and
c=o(2+8')/p ois the sound speed. The correlation

function in the Gaussian theory, denoted by a subscript
0, satisfies the trivial relation

&[Go '(q, ~}l „[Go(q ~}1p=& ii
y

(3.6)

where we have dropped the superscript L for the sake of
brevity. The Go matrix can be identified from the ac-
tion functional (3.5) through the definition given in Eq.
(3.4). In general inversion of this 8X8 matrix will be
rather involved, but the task here is simpler due to the
fact [Go ' ]~=0 if a and P are both uncaretted variables.
The inverted matrix thus splits into blocks with the part
[Go]&p=0. The zeroth order response functions Go~ thus

obtained are given in Table I. The results for the zeroth
order correlation functions G~ are listed in Table II in

terms of the three quantities I"
&, I'2, and I"

3 defined as '(12)=G '(12)—X(12) . (3.9)

which corresponds to the vacancy diffusion mode. Simi-
larly the poles of the transverse part of the correlation
functions show the existence of the transverse sound
modes [25].

Corrections to the Gaussian theory due to the non-
linearities in the equations of motion can be obtained by
using the standard Feynman graph techniques. The full
nonlinear equations given by (2.13) cannot in general be
written in terms of the density fluctuations and the c
fields only', rather it will involve the couplings to the
transverse component of u as well. In the present calcu-
lation we will ignore such couplings to the transverse
fields since the vacancy diffusion is primarily represented
through the c field. A more rigorous approach, however,
will necessitate taking into account the coupling to the
transverse parts of u. In the present analysis our treat-
ment of the nonlinearities in the equations of motion will
be nonperturbative and hence the explicit form of the
nonlinear vertex functions is not considered here. The in-
verse of the matrix containing the full Green's functions
with the nonlinear equations of motion included in the
action can be expressed in terms of the self-energy matrix
X as

TABLE I. The zeroth-order matrix
Do={co+iroq2)[pa{co~—q~c f )+icoLoq2)+iOToq

Go for the response function. and

p

(m+iq I o)(p~+iq Lo)
Do

q[poc, {co+iq ro) iq~8'ro]—
Dp

t

q $(~+ q I' }—'q I"—
po

)

Do

ppq(a)+iq I'p)

Do

p~(co+iq I o)

Do

~(co+iq I p)

Do

gl
q Lo(m+iq 1 o)+i—

Do
pt

p(M+lq2I p)+l
po

Do

pt 4

Do po

—q 8'
Dp

—coq8'

Dp

—

coque'/pp

Dp

i q 2I o(P~+ lq 2Lp )

Do
~QPO

Do

+ l (~+iq'I o)(co' —q'e,'

q [Loq'{~+iq'ro)
p —ipo{~'—q'co)]

p (2 q2&2 )+lq L Qp

Do



1270 SHANKAR P. DAS AND ROLF SCHILLING

TABLE II. The zeroth-order matrix 6 & for the correlation functions, where the expressions for F„
F2, and F, are listed in Eq. (3.7).

2P 'q'Fipo

DoDo

2P 'q'roF&po

DoDo

2P 'q'roFipo

DDDD

2P 'q roF3po

DoDo

2P 'q'roF, po

DoDo

2P ~q ro F/p

DoDo

2P 'q2ro'F, po

DDDD

2P 'qroF3po

DoDo

2P 'q'roF, po

DDDD

2P 'q ro'F, po

DoDo

2P
—

1

q 2~2F

DDDD

2P 'qroF, po

DoDD

2P 'q'F3po

DoDo

2P 'qroF3po

DoDo

2P 'qroF3po

DoDo

2P 'I oq'F2po

DDDD

A graphical expansion for X as a power series in the non-
linear vertices in the equations of motion that generates
the non-Gaussian terms in the action can be obtained. In
Ref. [5] such an expansion to lowest order was used to
obtain some quantitative results about how much slowing
down can occur in the relaxation behavior due to the
mode coupling efFect treated in a self-consistent manner.
Our main goal here is to investigate the implications for
the diffusive mechanism by which density autocorrelation
decays in the long time limit in the supercooled liquid.
The role of the self-energy matrix is to renormalize the
transport coeScients that appear in the linear theory.
Due to the large number of Selds in the present analysis
the structure gets quite complicated. Following Ref. [5]
we will use a fluctuation dissipation result as well as the
isotropy of the system over long length scales to investi-
gate how much the difFerent self-energies interrelate with
each other and how they contribute to the renormaliza-
tion of the transport coef6cients.

The denominator D is obtained as

D=(co+iq I „)[po(ro —
q c„)+iq Lx(ro+iqXo )]

+iq'(I'e' —
q X, )(&apo Lx Xo, »— (4.3)

where the subscript 8 on the various symbols generally
refers to the corresponding renormalized quantities

qI a(q, ro)=ql'o+Xo, (q, ro),

q Lx(q, ro)=q Lo+iX „(q,ro),

qcx(q, ro) =qco —X (q, ro),

(4.4)

(4 5)

(4.6)

q8„(q, ro) =q8"—X,(q, r)o. (4.7)

The numerator N is a 4X4 matrix involving the various
elements of the matrix X. It satisfies the general relation
N y=(NI) )', where

IV. NONPERTURBATIVE ANALYSIS 6)) (q, ro)= (4.8)

N p6 p(q, co)= (4.2)

We make use of a special relation between the response
functions 6~ and the correlation functions 6&& to sim-

plify the structure of the theory and demonstrate how it
can be renormalized by using proper self-energy func-
tions . Following Ref. [5], in the present case, with the ex-
tended set of slow modes the same fluctuation-dissipation
relation remains valid. Thus for any uncaretted variable
a we have

6, (q, ro)= —2P 'Im[6 (q, ro)] . (4. l)

At the zeroth order this relation can be easily checked us-
ing Tables I and II. In order to investigate the conse-
quences of the nonlinearities we consider the full Green's
functions 6 &. This involves inverting the 6 matrix
obtained using Eq. (3.9). Similar to the zeroth order case,
the correlation function 6& between the caretted Selds
vanishes [31]and the response functions G~ can be suit-
ably expressed in the form

We list in Appendix B the elements of the N~ matrix
that are useful for the analysis of the fluctuation dissipa-
tion relations discussed below. The correlation functions
6 & for the hydrodynamic Selds can be expressed in the
form

6.~= —6.-~ t"~.6.:~', (4.9)

where the summations of the repeated variables are over
the set jp, g, v, c ] and the matrix C is given by

C-i) =2k' T[Lo5 5 +5 SiJ f'ep20]q X i) . —(4.10)

The matrix X ~=0, if a or P equal to p. This is because
the continuity equation do not contain any nonlinear
term in it. In order to simplify the analysis we also con-
sider the dynamical equation for the variable c(x, t) in
the linear form. This is reasonable since our main goal
here is to investigate the relevance of the hydrodynamic
diffusive mode for correlation of density relaxation to the
motion of vacancies in the amorphous solid through the
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dynamics of c(x, t ). With this we have X i)=0 if either of
the caretted indices is equal to c. In Appendix A we
show that using Eqs. (4.9) and (4.2) leads to the following
form of the fluctuation-dissipation relation (4.1):

iPN C~=[D5v +Np-G +] . (4.11)

For v=g and U the relation (4.11) reduces to Eqs.
(6.38)—(6.40) obtained in Ref. [5] for the set of conserved
variables jp, g, v] in the case of isotropic liquid. Here we
use Eq. (4.11}to obtain some useful relations between ele-
ments of the matrix X. Although, in general, these rela-
tions are very complicated for the arbitrary value of the
wave vector q and frequency cu, some simple results can
be obtained in the hydrodynamic limit of small q and co.

Hydrodynamic limit

First, we extract certain explicit factors of the wave
number from the various self-energy matrices using con-
servation laws and symmetry,

X„=—iqy„,

follows that the viscosity Lz can be renormalized by

analyzing the self-energy X . At the one loop order this
N

gives rise to the well-known quadratic [5] term involving

a convolution of the density correlation functions essen-

tial for the feedback mechanism causing the dynamic in-

stability in the mode coupling model. The relation be-

tween r and X remains the same as that found in Ref.
PV VV

[5], i.e.,

C,„(0,0)= —2P 'Poy' s/c (4.19}

y„,(0,0)=

together with

8
2 y„(0,0),

poc
(4.20)

with c being the renormalized sound speed in the hydro-
dynamic limit. This is also in agreement with the one-
loop results found by Kim [25] for the cutoff function in
similar circumstances. Setting 9=c in the relation Eq.
(4.11) and taking the hydrodynamic limit we obtain the
following relation for the self-energy X„, that renormal-

izes the diffusion constant 1 0 in Eq. (4.3}:

2
gg qygg ~ (4.13) y,', (o,o)=o . (4.21)

X =qy
gp gp

X& =qy&

XA qyA )

(4.14)

(4.15}

(4.16)

(4.17)

(4.18)

where the single and double primes, respectively, stand
for the real and imaginary parts. From Eq. (4.5) it then

I

Using these results and the expressions for the different
elements of the N matrix listed in Appendix B in the
relation (4.11) we obtain a set of interrelations between
the self-energies in the hydrodynamic limit. Thus, for
v=g in Eq. (4.11),we obtain the relation useful for the re-
normalization of the viscosity,

y" (o, co)
y (0,0)—2P 'y'„(0,0)= lim 2P

60~0 CO

In the present context Eq. (4.20) is the important new re-
lation that gives the renormalization of the bare trans-
port coefficient I 0 due to the nonlinear couplings in the
hydrodynamic equations for the density and current fluc-
tuations. The self-energy matrix element y is responsi-

VP

ble for the diffusive mode that restores ergodicity in the
supercooled liquid [5]. We explore the consequences of
this further in the next section.

V. THE GLASS INSTABILITY
AND ERGODICITY-RESTORING MECHANISM

In the present section we discuss how the diffusive pro-
cess that cuts ofF the sharp transition predicted in the
simple mode coupling model can be interpreted through
the introduction of th slow variable c(x, t } which corre-
sponds to vacancy diflusion in the amorphous solid. To
analyze the long time behavior of the density correlation
function we note that in the small q and co limit the
response function 6 is obtained as

PP

(t0+iq Lz)(+tq I z }
G (q, co)=

(to+iq I „)[po(to qc„)+—iq L„(a)+iq y)]+iraq
(5.1)

where b, =8'(10—y ) and y=y „. The renormalized

viscosity can be obtained in the form

L~(q, ~)=La+ J dt e"'LMC(q, t),
0

(5.2)

where LMc denotes the feedback to the viscosity of the
supercooled liquid from the slowly decaying mode cou-
pling contribution. Now, as the system becomes denser
the viscosity L„becomes very large due to very slow de-

cay of LMc. At first, if we ignore the contributions com-
ing from r &, then for a fixed wave number, the frequencyPV

2
co becomes small compared to Lzq at high enough den-

sity. It follows easily then that 6 tends to develop a
PP

1/co type frequency dependence. This slows down the re-
laxation and hence the mode coupling contribution to the
viscosity for intermediate time becomes large. However,
it was pointed out in Ref. [5] on retaining the nonhydro-
dynamic correction due to y that the density correlation
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in the long time limit decays through a diffusive mode.
In the present analysis, due to the presence of the term
proportional to 6 in the denominator of Eq. (5.1), the
quantity y has an additional contribution, thus obtaining

r=a+
(co+q I tt )Itt (Q, co)

(5 3)

in which case the density correlation function has the
long time diffusive behavior

1

co+iq2y
(5.5)

while the dynamic correlation of the slow variable c(xt),
relaxes through a diffusive mechanism, the response func-
tion G being given by

G
1

co+lq I „ (5.6)

Here the quantity I z is the renormalized diffusion con-
stant related to the motion of the vacancies in the system.
Comparing Eqs. (4.20), (4.4), and (5.4) we obtain

r„=y 1+,+B B
Po~

2
(5.7)

For small B, i.e., weak coupling between the mass density
and the defect density c, the time scales of the two
diffusive processes are comparable. This simple ansatz
thus provides possible insight into the ergodicity restor-
ing process in the supercooled amorphous state. Note
that the result (5.5) has been derived under the assump-
tion that vacancy diffusion is the only ergodicity-
restoring process. Therefore the corresponding relaxa-
tion strength appears to be one. Taking the hopping pro-
cesses into account will reduce this strength.

VI. DISCUSSION

In the present work we have extended the fluctuating
hydrodynamic description for the fluid to include the dis-
placement Geld u reflecting the freezing of the local struc-
tures in the amorphous solid. This represents the dis-
placements of the particles from their average positions
in the metastable state. We work with an effective Ham-
iltonian for the system that is compatible with the elastic
properties of the amorphous solid. The full set of fluc-
tuating nonlinear equations for the set of hydrodynamic
variables including u has been obtained. The symmetry
of the stress energy tensor ensures the angular momen-
tum conservation. The role of u is manifested through its
longitudinal part, i.e., V-u, in terms of which we define
the variable c(x) that follows a diffusive dynamics. Our

where Lz is the singular part of Lz due to the mode cou-
pling contribution. In the present theoretical framework
the quantity I o is an external parameter and in general
the correction due to inclusion of the extra diffusion
mode can be complicated. We propose here the simpler
ansatz lb =0, which is equivalent to

(5.4)

focus here is on the diffusion of the free volume or vacan-
cies signifying configurational rearrangements in the
amorphous solid. Although the u Selds signify the freez-

ing on a local length scale, isotropy is assumed for the
system for long length scales. The analysis here shows
that one recovers the earlier results [5] obtained by Das
and Mazenko for mode coupling models of glass transi-
tion if the time scales associated with the diffusion of den-

sity fluctuations and that of the vacancy diffusion are
comparable. It should be pointed out here that the quan-
tity y is obtained in the analysis beyond the linear level.
Thus to the lowest order it is explicitly of 0(ktt T} On.

the other hand, in the present paper we demonstrate that
the associated time scales can be interpreted in a con-
sistent manner through (5.4}. It also means that the
diffusion constant I will tend to vanish as T approaches
zero.

In the present analysis we demonstrate how the
diffusive mode which also restores ergodicity in the mode

coupling models can be linked with the diffusion of va-

cancies or free volumes in the amorphous solids. Indeed
the introduction of the displacement field u in the case of
the amorphous solid requires the reference to a rigid lat-
tice and, on the other hand, the ergodicity-restoring pro-
cess in the system invalidates the existence of any such
rigid structure. The crossover between these two situa-
tions requires a self-consistent treatment with possible
dynamic connections between the elastic and viscous
behavior of the system. Here we take the simpler ap-
proach where effect of the local displacement field u is
manifested through its longitudinal part only, i.e.,
(
—V u), which in the case of a strictly rigid lattice will be

simply related to the density fluctuations. Thus u is not
an order parameter in the amorphous solid and transla-
tional symmetry is maintained over long length scales.
(—V u), which is well deSned on not too large time and

length scales, is just used to define the vacancy concentra-
tion c(x, t ) via (2.19). It is assumed that the equations for

p, g, and c from (2.20) constitute a reasonable set of equa-
tions incorporating vacancy diffusion at least below T, .

Let us finally stress again that the diffusive type of the
ergodicity-restoring process by vacancy diffusion has not
been experimentally found in the immediate neighbor-
hood of T, up to today. This could be due to a small re-

laxation strength. Nevertheless we think that vacancy
diffusion could play a role for the relaxation in glasses,

maybe at lower temperatures compared to T, .
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APPENDIX A

Here we prove the form given in Eq. (4.11) for the
fluctuation-dissipation relation. We start from the gen-

eral identity

D -2e "=0.
a
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Noting that the variable c(x, t }behaves in the same way
as 5p{x,t ) under time reversal, the steps given in Appen-
dix B of Ref. [5] follow here as well and the same result

tailed nature of the Selds as long as the relation (4.1)
holds.

Gy~(q, a)}=—2P Im[G (q, a))] (A2)
APPENDIX B

holds in the present case. Now, using Eqs. (4.9) and (4.2)
in this relation obtains

—1

N„,C~= Im[NgP ]G~'

—.[N P NgP—']G~' . {A3)

However, from the definition of the matrix N~ it followers

that

NAG~' =Cog[6 ']~=5vgD (A4)

where C+ denotes the cofactor of the (pg )th element of
the matrix G . Using this in Eq. (A3), the result (4.11)
easily follows. This result is true independent of the de-

N =(a)+iq I'a )[p~+iq'Lz ],
N =pcq(c0+iq I'z ),
N =pore(c0+iq I'~ ),
N& =(co+iq I'„)(c0+iqX& )+qXv, (qXv —I'c),

N& = iq—po(q Xv —I'c),

N~=i(~2 qzcR2)-Xv, qy (m-+lqXv ),
N~=i(co+iqzl a )(caz qc—a )+iq 8'(pcra+iqzl o) .

(B2)

(B3)

(B5)

(B7)

Here we list the necessary elements of the N~ matrix
that are used in the analysis of Secs. IV and V:
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