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Elastic response of the Dirac chain
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The elastic response to elongation forces is studied for polymer chains of arbitrary stiffness using a re-

cently discovered relation between semiflexible polymers and Euclidean Dirac fermions. We obtain

elongation as a function of an external force and an elastic force as a function of elongation for polymer
chains of arbitrary stiffness. We also obtain the elastic moduli for such chains. The obtained results

represent a first step towards development of the consistent theory of semiflexible polymer networks.

PACS number(s): 61.41.+e, 36.20.—r, 62.20.Dc

I. INTRODUCTION

G(r, r';N) = VG(r, r', N)+—5(r, r')5(N),I (1.2)

by that coming from the Green's-function solution of the
telegrapher equation. The calculations of (R ) based on
the telegrapher equation have produced (R )aN in the
strong field regime and, for E=O, in the flexible chain
limit they have produced (R ) =IN, as required. The
above results indicate that the single chain statistics
based on the Wiener measure is dangerous, and may lead
to results that are not physically useful.

Recently Gaveau and Schulman [1] have studied the
response of a Gaussian random coil polymer chain to the
applied uniform electric field. Earlier, similar problems
were studied in Ref. [2], where the response to the gravi-
tational field has been investigated, and in Ref. [3],where
the response to the uniform field was studied in half-
space geometry. The authors of Ref. [1] have noticed a
pathological behavior of the mean square end-to-end dis-
tance (R ) in the presence of the electric field E,

EzN4(R')=IN+ 'EN, . (1.1)
4(ks T)

Here I and N are the Kuhn and the full polymer length,
respectively, q is the electric charge per monomer, and
ktt T is the usual temperature factor. Equation (1.1) im-

plies that for strong enough fields (or low temperatures)
(R )aN, while it is obvious that (R ) cannot grow fas-
ter than N (i.e., faster than the rigid rod). The patholo-
gies of the Gaussian model could be corrected if a more
realistic model describing the conformational properties
of polymers could be found. By observing that the
Wiener process leading to the Gaussian chain model [4] is
the limiting case of the Poissonian process, the authors of
Ref. [1] have proposed to replace the Gaussian propaga-
tor obtainable as a Green's-function solution of the
difFusion equation

Probing the response of polymer chains to the external
elongating field is very important in the statistical
mechanics of polymers, as was emphasized already by de
Gennes [5]. The standard example of such importance is
the theory of rubber elasticity [6]. The basis for the en-

tropy elasticity for rubberlike materials is in the
knowledge of the elongational characteristics of a poly-
mer, which is experiencing action of forces at both ends.
Although the theories based on such knowledge are often
too simplistic and do not lead to material equations for
the macroscopic samples [7,8], they provide a very useful
insight into the basic physics of rubber elasticity.

The statistics of Gaussian chains, obtained from the
solution of Eq. (1.2), is based on the distribution func-
tions, which provides finite probabilities for unphysical
configurations of the chain for which R & Nl, R = ~r —r'~.
The conformational properties of the finite fiexible chains
were extensively studied by Kuhn and co-workers [6],
and independently by Volkenstein [9]. The common re-
sult of their work lies in obtaining the distribution func-
tions, which are zero for a11 configurations 8 &N. The
stretching of such finite chains leads to a singularity of
the force at maximum elongation, and the force-extension
relationship is described by a Langevin-type function.
Simple single finite chain properties were recently dis-
cussed in Ref. [10] where the Schrodinger-like theory
[based on Eq. (1.2)] has been replaced by the "relativis-
tic" Klein-Gordon (KG) type theory, which had pro-
duced the required singularity at maximum elongation.

Various versions of path integrals leading to Klein-
Gordon-type theories have been recently discussed by
many authors, e.g., see Ref. [11],etc. For the purposes of
our presentation, following Polyakov, Ref. [12] and also,
Ref. [11],consider the path integral for the KG propaga-
tor written in the form

G(r, r';N)= fD[u(r)]5[u (r) —1]

du
Xexp —— d~

2 0 d7

N
X5 r—r' — d~u

0
(1.3)

'Permanent address. where u=dr/dr, r(~) is the spatial position of the poly-
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ich has the contour position
' n~ 4, while

finite, t e ou
found [11]to be

—Cd' N
G(k, N)=2e +O(e (1.4)

= ) d 2/d (d —1) for d & 3, where
of the Euclidean embeddin p

=2 (for d=2 an
d the dimensionality o t e uc
For N finite and x arbitrary,

he leading resultcan be performed, w
'

[13] which produces t e ea
'

(u(r) u(0) ) =exp (1.5)

r one-dimensional Heisen gr one- im
' '

ber models as
f b' N, h L 1

transform of Eq. (1.4) produces t e
1

G(k, s)a k+M
is the Laplace variable conju-witith M =s/Cd~, where s is t e

not all conformationa pgate to &. Un fortuna y
b adequately described

wiith the help of ihe prop g
16 observation thatNotice that in Refs. [ ];„the form of theuation can be r~~~~t '"the telegrap

thus producingwas extensively useDirac equation wa
he Dirac ProPagato~-stead of Eq (1 2) q

d of the relevance of
the e uation for t

ed extensive stu ies o
1 1 tion of the conforma-the Dirac propagaator for the ca cu a io

h
' f arbitrary flexibility

~ e ~f ol mer chains o a
d ri, , hlf[17] (including the cacase of conflne geo

he most convincing evividence, so far, of

f S(k) fo dscattering form ac or
and experimenta y c

t 1 otM
di 11 f 1

rlier experimen a
the results of Ref. [19] can be foun in e

D' ropagator can be writ-Following Ref. [, D r11 the Dirac pr
ten in the form analogous to Eq, i.e.,

dll+i dr A[u(r)]
N

0

u(N) =u~
[u(~)]5(u — I —' x—1)5 r —r' — dru expG (r, r';uI, u;;N)= I, ,

10— e eee e eeeee eeee eeee eeee e eee'eeeeeeeeeee

0.8—

z
A
V

O4-:
/

rigid rod
a = 0SS

----- a = 0.30---. a = 0.10
-- -- a = 0.03

a 001
a = 0.003

R jN as function ofFIG. l. Elongation (R)/
ofrce N for polymer chains othe external fo

representative eng
stiffness constants (e.g., a =0.0, e c. .

0.2—

I

0
I

500
I

1000
Nf

1

1500 2000



ELASTIC RESPONSE OF THE DIRAC CHAIN 1259

The gauge field A responsible for the phase (spin) factor
b the second term in the exponent in q. . con-

verts the KG propagator into that for the Dirac partic e.
The explicit form of the spin factor depends upon d and

this factor, it should be noted that, unlike the Gaussian
case, the conformational properties of the Dirac chain
d d to some extent upon the conformationa (spinepen o

14 16t t f the chain ends as it is explained cn Re s.
le ifand could be seen directly from Eq. (1.7). For examp e, i

one of the ends is anchored at the wall in a certain con-
formational state, this will afFect the conformation of the
whole chain. This is a very plausible property of propa-
gators, especially for polymer liquid crystalline chains,
which complements other studies of liquid crystalline or-
d

'
in the presence of surfaces [23]. Accordingly, theerring in e

effects of external forces on the Dirac chain will depen,
in general, upon the "polarization state" of its ends. In
the present study, we shall consider only the simplest sit-
uation of free chain ends for the sake of illustration of
main features, of our approach. As in the case of flexible
Wiener chains [7], the results of this study are a step in
the development of the theory of randomly crosslinked
networks of chains of arbitrary flexibility.

In Sec. II we provide some necessary background ma-
terial needed to formulate the statement of the problem

to be solved. In Sec. III we calculate the elastic response
of the Dirac chains to the external fields, other than
nematic. The results of our calculations are summarized
in Figs. 1 and 2. It is remarkable that our calculations in-
valve the Pauli-Jordan function, which is related to t e
space- ime c-t' commutator (anticommutator) of t e Bose
(Fermi) fields in quantum field theories [24] as was rs
noticed by Dirac [25]. This function is manifestly zero
for R &N and produces a Langevin-type function in the
force-extension relationship in complete qualitative ac-
cord with the earlier results of Kuhn et al. [6] and Vo
enstein [9]. In Sec. IV we calculate the elastic moduli for
Dirac chains, discuss our results, and propose problems
for further study.

II. BACKGROUND AND STATEMENT
OF THE PROBLEM

In this section the known diSculties of describing
semifiexible chains with the use of traditional models are
illustrated and the quantities to be calculated are defined.
One of the traditional models was introduced in Ref. [ ].
This model is found to be useful when its results are com-
pared to experiments for not too stifF chains, i.e., t is
model efFectively represents a "renormalized" Gaussian
chain with persistence length larger than for the fu y
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(R) = lnZ(f) . (2.2)

flexible polymers [27,28]. To illustrate some of the basic
difficulties, let G(r, N) be the end-to-end distribution
function [e.g. , see Eq. (1.2)], then, following de Gennes
[5], the generating function Z( f) for the chain in the field
of force f is given by

Z(f)= fdRG(R, N)e (2.1)

where f=F/ksT. If G(k, N) is the Fourier transform of
G(R, N), then, obviously, Z( f) is related to G(k) via the
replacement f~~i k Th. e size of the chain ( R ) under the
action of force is given by =2m f dRR G(~R~, N) f d8(sin8)e ""'

0 0

sinh(fR )

R
(2.8)

(1.7), the result, Eq. (2.1), as can be seen from Polyakov's
lecture notes, Ref. [12]. The quadratic coupling and,
whence, the problem of hairpins [29] will be studied in a
separate publication.

Following Ref. [9] consider now a simple example. Let
G(R, N) be an arbitrary distribution function (not neces-
sarily that for Gaussian chains), then for small enough
forces we can write

Z((f))= fdRG(R, N)e

Because Z( f ) =G( i f,—N) we obtain as well

(R)= —. lnG(k, N)= lnG( i f,N—) .
i a
i Bk

' Bf
(2.3)

where ( ) denotes the averaging with help of
G( ~R~, N). By expanding ( [sinh( fR ) ]/fR ) we obtain

(2.9)
%e introduce now the Legendre transform via

—(R).f+lnZ(f) =in%((R) ),
so that

in&((R) )=f,j3

(2 4)
so that

g 2

lnZ(f)=ln(l+ —,'f (R )+ )= (R ) .

(2.5) Using Eq. (2.2) thus produces

(2.10)

and, obviously, we have also Eq. (2.2).
Equation (2.4) can be understood as follows. Let

W((R))= fdf Z(f)e

=fdf exp[lnZ(f) —f(R)], (2.6)

(2.11)

In the case of Gaussian coils (R ) =IN so that we ob-
tain the familiar result [5]

(R )= IN—f
3

(2.12)

'2
K & dllS=— d~
2 0 d7

—g f dr(u n)
0

(2.7)

where g is some coupling constant and the rest of the no-
tations are the same as in Eqs. (1.3) and (1.7). Only after
use of the Hubbard-Statonovich transformation applied
to the second term in Eq. (2.7), with subsequent use of the
saddle point approximation (with respect to the auxiliary
field y, thus making it efFectively constant}, is it possible
to remove the square in the second term in Eq. (2.7), thus,
again efFectively leading to the result, Eq. (1.4), and,
whence, to Eq. (2.1).

In our treatment we shall use only the linear coupling,
which produces for both KG, Eq. (1.4), and Dirac, Eq.

then, using the saddle point method, i.e., Eq. (2.2), we ar-
rive back at Eq. (2.4). If, for whatever reason, we cannot
use the saddle point method (see below), then the results
obtained with the help of Eqs. (2.2) and (2.5) may be, in
principle, difFerent.

Moreover, even Eq. (2.1) should be treated with some
caution. Indeed, at the microscopic level, the force term
should be added to the microscopic action functional. In
the Gaussian limit, e.g., see Eqs. (1.3) and (1.4), such an
addition produces the same final result as Eq. (2.1) does.
But, in general, this may not be the case. For example, in
the existing theory of directed polymers [29], the total ac-
tion functional describing interaction with nematic order-
ing field n is given by

3&R&
lN

(2.13}

For the case of Dirac chains, we had obtained before
[17,19]

(R ) =—', a xL(x), (2.14)

(R) =——a xL(x) .
f 4
3 3

(2.15)

In the random coil limit we have to put x ~~ so that
L(x)~1 and, whence, we obtain back Eq. (2.12},i.e.,

(R) = 2aN= IN . — —f f
3 3

In the rigid rod limit, L(x)=x /3 and we obtain

(2.16)

(R) = N2. —
3

(2.17)

This result is not physically illuminating because it does
not reflect the fact that for (R ) /N ~ 1 —we should have

f~ 00. This is not too surprising in view of Eq. (2.10),

where x =3N /2a, L (x)=cothx —1/x is Langevin's func-
tion, and in the limit of Gaussian chains (a ((N}, we
have obtained l=2a so that, in general, a is the per-
sistence length. By combining Eqs. (2.11) and (2.14) we
obtain
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which represents exactly the Gaussian "approximation"
for stiff chains which is, of course, physically meaning-
less. Because of this, consider yet another example. For
the case of rigid rods, G{k,N) is known to be [19]
G(k, N }=[sin(kN)]/kN while G(R, N) is given by
G(R, N ) =c5(R —N ), where the constant c is to be fixed
below. To this purpose we write

G(k, N)=c fdr 5(r N—)e

dr 5(r N)—sinker = sinkN .2' c ~
g p 2 . 2 2

(2.18}

III. CALCULATION OF THE ELASTIC RESPONSE
FOR THE DIRAC CHAINS

G(k, N)= sin +k2 —m N&k' —m' (3.1)

where the inverse rigidity parameter m =3/2a (in three
dimensions). The use of Eqs. (2.1) and (2.3) allows us to
rewrite Eq. (3.1) in the form useful for computation of the
elastic response

In Refs. [17,19] we have obtained the closed analyze
form for the Dirac propagator in k space

Equation (2.18) produces at once c=l/2nN in accor-
dance with Ref. [30]. On the other hand, we have

6( i f,N—) = sinhE,mN .
(3.2}

G(R, N)= dk —i RsinkN
(2n }'

4m ~dk k2 sinR sinN

(2~)3 o kR kN

1 [5(R—N) —5(R+N)] .
4mNR

(2.19)

8 . N f(R)= lnG( i f,N)—= L(E),Bf ' E (3.3)

where E=N+f +m . According to Eqs. (2.2} and
(2.3), we obtain now

f dR
si (kR) 5(R —N) .

o k
(2.20)

The above result indicates that if we would start with
three different distributions

5(R 2 —N2) = [5(R N)+5(R +N—
)],2' 2mN 2r

[5(R —N) —5(R+N)],

(2.21a)

(2.21b)

5(R N), —1
(2.21c)

This result, apparently, contradicts the form of G(R, N}
given above. Nevertheless, the calculations are done
correctly as can be seen from Ref. [31] [Sec. 5.3, Eqs.
(5.32) and (5.35)]. Let us analyze why this is so. For this
purpose we have to study more carefully Eq. (2.18),

Eq. (2. 18)~ fdR5(R —N )e'"'

~ fdRe'" " 5('R—+N)
R

+fdR e'" —5(R 'N)—
R

where L(x }was defined in Eq. (2.14}.
Consider two limiting cases of Eq. (3.3} first. In the

limit of rigid rods, m =0 and Eq. (3.3}acquires the form

(3.4)

1L-i &R) =f
N N

(3.5)

for N = (R ) the only solution for f is f= ao [9],which is
in accord with our expectations.

Consider now the opposite limit, m —+ ao. In this case
we obtain

This form has a correct limiting physical behavior as dis-
cussed in the Introduction: for infinitesimally small m, it
takes an infinite force to stretch an already rigid chain.
The asymptotic form of the result, Eq. (3.4), is also in ac-
cord with the findings of Ref. [1] [e.g., see Eq. (1.7) of
Ref. [1]].

It is also illuminating to present Eq. (3.4) in the
equivalent form by formally inverting the Langevin's
function. We obtain in this case

the final result, Eq. (2.20), would be the same, i.e., the
same result, {[sin(kN) ]/kN ), corresponds to three
different distributions. Physically this does not change
anything because only 5(R—N) will contribute to the
final result anyway. But the above example indicates
that, in general, G(k, N) and G{R,N} may produce
diferent analytical dependencies of f on (R) (or (R) on
f) so that the direct, Eq. (2.5), and the inverse, Eq. {2.2),
methods may, in principle, produce different results.

Below we demonstrate explicitly that, fortunately, that
is not the case (at least for Dirac-like chains).

Nf 2aN f
Nl 3

(3.6)

This result coincides with Eq. (2.12) if we write 2a =1.
The identification 2a =l in the limit m ~ 00 was already
discussed in our earlier paper, Ref. [17]. For chains of
arbitrary rigidity, Fig. 1 demonstrates the elongation
(R) /N as a function of the applied force fN according
to Eq. (33).

It is interesting to observe that for random coils in the
strong elongation regime, the usefulness of Gaussian-like
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propagator Go(k, N) =exp( —kNl/6) was questioned
rather long before the work by Gaveau et al [15].

In the books by Volkenstein [9] and Treloar [6] the
reader may find a very complete summary of the earlier
efforts to study the elastic responses of random flight
chains. These more accurate calculations have produced
a remarkable result for random flight coils:

G(R N) d3k Sill N+k m

Pl 2K N g2 2

41T I ~ g SlnR SinN )/k m

(2n ) o kR N+k —m

(3.8)

{R)=L.(fi),
N

(3.7}

where l=2a. Equations (3.3) and (3.7) are different in
general but in the limit of strong elongations (large force)
Eqs. (3.7) and (3.4) practically coincide in complete ac-
cord with the requirements discussed in the Introduction.

The results just obtained allow us to determine the
elongation under the influence of the external force for
chains of arbitrary flexibility. In our previous work, Ref.
[17],we have argued that by choosing carefully the rigidi-
ty of the chain it is always possible to mi.mic the effects
caused by the excluded volume. Figure 1 provides an ad-
ditional support to this claim when it is compared with
Fig. 1.11 of the de Gennes book [5]. At the same time, it
is often of interest to study the conjugate problem: when
the chains are already stretched, what is the strength of
the elastic force which they exert? To answer this ques-
tion we have to find an inverse Fourier transform of the
Dirac propagator, Eq. (3.1). Fortunately, this task was
accomplished by Dirac himself [25] so that here we pro-
vide some missing details of his calculations for complete-
ness and the reader's convenience.

We begin by writing

For m =0, i.e., in the rigid rod limit, we have already dis-
cussed the right-hand side {rhs) of Eq. (3.8) earlier, e.g. ,

see Eq. (2.18). Therefore, in the rest of our calculations
we shall only study the case when m %0.

It is important to realize that for maim and N~t
{where t is time) the above defined function 6/mN coin-
cides with the Pauli-Jordan function for the commutator
(anticommutator} of quantum fields in the Minkowski
space time [24]. The fact that the left-hand side of Eq.
(3.8} is divided by mN is also important because if we
multiply both sides by m, then Eq. (3.8) coincides with a
trace of Dirac propagator, as already was noticed by
Dirac [25]. Without such multiplication the rhs of Eq.
(3.8} and, accordingly, Eq. (3.1), is jut the retarded
Green's function for the KG propagator [24]. As we
have mentioned earlier, in Ref. [10], the KG propagator
was discussed for semiflexible chains. Unfortunately, it
cannot be used in general because it will not be able to
reproduce correctly the rigid rod limit, e.g., see Eq.
(2.19},as shown already in Ref. [17]. In addition, the KG
propagator cannot take properly into account the orien-
tation of chain ends, which could sometimes be impor-
tant [23] as we have mentioned in the Introduction. Fol-
lowing Dirac, let us consider the following chain of trans-
formations given below:

i ( kR +Nk p ) i( kR Nk p ) i( kR Nk p ) l'( kR +Nk p )

Eq. (3.8)= (e ' —e ')—(e ' —e ')
(2~)~ 2i R o ko

1

], j oo dk k i(kR+Nkp) oo dk k i(kR —Nkp)
e e

R (2m. ) (2i) —"ko ko

where ko=+k —m . The above expression differs from
that used by Dirac only because in the present case
m2 —+ —m . Let us write as weH, m —+im and at the end
of our calculations we shall go back to our original m.
The legitimacy of this procedure is going to be demon-
strated below. For m im we obtain ko=+k +m
and, therefore, Eq. (3.9) can be rewritten as follows:

dk/ko =dy. Consider now an integral

00 im(R sinhq+Xpcoshy)I= dye (3.12)

Eq. (3.9)= a [I& I2], —
(2~)2 (2i } R i BR

(3.10)
=l or Xo2 —&2=X2)O

where

where Xo=+N Let now R &. N (the case R )N can be

also considered but it does not have physical meaning for
our problem as we shall demonstrate shortly), then if
Xo & 0, let Xo =&A, cosh', R =&A, sinhyo so that

'2 ' . 2
Xo

~X.

dk i(«+Nk, ) ~ dk i(kR —Nkp)
I&= e ', I2= e

00 oo
O

(3.11)

Let now k =m sinhq so that ko =m cosh qp and, there-
fore, ko =m cosh'. Because dk =m cosh' dy we obtain

This then produces

m(R sinhy+Xocoshy)=m& A, cosh(gr+yo) . (3.13)

If Xo &0, then we can put Xo=v'A, cosh' and

R =~A, sinhyo in order to obtain
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m (R sinhy+Xocoshq) = —m v A, cosh((p —yo) .

Combining Eqs. (3.12}and (3.13}we obtain

(3.14)

(3.15)

N f= ——[I2(x)+ID(x)]
1 —y2 4 0 Ii x 1 —y2

(3.24)

I, =I" dye

(3.16)

where Hp" and Hp ' are Hankel's functions.
In view of Eq. (3.10},we have to write

while combining Eqs. (3.12}and (3.14) produces
—imv A. cosh(P PP), H(2)(lK p m 7

where y=R/N, x=(3N/2a)+1 —y, and I„, n=0 —2,
are the modified Bessel functions. The result given by
Eq. (3.23) is plotted in Fig. 2. When compared against
that of Fig. 1, it shows a complete equivalence and, there-
fore, justifies the correctness of our analytical continua-
tion m ~im and back.

IV. DISCUSSION

Ii I2=—in[HO" (mv n)+i@HO( '(m&m)] .

Using the fact that

J(i(mv k}=—,'[Ho '(mv A)+He( '(m v A)],

we obtain

Ii I2=2im—J&(m~n) .

Combining Eqs. (3.10}and (3.17) we obtain

Eq (3.9)= — J(i(mv A, ) .( —1)1 8
8n R BR

Because,

(3.17)

(3.18)

(3.19) df
d(R&

' (4.1}

In the case of Gaussian chains, using Eq. (2.12), we ob-
tain

The results just obtained could serve as the reference
for further development of the theory of randomly
crosslinked networks of chains of arbitrary elasticity.

Although the elastic moduli of individual chains are of
marginal importance in the network theory [8], it is nev-
ertheless illuminating to compare the elastic moduli of
fully flexible chains against that for chains of arbitrary
stiffness. Based on the obtained results, we can formally
define the elastic modulus c of the individual chain ac-
cording to the equation

and, using the fact that

J„(iz)=e ' I„(z),

(3.20)

(3.21)

(4.2)

while in the case of chains of arbitrary flexibility, using
Eq. (3.23), we obtain after a little algebra,

we obtain (by making transformation from m to im) eN = ,'x [I2(—x)+ID(x)] —1,1

Ii x
(4.3)

G(R, N) ( —1) (mi) . & }
1 m

mN 8n vg'™ 8m vg ™ where x =3N/2a. To understand this result better, we
notice that Eq. (4.2) can be rewritten as

(3.22)

Taking into account Eqs. (3.1},(2.18), (2.19), and (3.8), we
obtain the final result

¹nOA,G(R, N ) = 5(R N)+ Ii(m v—A, ) .

(3.23} Z
4—

Comparing this result with that given in Ref. [24] (e.g.,
see Sec. 16 of Ref. [24]), we find that our Eq. (3.23) is re-
lated to the Pauli-Jordan function via the transformation
maim. Because in going from Eq. (3.9) to (3.10) we
made a change from m to im, the result, Eq. (3.23}, may
or may not be correct. To check the correctness of this
result we have to calculate the force f according to Eq.
(2.5) and compare our results against those depicted in
Fig. 1.

For R (N employing Eqs. (2.5} and (3.22) and, in view
of Eq. (3.3), we obtain after some algebra

0—
I

0
3N/? a

I

10

FIG. 3. Plot of elastic modulus cN as a function of
x =3N/2a for polymer chains of arbitrary stiffness a.
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cX =x, (4.4)

pX =x —1=x,2 (4.5}

which coincides with Eq. (4.4} as expected. In cases
where x is of order unity (stiff chain limit), the results can
be obtained numerically by using Eq. (4.3). The plot of
cN as function of x for arbitrary x is presented in Fig. 3.
It indicates that the stiffness plays an appreciable role
only for chains that are almost rigid. Otherwise, the elas-
tic moduli e for chains of arbitrary stiffness is practically
the same as that for the fully flexible chains. It is very in-
teresting to investigate if the same (or similar) result will

where we have taken into account that 2a =I for a «N
[17]. If we use Eq. (4.4) for arbitrary a' s, then for x ))1

noticing that l„(m)a(&2am ) 'exp(m) (for any v's), we
obtain from Eq. (4.3) the following asymptotic result:

hold for networks. This is left for future study. %e also
leave for further study the issue of the elastic response of
semiflexible chains to the nematic environment [29]. To
investigate this problem, we have to study the response of
the Dirac chains to the nematic ordering field as was dis-
cussed in Sec. II. Finally, to study the arbitrary elonga-
tion of the polymer network would require us to use

propagator s defined on some Riemannian manifolds.
This makes the network theory similar to that used in
general relativity as was noticed some time ago by Sa-
kharov [32] and developed by others [33].
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